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Background: Advanced and recurrent endometrial cancer EC remains controversial.
Immunotherapy will play a landmark role in cancer treatment, and alternative splicing (AS)
of messenger RNA (mRNA) may offer the potential of a broadened target space.

Methods: We downloaded the clinical information and mRNA expression profiles from
The Cancer Genome Atlas (TCGA) database. Hub genes were extracted from 11 AS-
related genes to analyze the correlation between clinical parameters and the tumor-
immune microenvironment. We also analyzed the correlations between the copy numbers,
gene expressions of hub genes, and immune cells. The correlation between the risk score
and the six most important checkpoint genes was also investigated. The ESTIMATE
algorithm was finally performed on each EC sample based on the high- and low-risk
groups.

Results: The risk score was a reliable and stable independent risk predictor in the Uterine
Corpus Endometrial Carcinoma (UCEC) cohort. CYB561|42921|AP and FOLH1|15817|ES
were extracted. The expression of CYB561 and FOLH1 decreased gradually with the
increased grade and International Federation of Gynecology and Obstetrics (FIGO) stage
(p < 0.05). Gene copy number changes in CYB561 and FOLH1 led to the deletion number
of myeloid DC cells and T cell CD8+. Low expression of both CYB561 and FOLH1 was
associated with poor prognosis (p < 0.001). The checkpoint genes, CTLA-4 and PDCD1,
exhibited a negative correlation with the risk score of AS in UCEC.

Conclusion: AS-related gene signatures were related to the immune-tumor
microenvironment and prognosis. These outcomes were significant for studying EC’s
immune-related mechanisms and exploring novel prognostic predictors and precise
therapy methods.
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INTRODUCTION

Uterine corpus endometrial carcinoma (UCEC) is one of the
three major malignancies of the female reproductive system (Bray
et al., 2018). Although most patients are diagnosed at an early
stage and have a good prognosis, there are still some patients who
are at an advanced stage at first diagnosis or have recurrence and
metastasis after treatment, with a 5-year survival rate of only
20–26% (Morice et al., 2016). Therefore, further studies on
therapeutic monitoring and prognostic assessment of UCEC
are crucial for both clinicians and patients. In 2013, tumor
immunotherapy was regarded as an important scientific
breakthrough and suggested that immunotherapy will play a
landmark role in the field of cancer treatment (Couzin-
Frankel, 2013). In recent years, immune checkpoint inhibitors
have made breakthrough progress and have been written into the
treatment guidelines for endometrial cancer (EC).

Alternative splicing (AS) is a universal mechanism to produce
mRNA isomers using a limited set of genes, resulting in
structurally and functionally different protein isoforms,
modifying more than 95% of human genes (Gilbert, 1978;
Buratti et al., 2006). Studies have shown that aberrant AS is
closely associated with the occurrence, development, metastasis,
and drug resistance of various cancers (de Necochea-Campion
et al., 2016; Climente-González et al., 2017; Wang and Lee, 2018;
Bonnal et al., 2020). AS has also become a hot topic in tumor
immunotherapy and attracted the attention of researchers.
Several forms of mRNA processing are dysregulated in cancer
and offer promise concerning immunotherapy target expansion
(Venables, 2004; Baralle and Giudice, 2017; Kahles et al., 2018).
Although significant progress has been achieved in expanding the
immunotherapy target space using tumor-specific mRNA
processing events, much work is still needed (Frankiw et al.,
2019).

What’s more, splice factors might play a vital carcinogenic role
in EC (Dou et al., 2020a; Li et al., 2020; Popli et al., 2020). By
analyzing the whole genome of AS events in EC, studies have
found several candidate splicing factors that may become
therapeutic targets and predict patients’ prognosis by
constructing gene signatures (Wang C. et al., 2019; Wang Q.
et al., 2019), which further demonstrates the importance of AS
events in EC. A study found that with the increase of the
ESTIMATE score and the infiltration of immune cells in
UCEC patients, the prognosis would be better (Liu et al.,
2021); however, further discussion was lacking.

