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In the field of bioinformatics, understanding protein secondary structure is very important
for exploring diseases and finding new treatments. Considering that the physical
experiment-based protein secondary structure prediction methods are time-consuming
and expensive, some pattern recognition and machine learning methods are proposed.
However, most of the methods achieve quite similar performance, which seems to reach a
model capacity bottleneck. As both model design and learning process can affect the
model learning capacity, we pay attention to the latter part. To this end, a framework called
Multistage Combination Classifier Augmented Model (MCCM) is proposed to solve the
protein secondary structure prediction task. Specifically, first, a feature extraction module
is introduced to extract features with different levels of learning difficulties. Second,
multistage combination classifiers are proposed to learn decision boundaries for easy
and hard samples, respectively, with the latter penalizing the loss value of the hard samples
and finally improving the prediction performance of hard samples. Third, based on the
Dirichlet distribution and information entropy measurement, a sample difficulty
discrimination module is designed to assign samples with different learning difficulty
levels to the aforementioned classifiers. The experimental results on the publicly
available benchmark CB513 dataset show that our method outperforms most state-of-
the-art models.
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INTRODUCTION

Gene controls the individual characters of biology through the guidance of protein synthesis to
express its own genetic information. With the completion of the human genome project, scientists
have never stopped studying the protein structure. Understanding protein secondary structure is
very important for exploring diseases and finding new treatments (Huang et al., 2016; Li et al., 2021).
Protein structure prediction is a very important research topic in the field of bioinformatics. Protein
is the material basis of life activities, the basic organic matter of cells, and the main undertaker of life
activities. Proteins can be folded into different structures or conformations, showing the feasibility of
various biological processes in organisms. The protein structure determines its function, so the
prediction of protein structure has great research value. In the field of bioinformatics, it is difficult to
predict the spatial protein structure from the primary structure, so the prediction of the protein
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secondary structure has attracted much attention (Zhang, 2008;
Källberg et al., 2012). Protein secondary structures refer to the
local spatial structure of the polypeptide chain skeleton, not
considering the conformation of the side chain and the spatial
arrangement of the whole peptide chain. Besides, protein
secondary structures are stabilized by hydrogen bonds on the
backbone and are considered the linkages between primary
sequences and tertiary structures (Myers and Oas, 2001).
According to the distinct hydrogen bonding modes, generally,
three types of secondary structures have been identified, namely
helix (H), strand (E), and coil (C), where the helix and strand
structures are most common in nature (Pauling et al., 1951). In
the new classification calculated by the DSSP algorithm, the
previous three states are extended to eight states, including α-
helix (H), 310 helix (G), π-helix (I), β-strand (E), β-bridge (B), β-
turn (T), bend (S), and coil (C) (Kabsch and Sander, 1983),
among which the α-helix and β-strand are the principal structure
features (Lyu et al., 2021).

In the field of genetics and bioinformatics, protein secondary
structure prediction is intended to predict the three-dimensional
structure of a protein from its amino acid sequence (Drozdetskiy
et al., 2015). The protein structure prediction is very important
for understanding the relationship between protein structure and
its function. Experimental protein structure determination
methods include X-ray crystallography, nuclear magnetic
resonance spectroscopy, and electron microscopy. However, all
of these methods are very time-consuming and expensive and
require expertise. What is more, at present, the growth rate of the
protein sequence is much higher than the chemical or biological
protein structure determination methods (Fang et al., 2020).
Hence, it is very urgent to explore the protein secondary
structure prediction methods. Although the three-dimensional
structure of a protein cannot be accurately predicted directly from
the amino acid sequence of the protein, we can predict the protein
secondary structure to understand the three-dimensional
structure of the protein. The protein secondary structure
reserves part of the three-dimensional structure information
and can help understand the three-dimensional morphology of
the amino acid in the primary structure (Hanson et al., 2019).

Due to the high application value of the protein secondary
structure prediction in many biological aspects, plenty of related
algorithms based on deep learning methods have been proposed
over the years (Li and Yu., 2016; Wang et al., 2016; Heffernan
et al., 2017; Fang et al., 2018; Zhang et al., 2018; Uddin et al., 2020;
Guo et al., 2021; Lyu et al., 2021; Drori et al., 2018). Current
methods mainly utilize the convolutional and recurrent neural
network to extract different protein features and then apply them
to protein secondary structure prediction. For example, Li and Yu
(2016) proposed an end-to-end deep network to predict the
secondary structure of proteins from the integrated local and
global context features, which leveraged convolutional neural
networks with different kernel sizes to extract multiscale local
contextual features and a bidirectional neural network consisting
of the gated recurrent unit to capture global contextual features.
Wang et al. (2016) presented Deep Convolutional Neural Fields
(DeepCNF) for protein secondary structure prediction, which can
model not only complex sequence-structure relationship by a