Given the importance of immunotherapy in UCEC,
characterization of immune infiltrating features is essential for
further understanding the oncogenesis of UCEC and the
development of a novel prognostic signature and therapeutic
response classifier. In the present study, whole-genome analysis
and prognostic model construction were firstly used to determine
prognosis-related genes involved in the AS prognostic model. The
characteristics of two AS-related genes in the tumor-immune
microenvironment were then analyzed. Finally, the correlation
between the six most important immune checkpoint genes and
the risk score was also investigated. Our research provides a more
comprehensive insight into precise immunotherapy for UCEC.

METHODS

Data Acquisition and Curation Processing
We downloaded the mRNA expression profiles and corresponding
clinical data of theUCEC cohort from theTCGAdatabase (June 2021,
https://portal.gdc.cancer.gov/). The AS event data for UCEC were
obtained from the https://bioinformatics.mdanderson.org/
TCGASpliceSeq/(Ryan et al., 2016). Since these data are publically
available, there was no requirement for approval by an ethics
committee. We fully assessed the availability of clinical
information. In our research, a few patients were excluded because
theymet the following criteria: 1) Epithelial neoplasmdisease type, nos
in TCGA; and 2) incomplete clinical data (e.g., age, grade, FIGO stage,
and survival data). The percent spliced in (PSI) value can be used to
quantify each AS event, which is the ratio of normalized reads
indicating the presence of a transcript element versus the total
normalized reads for that event, with a rating from 0 to 1. PSI =
splice in/splice in+splice out. We screened the AS data for PSI value
>0.75, representing the association between gene expression and AS
events.We thenmerged the gene expression and clinical profiles using
Perl (v5.30.0, https://www.perl.org/), establishing genomics and
clinical databases for further research. A total of 524 patients with
complete AS events and clinical data were included in our analysis.
The clinical features of the patients are summarized in Table 1.

Screening for Prognostic AS Events in
UCEC
TCGA SpliceSeq is a database based on TCGA RNA sequencing
(RNA-seq) data. Seven types of selective splicing events were

TABLE 1 | The key demographic, clinical, and pathological characteristics of the
524 patients with UCEC.

Variables Count Percentage (%)

Age (mean ± SD) 63.88 ± 11.20
Follow-up (mean ± SD) (y) 3.05 ± 2.47
Status
Alive 436 83.21
Dead 88 16.79

Histological type
Adenomas and adenocarcinomas 390 74.43
Cystic, mucinous, and serous neoplasms 134 25.57

FIGO stage
I 330 62.98
II 47 8.97
III 119 22.71
IV 28 5.34

Grade
G1 93 17.75
G2 118 22.52
G3 313 59.73

Race
White 361 68.89
Black or African American 104 19.85
Asian 19 3.63
Other 11 2.10
Not reported 29 5.53

UCEC: uterine corpus endometrial carcinoma; FIGO, international federation of
gynecology and obstetrics.
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analyzed, including Alternate Acceptor site (AA), Alternate
Donor site (AD), Alternate Promoter (AP), Alternate
Terminator (AT), Exon Skip (ES), Mutually Exclusive Exons
(ME), and Retained Intron (RI). We analyzed the distributions
of all encoded genes using the UpSetR package in each of the
seven different types of AS events and survival-related AS events
in UCEC.

Construction of Prognostic Models and
Survival Analysis
Different AS events in genes led to diversity in outcomes, and
changes in gene expression affected survival time. To further
understand the prognostic value of AS events in UCEC patients,
univariate Cox regression analysis with R package “survival” was
performed to determine the survival-related different expressed
alternative splicing (DEAS) events, including overall survival
(OS)-related DEAS events. Next, the least absolute shrinkage
and selection operator (LASSO) regression was applied to identify
the final elimination of potential predictors with non-zero
coefficients using the R package “glmnet”, which can avoid
model overfitting to obtain a better fitting model.
Furthermore, based on the results of LASSO Cox regression,
predictive models were constructed using multivariate Cox
regression analysis. Based on the PSI values and multivariate
Cox analysis, we calculated the risk scores of each patient and
obtained the corresponding coefficients, respectively. The
following formula obtained the risk score:

Risk score � ∑n

i�0PSI × βi

where β is the regression coefficient of the AS events. A total of
524 EC patients were divided into high- and low-risk groups
bound by the median of risk score, and Kaplan-Meier survival
analysis was performed to determine whether they had
completely different prognoses. Furthermore, receiver
operating characteristic (ROC) curves of 1, 3, and 5 years were
generated using the survival ROC package in R to show the
discrimination of the predictive signatures (Heagerty et al., 2000).

Establishment and Validation of a Predictive
Nomogram
All clinical factors, including the risk score, age, FIGO stage, and
grade, were incorporated to construct a nomogram to evaluate
the probability of 1-, 3-, and 5-year OS of UCEC patients in the
entire set. Validation of the nomogram was evaluated by
calibration plot using the “rms” package. The calibration curve
of the nomogram was plotted to assess the nomogram-predicted
probabilities against the actual rates.

Immune Score Estimate and Immune Cell
Infiltrating Proportion Inference
Normalized RNA expression data were used to infer the Immune
Score using the estimate package (Yoshihara et al., 2013) and
quantify the infiltrating proportions of 22 types of immune cells

using the “CIBERSORT” package (Newman et al., 2015). The
infiltrating percentage of 22 types of immune cells was equal to
100%. Single sample gene set enrichment analysis (ssGSEA) was
used to quantify and classify the immunity stage based on
immune-related gene (IRGs) sets (He et al., 2018). Next, 47
immune checkpoint genes were analyzed, and 16 of them that
differed from the tumor and normal samples were screened. The
differences between the 16 hub immune checkpoints among the
high- and low-risk groups were analyzed, and the correlations
between the six most important immune checkpoint genes
(CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1)
and the risk score were determined.

Extraction of AS-Related DEGs in UCEC
Samples
Using R package “limma” with the threshold of |log2FC|>1 and
p < 0.05, the 11 genes (Table 2) involved in the model
construction were analyzed to observe whether their
expression differed between the UCEC and normal samples.

Integration of AS-Related DEGs With
Clinical Characteristics and Prognosis
High- and low-expression groups of gub genes were obtained
according to the gene expression. These were then used to analyze
the difference in clinical indicators, including age, grade, and
FIGO stage. Finally, the prognosis of the hub genes in the two
groups was judged using the “survival” and “survminer”
packages.

Analysis of the Relationship Between
Stromal/Immune Scores and AS-Related
DEGs in the EC Immune Microenvironment
The ESTIMATE algorithm was applied to analyze the Stromal
Score, Immune Score, ESTIMATE Score, and Tumor Purity
based on the transcriptome profiles of UCEC to determine the
effect ssGSEA grouping. We further compared the Stromal Score,
Immune Score, ESTIMATE Score, and Tumor Purity in the high-
and low-expression groups of hub genes using the Limma.R and
ggpubr.R packages. The relationships between the copy number
of hub genes and the quantity of six immune cells (B cell, myeloid
DC cell, macrophage, neutrophil, T cell CD4+, and T cell CD8+)
were evaluated using the Tumor Immune Estimation Resource
(TIMER) database.

Construction of a Potential SF-AS
Regulatory Network
Splicing factors (SF) are protein factors involved in the splicing
process of RNA precursors, which are closely related to the
development and treatment of cancer (Dvinge et al., 2016;
Obeng et al., 2019). A total of 404 SFs data downloaded from
the SpliceAid2 database were used to analyze the correlation
between the expression level of SFs and the PSI values of OS-
associated AS events by R packages (BiocManager, limma). An
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absolute value of the correlation coefficient >0.6 and p < 0.001
were considered statistically significant. Finally, Cytoscape
software (v3.7.2, https://cytoscape.org/) was used to visualize
the potential SF-AS regulatory network.

Statistical Analysis
All statistical analyses were performed using R version 4.1.0 (R
packages: survival, survminer, UpSetR, glmnet, estimate, ggpubr,
e1071, rms, preprocessCore, vioplot, ggExtra, GSVA, GSEABase,
reshape2, pheatmap, corrplot, ggplot, ggplot2, and BiocManager).
For all analyses, a two-tailed p < 0.05 was regarded as statistically
significant if not noted.

RESULTS

Overview of AS Events in TCGA UCEC
Cohort
A total of 524 UCEC patients were identified, and the baseline
characteristics of these patients are summarized in Table 1. The
mRNA splicing data included in this study contains 28,281 AS
events in 8,141 genes. Given the possibility of multiple splicing
modes for a single gene, we created UpSet plots to analyze
interactive sets of seven types of AS events quantitatively. As
shown in Figure 1A, a single gene could have up to five different
splicing modes, and most genes had more than one AS event.
Exon skip (ES) was the most frequent splice type among the seven
AS types (34.4%), followed by an alternate terminator (AT)
(27.5%) and alternate promoter (AP) (15.7%).

Prognostic Index Models Featured by AS
Events for UCEC
To explore the prognostic utility of an AS signature in EC, AS
events associated with OS were identified by fitting univariate
Cox proportional hazard regression models after merging the
clinical data in the training cohort using Perl. In total, 1,108 AS
events were determined with p < 0.05, including 633 high-risk
survival-associated AS events (hazard ratio HR > 1) and 475 low-
risk survival-associated AS events (HR < 1). The AS events can be
counted through the UpSet plot. An UpSet plot was generated to
visualize the intersecting sets between different genes and AS

events. The bar charts on the left showed the number of genes
with some kind of AS events. The upper bar charts showed the
number of intersecting genes, indicating the number of genes
with a certain type or types of AS events (Figure 1A). Figure 1A
indicates that one gene might have more than one survival-
associated AS event. It is noteworthy that the three highest
frequency survival-associated AS events were still ES, AT, and
AP in the UCEC cohort.

After conducting univariate regression analysis, LASSO
regression was performed to select the optimal survival-related
AS events to construct the prediction models to avoid model
overfitting based on OS. First, 15 AS events were screened out by
LASSO regression, and then the AS events with the same
contribution were optimized (Figure 1B). Finally, an 11-AS
event signature was identified as a predictor of survival in EC
through the Cox proportional hazards regression model
(Table 2). Besides, the minimum adjusted estimate of cross-
validation prediction error was 0.020, and the p value of bootstrap
(K = 1000) was 4.82E-305.

Kaplan-Meier curves and log-rank tests were plotted to
explore the relationship between risk score and survival status.
The survival probability of low-risk patients was higher than that
of high-risk patients; in other words, high-risk patients had a
higher mortality rate, as illustrated in Figure 1C (p < 0.001). We
then applied ROC analysis to compare the predictive power of
these prognostic models. The larger the area under the curve, the
higher the accuracy of the model to predict the prognosis of
patients. Figure 1D showed a robust and significantly improved
performance; the areas under the ROC curve (AUC) in 1, 2, and
3 years were all greater than 0.800. The result illustrated that the
accuracy of using the model to predict the 1-, 2- and 3-year
survival rate of patients was relatively high. Moreover, the AUC of
the risk score model predicting the 1-year survival rate was larger
than that of the age, grade, and FIGO stage (Figure 1D). It means
that the accuracy of predicting the 1-year survival rate of patients
by the model is better than that of using other clinical parameters
(age, grade, stage) to predict the prognosis.

Meanwhile, the risk scores of each UCEC patient were
calculated, and all patients were divided into low- and high-risk
groups bound by the median risk score. The distribution diagram
of survival risk score (Figure 2A), survival status of EC patients
(Figure 2B), and clustering heatmap of the PSI levels of eleven-AS

TABLE 2 | Eleven AS events associated with the OS of UCEC patients.