deep hierarchical architecture but also interdependency between
adjacent protein secondary labels, so it is much more powerful
than traditional Convolutional Neural Fields. Lyu et al. (2021)
presented a reductive deep learning model MLPRNN to predict
either 3-state or 8-state protein secondary structures. Besides,
Uddin et al. (2020) incorporated a self-attention mechanism
within the Deep Inception-Inside-Inception network (Fang
et al., 2018) to capture both the short- and long-range
interactions among the amino acid residues. Guo et al. (2021).
Integrated and developed multiple advanced deep learning
architectures (DNSS2) to further improve secondary structure
prediction. As described above, most researchers currently focus
on exploring the complex deep learning models, and a few try to
solve the protein secondary structure prediction task from the
perspective of model learning or training methods, for example,
“ELF: An Early-Exiting Framework for Long-Tailed
Classification” (Duggal et al., 2020).

Real data usually follow a long-tailed distribution, most
concentrated in only a few classes. On datasets following this
distribution, neural networks usually cannot deal well with all
classes (majority or rareness classes). If the model performs well
on majority classes, it tends to perform poorly on the rareness
classes and vice versa, resulting in poor performance. The protein
secondary structure prediction task also shows a similar problem.
For example, we visualize the CB6133-filtered and CB513 datasets
(Zhou and Troyanskaya, 2014) and find an imbalance problem in
the protein secondary structure labels distribution. For example,
the number of labels α-helix (H), β-strand (E), and coil (C) is
much greater than other labels. This imbalance problem has
traditionally been solved by resampling the data (e.g.,
undersampling and oversampling) (Chawla et al., 2002;
Minlong et al., 2019) or reshaping the loss function (e.g., loss
reweighting and regularization) (Cao et al., 2019; Cui et al., 2019).
However, by treating each example within a class equally, these
methods fail to account for the important notion of example
hardness. In other words, within each class, some examples are
easier to classify than others (Duggal et al., 2020). Hence, “ELF:
An Early-Exiting Framework for Long-Tailed Classification” is
proposed to overcome the above-described limitations and
address the challenge of data imbalance. ELF incorporates the
notion of hardness into the learning process and can induce the
neural network to increasingly focus on hard examples because
they contribute more to the overall network loss. Hence, it frees
up additional model capacity to distinguish difficult examples and
can improve the classification performance of the model.

To our knowledge, few studies try to solve the protein
secondary structure prediction task from the perspective of the
model learning process. This study proposes a framework called
Multistage Combination Classifier Augmented Model (MCCM)
to solve that task and fill in the blanks.We first introduce a feature
extraction module to extract features with different learning
difficulty levels. Then, we design two classifiers that can learn
the decision boundaries for easy and hard samples, respectively.
Finally, we propose a sample learning difficulty discrimination
module via exploring two strategies. Specifically, the first strategy
is label-dependent, assuming the sample is hard if it is
misclassified. However, the actual data is lack of labels. Hence,
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the second strategy utilizes Dirichlet distribution and information
entropy measurement. The experimental results based on the first
method and the benchmark CB513 dataset show that our
proposed framework outperforms other state-of-the-art models
by a large margin, indicating that if the multilevel samples
discriminating module can be designed effectively, our
framework can obtain state-of-the-art performance.
Furthermore, the results based on the second method also
show that our model outperforms most state-of-the-art
models. In this work, we made the following key contributions:

• We are first to develop a Multistage Combination Classifier
Augmented Framework for protein secondary structure
prediction task. It consists of multilevel (easy or hard
level in this study) features extraction, multistage
combination classifiers, and multilevel samples
discrimination module. The last module is realized based
on label-dependent and label-independent methods,
respectively.

• For our core multilevel samples discrimination module, a
label-independent measurement standard to discriminate
the easy and hard samples is first explored by our
work based on Dirichlet distribution and information
entropy theory. The Dirichlet distribution is designed
to measure the model confidence based on subjective
logic theory. The information entropy is designed to
evaluate whether the Dirichlet distribution shows a
highly confident distribution and, thus, capture the easy
samples that tend to be classified accurately by the easy
classifier.

• The results based on the label-independent method show
that our model outperforms most state-of-the-art methods,
indicating that the designed multilevel samples
discrimination module herein is effective. The excellent
result based on the label-dependent method means that
our framework can obtain a state-of-the-art performance if
the multilevel samples discriminating module is designed
appropriately. Hence, our work not only offers a new idea to
deal with the protein secondary structure prediction task
but also leaves room for further research focusing on how to
design a more effective multilevel samples discrimination
module.

METHODS AND MATERIALS

Benchmark Datasets
In the field of protein secondary structure prediction in genetics
and bioinformatics, CB6133-filtered and CB513 datasets (Zhou
and Troyanskaya, 2014) are two benchmark datasets widely used
by the researchers (Li and Yu., 2016; Fang et al., 2018; Zhang et al.,
2018; Guo et al., 2021; Lyu et al., 2021). The CB6133-filtered
dataset is filtered to remove redundancy with the CB513 dataset
(for testing performance on the CB513 dataset). In particular, the
CB6133-filtered dataset is used to train the model, and the CB513
dataset is used to test the model. The training CB6133-filtered
dataset is a large non-homologous sequence and structure

containing 5,600 training sequences. The dataset is made by
the PISCES Cull PDB server, a public server for screening
protein sequence sets from the Protein Data Bank (PDB)
according to sequence identification and structural quality
standards (Wang and Dunbrick, 2003). The testing dataset
CB513 was introduced by Cuff and Barton (Cuff and Barton,
1999, 2000), which contains 514 sequences. The two available
benchmark datasets can be obtained by Zhou’s website.

Input Features
Considering the difficulty of protein secondary structure
prediction in genetics and bioinformatics, we use four types of
features to characterize each residue in a protein sequence,
including 21-dimensional amino acid residues, one-hot coding,
and the sequence of 21-dimensional profile features, obtained
from the PSI-BLAST (Altschul et al., 1997) log file and rescaled by
a logistic function (Jones, 1999). Furthermore, the seven-
dimensional physical property features (Jens et al., 2001) were
previously used for the protein structure and property prediction
by researchers (Heffernan et al., 2017) and obtained a good
performance. The physical properties include steric parameters
(graph-shape index), polarizability, normalized van der Waals
volume (VDWV), hydrophobicity, isoelectric point, helix
probability, and sheet probability. We also take them as one of
the input features, and the features can be downloaded from
Meiler’s study (Jens et al., 2001). Finally, the one-dimensional
conservation score was obtained by applying the method (Quan
et al., 2016):

R � log 20 +∑20

1
Li log Li. (1)

The residues are transformed according to the frequency
distribution of amino acids in the corresponding column of
homologous protein multiple sequence alignment. The score
information in the profile features was calculated from this
probability. Residue score in the ith column was calculated as
follows (Altschul et al., 1997):

Si � [ln(Li

Pi
)]/λu, (2)

where Li is the predicted probability that a properly aligned
homologous protein has amino acid i in that column and Pi is the
background probability. λu is 0.3176. Li is defined as

Li � exp(Si · λu) · Pi. (3)

Model Design
The proposed model for protein secondary structure prediction
in genetics and bioinformatics consists of a feature extracting
module and a Multistage Combination Classifier Module. This
section firstly introduces the two modules separately and then
explains the overall architecture in detail.

Multilevel Features Extraction
We use a multilevel features extraction module to extract easy
(low level) and hard (high level) features. The easy feature is
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obtained through four linear layers and multiscale one-
dimensional convolution layers. At first, we apply the four
linear layers to the amino acid residues one-hot coding,
sequence profile, physical property, and conservation score
features, respectively. Further, we apply the concatenation
function for the outputs, intended to obtain the feature
representations with denser and more information. We define
the concatenated outputs as

l � [l11, . . . , l1T, l21, . . . , l2T, lk1, . . . , lkT], (4)
where lkT denotes the output of the linear layer k and T is the index
of amino acid sequence. To model local dependencies of adjacent
amino acids, we leverage multiscale one-dimensional convolution
layers to extract local contexts (Li and Yu., 2016):

ci � F · lki: i+f−1 � Relu(w · lki: i+f−1 + b), (5)
where F ∈ Rf·m is a convolutional kernel, f is kernel size, and m
is the feature dimensionality of the concatenated outputs of the
four linear layers l. w and b is the trainable parameters of the
convolution layers. In this study, f of the three one-dimensional
convolution layers is 5, 9, and 13, respectively. We define the
concatenated outputs of the multiscale one-dimensional
convolution layers as

c � [c11, . . . , c1T, cl21, . . . , c2T, clk1, . . . , ckT], (6)
where ckT denotes the output of the convolution layer k.

Then, based on the obtained easy feature c, the hard feature is
further extracted by one Gate Recurrent Unit (gru(·)) and the
attention mechanism. gru(·) is designed to capture the global
contexts in the amino acid sequences. Defining the input of the
GRU as (ckt , ht−1), the mechanism of a GRU can be presented as
follows:

rt � sigm(Wcr · ct +Whr · ht−1 + br), (7)
ut � sigm(Wcu · ct +Whu · ht−1 + bu), (8)

~ht � tanh(Wc~h · ct +Wh~h · (rt ⊙ ht−1 + b~h)), (9)
ht � ut ⊙ ht−1 + (1 − ut) ⊙ ~ht, (10)

where rt is the activation of the reset gate; ut is the activation of
the update gate; ~ht is the internal memory cell; ht is the GRU
output; Wcr, Wcr, Wcu, Whu, Wc~h, and Wh~h are weight matrices;
and br, bu, and b~h are bias terms. Besides, ⊙, sigm, and tanh
denote element-wise multiplication, sigmoid, and hyperbolic
functions, respectively. Further, the sequential attention
mechanism (SAM) has been widely used in the LSTM-based
solutions for sequential learning problems (Feng et al., 2019). In
this study, considering the global contexts ht of different amino
acid sequence steps could contribute differently to the
representation of the whole amino acid sequences. We use the
attention mechanism to compress the hidden representations of
global contexts ht at different sequence steps into an overall
representation with adaptive weights:

~αt � sTa tanh(Wa · ht + ba), (11)

αt � exp~αt

∑T
t�1exp~αt

, (12)

αh � ∑T

t�1αtht, (13)
whereWa, sa, and ba are trainable parameters and αh denotes the
important contexts information, aggregating from the global
contexts ht. Although αh aggregated most part of the
important contexts’ information, it also may lead to losing
part of important information more or less. Hence, we apply
the concatenation function to the original global contexts ht and
the aggregated contexts information αh. At last, the obtained local
contexts, global contexts, and aggregated global contexts through
SAM are concatenated together as the hard features:

v � [c, h, αh]. (14)
Finally, the easy feature c is sent to the easy classifier, and the

hard feature v is sent to the hard classifier.

Multistage Combination Classifier Module
Predicting protein secondary structure in genetics and
bioinformatics is a challenging task that we try to solve from
the perspective of the model learning method. On the one hand,
the existing research results point out that, within different classes
of all samples (the classes are either majority or minority), some
examples are easier than the others (Duggal et al., 2020). On the
other hand, different people may be suitable for different work.
Similarly, the different classifiers may be suitable for classifying
different samples. Following the theory and intuition, we design
two classifier branches in the model to deal with samples with
different difficulty levels. The first classifier branch comprises a
simple linear layer, which aims to deal with the simple samples
(easy to classify). The second classifier branch comprises a multi-
layer perceptron (MLP(·)), which is more complex than the first
classifier and aims to deal with the hard samples (hard to classify).
The first classifier branch can correctly classify some easy samples
and serve as a filter to filter them out, avoiding being sent to the
second complex classifier. We regard the remaining samples,
classified by the first classifier incorrectly, as hard samples and
further send them to the second complex classifier. After the
computation of each classifier, we calculate the cross-entropy loss
between the predicted outputs and ground truth labels:

LC � 1
B
∑B

i
−∑Z

j�1yij(log(pij)), (15)

where B is the number of batch samples and Z is the number of
target labels. We can further obtain the cross-entropy loss
computed based on the easy and hard classifier and describe
them as LC easy and LC hard, respectively. After the computation
of the first simple classifier, we can obtain the loss value of all
samples. Further, we can obtain the loss value of the hard samples
after the computation of the second hard classifier. Hence, the
loss value of the harder samples is increased in general, and the
model is induced to pay more attention to harder samples and
improve the classification performance. The final loss function is
the sum of the cross-entropy loss of the easy and hard versions:
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LC all � LC easy + LC hard. (16)

Sample Difficulty Discrimination Module
We have designed the easy and hard classifiers to deal with
different samples. However, we need to further design a
measurement standard to discriminate between the easy and
hard samples among all samples. For the model, a label is an
ideal tool to realize our purpose. If samples are classified
accurately according to their labels, we regard them as easy
samples and the others as hard samples sent to the hard
classifier. In this way, the different classifiers can be assigned
suitable samples, and our model can be trained well. However, the
actual data is lack of labels. Hence, we just can design the
measurement standard to get close to the ideal effect in all
possible ways. In this study, we design a measurement
standard based on subjective logic (SL) and Dirichlet
distribution with Z parameters α � [α1, α2, . . . , αZ] , and α are
called subjective opinions (Dempster, 2008; Josang, 2016). If the
model has a highly motivated subjective opinion on one class of
one test sample, it means that the model is confident to classify it
accurately after being trained on the training data. For example,
as shown in Figure 1, the easy classifier classifies the amino acid
into three states (H, E, and C). IE denotes the information
entropy, Tindex denotes the index of True label, and pz

denotes the expectation of the Dirichlet distribution. We will
further discuss them in the following part. Based on the subjective
logic theory, we know that if the predicted α of certain amino
acids are [14.10, 1.33, and 1.21] (each α corresponds to one state),
the easy classifier is very confident to classify the amino
accurately. Hence, following a Dirichlet distribution, the
subjective multinomial opinion will yield a sharp distribution
on one corner of the simplex (Figures 1A, B). However, if the
predicted α are [2.24, 1.82, and 1.78], as shown in Figure 1C, the

model is not confident to classify it accurately, and it should be
sent to a hard classifier. In this condition, the multinomial
opinion will yield a central distribution (Figure 1B). The
Dirichlet distribution is a probability density function (pdf) for
possible values of the probability mass function (pmf) p and can
be expressed by Z parameters α:

Dir(p∣∣∣∣α) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
B(α)∏

Z

i�1
pαi−1
i ,

0 otherwise

, 17)

where p is the probability mass function and α � [α1, . . . , αZ] are
the parameters of Dirichlet distribution. Z denotes the label
category. B(α) is a polynomial beta function in Z dimension
[36]. Based on SL, the expectation of Dirichlet distribution based
on neural network evidence theory can be computed as follows:

pz � αz/S, (18)

S � ∑Z
z�1

αz, (19)

αz � ez + 1, (20)
ez � ζ(ŷs), (21)

where αz are Dirichlet parameters, ŷs is the output vector
before being sent to the softmax layer, and ζ(·) denotes an
activation layer (e.g., ReLU). ez is the amount of evidence
and S is the Dirichlet strength. By minimizing the mean
square error loss based on the Dirichlet parameters, the
Dirichlet distribution can be optimized according to the
loss function as

Ldir � ∑B

b�1(yb − pb)2 + pb(1 − pb)
(Sb + 1) , (22)

where B is the batch size of the samples, yb is the real label of
a single sample, pb is the Dirichlet distribution expectation of
a single sample, and Sb is the Dirichlet strength of a single
sample.

Finally, we use the information entropy (IE) to know whether
the easy classifier has a highly motivated subjective opinion on the
samples. Given the predicted Dirichlet distribution parameters
[α1, α2, . . . , αZ], we can compute pz. Further, we can compute the
information entropy of pz, which is defined as

H(pz) � −∑p(pz)log2(pz). (23)
As shown in Figure 1, if the easy classifier is very confident to

classify the sample accurately, its information entropy tends to be
lower than other conditions. We can also find that the classifier
with low information entropy shows a highly motivated
subjective opinion on the current samples and classifies them
accurately (Figures 1A,B). However, the classifier with high
information entropy shows a uniform subjective opinion on
the current sample labels and classifies it incorrectly. Hence,
the information entropy can be used to help the model
discriminate between the easy and hard samples. We define
the discriminating process as

FIGURE 1 | Prediction of the Dirichlet distribution of the three amino acid
samples’ analysis.
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samplescur

� { sampleseasy, if argmax(pb) � yb andH(pz)<H(pz)per
sampleshard, otherwise

,

(24)
whereH(pz)per is per th percentile ofH(pz), which is a threshold
to distinguish the samples into hard or easy samples. In
particular, in the training process, if the samples are classified
correctly and their information entropy is lower than the
threshold, they will not be sent to the hard classifier.
Otherwise, the samples will be sent to the hard classifier again.
In the test process, there is no need to know whether the samples
are classified correctly, and the easy or hard samples are only
divided based on the information entropy. The samples with the
high information entropy will be sent to the hard classifier for the
final prediction result.

Hence, the final loss function of our model can be obtained by
uniting Eqs. 16, 22:

LC final � LC easy + β · Ldir
easy + LC hard + β · Ldir

hard. (25)
According to Eq. 22, Ldireasy and Ldirhard are calculated based on

the output of the easy and hard classifiers, respectively.
The architecture of the Multistage Combination Classifier

Augmented Model (MCCM) is shown in Figure 2. After
preprocessing the dataset, 50-dimensional features are

obtained and taken as the input features, including the 21-
dimensional amino acid residues one-hot coding, 21-
dimensional sequence profile, 7-dimensional physical property,
and 1-dimensional conservation score. The features are first
preprocessed into easy ones through four linear layers and
multiscale one-dimensional convolution layers. Based on the
Dirichlet distribution and information entropy, the samples
are divided into easy and hard ones by an easy classifier (a
simple linear layer). Then, the easy feature is further
preprocessed into a hard one through gru(·) and the attention
mechanism SAM. Finally, the hard samples are sent into a hard
classifier (MLP(·)).

Implementation Details
The hidden sizes of the four linear layers used for the 21-
dimensional amino acid residues one-hot coding, 21-
dimensional sequence profile, 7-dimensional physical property,
and 1-dimensional conservation score features are 64, 128, 32,
and 16, respectively. The hidden size of the multiscale one-
dimensional convolution layers is 64 and the corresponding
kernel sizes are 5, 9, and 13, respectively. The GRU layer is
bidirectional and the hidden size is 256. The hidden size of the
linear layer used in the attention mechanism is 256. The hidden
sizes of the first two layers used in MLP are 512 and 1,024. The
models are optimized by Adam optimizer, and the learning rates
are set to 0.0005. During training, the dropout function can

FIGURE 2 | The overall architecture of the Multistage Combination Classifier Augmented Model (MCCM) for protein secondary structure prediction in genetics and
bioinformatics.
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randomly zero some of the elements of the input tensor with
probability τ using samples from a Bernoulli distribution. Herein,
the dropout function is used in four linear layers and the MLP
layers and τ is set as 0.5. The percentile of H(pz) used in this
study is 15, 30, and 35. The β used in Eq. 22 is 1. All results have
been produced based on the same hardware environment: Intel
(R) Core (TM) CPU I7-10700 @ 2.90 GHz 16 cores. Finally, we
define the proposed label-dependent model (only used to explore
the theoretical best performance) equipped with both LC easy and
LC hard as MCCM. The proposed label-dependent model
equipped with only LC easy is defined as MCCMeasy, which
means there is no backpropagation operation through the loss
functionLC hard. The proposed label-independent model (use the
evidence and information entropy theory to divide the samples
into easy and hard ones) is MCCMdir.

Performance Evaluation
In the field of protein secondary structure prediction in genetics
and bioinformatics, the Q score measurement formulated as Eq. 6
has been widely used to evaluate the performance of the proposed
models. It measures the percentage of residues for which the
predicted secondary structures are correct (Wang et al., 2016):

Qk � 100% ×
∑k

i�1Ncorrect(i)
N

, (26)

where k indicates the number of classes, for example, Q3 score (k
= 3) or Q8 score (k = 8). Q8 classes include α-helix (H), 310 helix
(G), π-helix (I), β-strand (E), β-bridge (B), β-turn (T), bend (S),
and coil (C).Q8 is transformed toQ3 by treating the label (B, E) as
E, (G, I, H) as H, and (S, T, C) as C.

RESULTS AND DISCUSSION

Experimental Results of Evaluating
Indicators
The evaluation results of the proposed model based on the
public CB513 test dataset are shown in Table 1. MCCMdir

means using the Dirichlet distribution and information
entropy to divide the samples into easy and hard ones. In

MCCMeasy and MCCM, we use label information to divide the
samples, an ideal measurement method that can help us
explore the theoretical best performance. Besides,
MCCMeasy means there is no backpropagation operation
through the loss function LC hard and the model will not be
induced to pay more attention to hard samples. The results of
the benchmark methods on CB513 datasets are obtained from
(Shapovalov et al., 2020), except for the DNSS2, which is
obtained from Guo et al. (2021). We can find that the Q3
and Q8 accuracy of the MCCMdir is better than most of the
benchmark methods, denoting that the designed method is
based on Dirichlet distribution and information entropy to
distinguish the hard or easy samples is effective. Besides, note
that, due to our computer resource constraints, there are only
two designed classifiers and corresponding feature extractors
in our framework, which limits the performance of our model.
Moreover, compared with MCCMeasy, we can find that MCCM
outperforms state-of-the-art models by a large margin in both
Q3 and Q8 accuracies, which means that the model is induced
to pay more attention to hard samples and improves the
classification performance of the model overall through the
backpropagation operation of both LC easy and LC hard. It
shows that it is reasonable to use different classifiers to
classify samples with different difficulty levels, thus
increasing the loss values of hard samples, inducing the
model to pay more attention to hard samples. However, the
label information is lacking in actual data, so the excellent
performance of MCCM only denotes that if the multilevel
samples discriminating module (divide samples into hard and
easy ones) is designed very effectively, our method can obtain
the state-of-the-art performance.

Ablation Study
This section gives a more comprehensive analysis regarding the
effectiveness of the proposed framework. The different levels of
classifiers equipped with the multilevel samples discriminating
module can improve the performance of the prediction task. The
compared variants are as follows:

MCCMc1: the variant is the front part of our proposed model
(without the multilevel classifiers and sample difficulty
discrimination module), which only uses the concatenated
features c and easy classifier (see Figure 2) to deal with the
prediction task. This model only uses the convolution layer to
extract the features and then conducts the classification task based
on the low-level features.

MCCMc2: the variant is the part of our proposed model
(without the multilevel classifiers and sample difficulty
discrimination module) that uses the concatenated features

TABLE 1 | Q3 and Q8 accuracy of different algorithms on the public CB513
dataset.

Algorithms Q3 Q8

DeepCNF (2016) 81.80 69.1
DCRNN (2018) - 69.70
eCRRNN (2018) 81.20 70.2
DNSS2 (2021) 82.56 73.36
BLSTM (2015) - 67.40
GSN (2014) - 66.40
SSpro, free (2014) 78.50 63.50
JPRED4 (2015) 81.70 -
SecNet (2020) 84.30 72.30
MCCMdir 82.12 69.79
MCCMeasy 86.94 71.78
MCCM 96.31 83.74

The bold values denote the best values of performance metrics.

TABLE 2 | Q3 and Q8 accuracy of variant models on the public CB513 dataset.

Algorithms Q3 Q8

MCCMc1 79.93 66.30
MCCMc2 81.45 68.92
MCCMconf 81.00 66.42
MCCMdir 82.12 69.79

The bold values denote the best values of performance metrics.
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[c,h,a] and hard classifier (see Figure 2) to deal with the
prediction task. This model uses not only the convolution
layer but also gru(·) and the attention mechanism to extract
the features. Then, it conducts the classification task based on
both the low- and high-level features.

MCCMconf: the variant is designed based on the ELF (Duggal
et al., 2020), which uses the classifier confidence to distinguish the
samples into easy and hard ones. Particularly, in the training
process, if the samples are classified correctly and their classifier
confidence is lower than the threshold (0.9 used in ELF and this
study), they will not be sent to the hard classifier. Otherwise, the
samples will be sent to the hard classifier again. In the test process,
the samples with low classifier confidence will be sent to the hard
classifier for the final prediction result.

The experiment results are shown in Table 2. The
performance of MCCMc1 is the worst, and the performance of
MCCMc2 is better than it, which means that the addition of the
high-level features extractor GRU and attention mechanism is
effective. The performance of MCCMdir is better than MCCMc2,
which means that our proposed framework is effective. The
designed multilevel classifiers and sample difficulty
discrimination module can help the model pay more attention
to the hard samples and improve the model performance. Note
that, if we can increase the depth of our network and use more

classifier branches, the model performance will be better.
Moreover, the performance of MCCMdir is better than that of
MCCMconf, which means that our designed sample difficulty
discrimination module is better than that proposed in ELF
(Duggal et al., 2020). The Dirichlet distribution united with
the information entropy can divide the samples into hard and
easy ones, which is better than using the simple classifier
confidience.

Analysis of the Training Process
The training loss computed on the CB6133-filtered dataset and
the test loss computed on the CB513 dataset are shown in
Figure 3. Label-dependent MCCM and label-independent

FIGURE 3 | The loss value computed on the training and test datasets.

TABLE 3 | Prediction accuracy of each label in the Q8 states based on the CB513
dataset.

Label Types Frequency MCCMdir MCCMeasy MCCM

H α-Helix 30.86 91.97 89.91 96.30
E β-Strand 21.25 83.67 80.08 92.30
C Coil 21.14 63.73 63.92 88.45
T β-Turn 11.81 53.96 88.46 74.37
S Bend 9.81 26.35 23.68 51.91
G 310 Helix 3.69 30.62 18.3 46.87
B β-Bridge 1.39 4.57 3.47 6.94
I π-Helix 0.04 0.00 3.33 0.00

The bold values denote the best values of performance metrics.

TABLE 4 | Q3 confusion matrix, of 84,765 test labels (MCCMdir, MCCMeasy, and
MCCM).

Accuracy (MCCMdir) Pred freq. True label

82.12 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 44.53 35.15 3.76 3.85

E 21.07 5.27 16.90 0.48
H 34.40 4.11 0.41 30.07

Accuracy (MCCMeasy) Pred freq. True label

86.94 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 36.75 36.1 4.87 1.79

E 27.66 0.38 19.65 2.61
H 35.59 0.26 3.14 31.19

Accuracy (MCCM) Pred freq. True label

96.31 C E H

True freq. 100% 42.76 22.65 34.59
Predicted label C 42.41 41.75 0.29 0.72

E 22.59 0.47 21.22 0.95
H 35.00 0.19 1.07 33.33

The bold values denote the best values of performance metrics.
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MCCMdir are all optimized by the loss functions LC easy and
LC hard, but MCCMeasy is only optimized by the loss function
LC easy. Hence, the loss value of the MCCM is always greater than
that of MCCMeasy. LC hard is computed based on the hard
samples and can induce the model to pay more attention to
the hard samples (samples tend to be classified incorrectly in both
majority or rareness classes).

Analysis of the Prediction of Q8 States and
Confusion Matrix
In the field of protein secondary structure prediction in
genetics and bioinformatics, the predictive precision for
each class of Q8 would provide more useful information,
and we compute the prediction accuracy of each label in the
Q8 states based on the CB513 dataset. At the same time, we
compute the confusion matrix to further explore the model
performance. Table 3 shows the prediction accuracy
(MCCMdir, MCCMeasy, and MCCM) of each label in the Q8
states. Tables 4, 5 show the Q3 and Q8 prediction confusion

matrix, respectively. Associating the three tables, we can find
that although MCCMeasy is only optimized by the loss function
LC easy, it also outperforms MCCMdir. The main reason for the
better performance is that MCCMeasy uses the label
information to divide the samples into hard and easy ones,
denoting that the method to distinguish the samples is very
important.

The existing research results point out that, within different
classes of all samples (either the classes is majority or minority),
some examples are easier than others (Duggal et al., 2020).
Comparing the performance of MCCMeasy and MCCM, we
can find that the former based on loss function LC easy can
correctly classify the easier examples. Further, the latter, based
on loss functions LC easy and LC hard, can correctly classify the
easier examples and correctly classify the remaining harder
examples. For example, from Table 3, we can find that
MCCMeasy (optimized only by loss function LC easy)
prediction accuracy of labels H, E, C, S, G, and B is much
lower than that of MCCM (optimized by loss functions
LC easy and LC hard), which means the harder examples are

TABLE 5 | Q8 confusion matrix of 84,765 test labels (MCCMdir, MCCMeasy, and MCCM).

Accuracy (MCCMdir) Pred freq. True label

69.79 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 23.33 13.47 0.04 3.58 0.27 0.00 1.04 1.28 1.46

B 0.14 0.69 0.06 0.33 0.02 0.00 0.11 0.09 0.09
E 23.81 2.29 0.02 17.78 0.07 0.00 0.42 0.31 0.37
G 2.57 0.65 0.00 0.21 1.13 0.00 0.91 0.12 0.68
I 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
H 33.43 0.86 0.01 0.29 0.4 0.00 28.38 0.1 0.82
S 5.12 3.48 0.01 1.07 0.18 0.00 0.69 2.58 1.79
T 11.6 1.9 0. 0.55 0.5 0.00 1.86 0.63 6.37

Accuracy (MCCMeasy) Pred freq. True label

71.78 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 13.51 13.51 0.21 0.54 0.03 0.46 0.32 0.54 5.52

B 1.14 0.00 0.05 0.14 0.01 0.09 0.04 0.1 0.98
E 18.58 0.00 0.15 17.02 0.01 0.35 0.17 0.33 3.22
G 0.78 0.00 0.13 0.09 0.68 0.11 0.11 0.2 2.38
I 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
H 28.84 0.00 0.13 0.1 0.01 0.21 27.74 0.21 2.46
S 4.12 0.00 0.24 0.47 0.02 0.6 0.28 2.32 5.88
T 30.91 0.00 0.24 0.22 0.02 0.3 0.17 0.41 10.45

Accuracy (MCCM) Pred freq. True label

83.74 C B E G I H S T

True freq. 100% 21.14 1.39 21.25 3.69 0.04 30.86 9.81 11.81
Predicted label C 23.31 18.7 0.02 0.45 0.31 0.00 0.38 0.56 0.71

B 0.21 0.48 0.10 0.29 0.04 0.00 0.09 0.26 0.14
E 22.1 0.48 0.03 19.62 0.11 0.00 0.1 0.63 0.30
G 3.23 0.53 0.00 0.21 1.73 0.00 0.31 0.29 0.60
I 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01
H 31.50 0.35 0.01 0.11 0.2 0.00 29.72 0.23 0.24
S 7.76 1.8 0.05 0.96 0.33 0.00 0.48 5.09 1.10
T 11.88 0.96 0.00 0.46 0.49 0.00 0.42 0.69 8.79

The bold values denote the best values of performance metrics.
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further correctly classified. However, we also can find that the
MCCM prediction accuracy of labels T and I is lower than that of
MCCMeasy, which may cause by the limited classifiers. On the
whole, MCCMoutperformsMCCMeasy by a large margin because
MCCM is optimized by the loss functions LC easy and LC hard,
increasing the loss value of the harder samples and inducing the
model to pay more attention to them. Finally, the overall
classification performance of the model is improved. Hence,
the most harder samples (tend to be classified incorrectly by
MCCMeasy) are further classified correctly by MCCM, which can
be known in the shown tables.

Associating the performance of MCCMdir andMCCM, we can
induce that if we can design a method to distinguish the samples
well (the discrimination effect is close to using label information),
our method can obtain the state-of-the-art performance. Future
research can focus on this point.

CONCLUSION

In the field of bioinformatics, understanding protein secondary
structure is very important for exploring diseases treatments.
This study proposes a framework for predicting the protein
secondary structure, consisting of multilevel features extraction,
multistage combination classifiers, and multilevel samples
discriminating module. In the multilevel features extraction
module, we design a different backbone network to extract
the features of the multilevel (easy and hard levels in this
study) from the original data. In the multistage combination
classifiers module, we design two classifiers to deal with samples
with different difficulty levels, respectively. Finally, in the
multilevel samples discriminating module, we design a
measurement standard based on the Dirichlet distribution
and information entropy to assign suitable samples to
different classifiers (multistage combination classifiers) with
different levels. The first classifier is used to learn and
classify the easier samples and filter them out, avoiding being
sent to the second classifier. Further, the remaining harder
samples will be sent to the second classifier. We compute the
loss value of the two classifiers. Consequently, the loss value of
the harder samples will be accumulated and will always be
greater than the easier ones. This method can induce the model

to pay more attention to harder samples and improve the
classification performance. The experimental results on the
publicly available benchmark CB513 dataset show the
superior performance of the proposed method.

However, the experimental results show that the current
multilevel samples discriminating the module in this study
are not designed well, which limits the performance of our
framework. Herein, the related experiments show that if the
multilevel samples discriminating module is designed well,
our framework can obtain state-of-the-art performance.
Besides, the depth of our network and the number of
classifier branches also can be further increased to raise
the performance of our framework. Hence, future work can
focus on designing a more effective multilevel samples
discriminating module and designing the deeper network
as well as the more classifier branches to further improve
the model performance.
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