ID Coefficient HR HR.95L HR.95H p value

MAST1|47878|AT 1.756261 5.790747 2.208989 15.180133 0.000355
CYB561|42921|AP 2.851763 17.318280 3.689684 81.286860 0.000301
MAGED1|89145|AP 2.280885 9.785341 0.965560 99.168280 0.053569
PCYT2|44230|ES 1.310632 3.708517 1.054692 13.039925 0.041056
SULT1A3|94136|AP −1.203415 0.300167 0.070887 1.271038 0.102203
FOLH1|15817|ES −5.303092 0.004976 0.000452 0.054736 0.000015
ZNF706|84749|ES 3.998052 54.491877 2.482313 1196.208995 0.011185
CCNL2|162|ES 1.824693 6.200888 0.853256 45.063858 0.071366
RPLP0|24731|ES −7.978477 0.000343 0.000003 0.043102 0.001218
STK32C|13483|AP 2.122228 8.349723 0.979867 71.150383 0.052215
C4orf29|70557|AT 1.696728 5.456064 0.611076 48.715079 0.128758
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FIGURE 1 | Identification and prognosis of AS markers in UCEC. (A) The upSet plot of intersections and aggregates among diverse types of AS (left) and survival-
associated AS events (right) in UCEC. (B) LASSO coefficient profiles of survival-associated AS events and 10-time cross-validation for tuning parameter selection in the
LASSO model. (C) Kaplan-Meier analysis for OS of UCEC patients. (D) ROC curve in the predicted groups (high- and low-risk groups) by the 11-AS events signature in
the UCEC cohort. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually-exclusive exons; RI,
retained intron; UCEC, Uterine Corpus Endometrial Carcinoma.
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markers (Figure 2C) are shown. The horizontal axis displays the
patients’ order of risk score from low to high (Figure 2).

Construction and Evaluation of the
Nomogram
The calibration curve demonstrated that the predicted values are
satisfactorily consistent in the prediction of the 1-, 3-, and 5-year
OS because the red lines in three pictures are almost overlap with
the 45° dashed lines (Figure 3B). The box charts in Figure 3E

show whether there are differences in patients’ risk score among
different clinical index (age, grade, stage). The risk score of
patients >65 years old was higher than that of patients
≤65 years old. With the increase of grade and stage of UCEC,
the risk score increased gradually (Figure 3B).

Univariate and multivariate Cox regression methods were used
and combined with patient clinical characteristics (age, grade, and
FIGO stage) to analyze whether the 11-AS event signature could be an
independent predictor of survival in patients with UCEC.When the p
values of univariate analysis and multivariate analysis were both less

FIGURE 2 | Risk score distribution of the 11-AS events signature in the TCGA cohort. Risk scores (A), survival status (B), and heatmap (C) of the 11-AS events PSI
profiles were shown from top to bottom. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually-
exclusive exons; RI, retained intron.
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than 0.05, it was considered that the model could be an independent
prognostic factor. As depicted in Figures 3C,D, the results showed
that the risk score could still be used as a reliable and stable

independent risk predictor in the UCEC cohort (p < 0.001;
Figures 3C,D). We then constructed a predictive nomogram based
on the multivariate analysis (Figure 3A) that included risk scores and

FIGURE 3 | The establishment and validation of the nomogram. (A) The nomogram consisted of age, gender, FIGO stage, and risk score, and was used to predict
the 1-, 3-, and 5-year survival probability of EC patients. (B) Calibration plots of the AS-clinical nomogram are in agreement between the nomogram-predicted and
observed 1-, 3-, and 5-year outcomes of the UCEC cohort. The nomogram-predicted survival probability is plotted on the x-axis, and the actual survival is plotted on the
y-axis. The 45° dashed line represents the ideal performance. The red lines represent the actual performances of the model, and the figures from left to right depict
the 1-, 3-, and 5-year results. Univariate analysis (C) and multivariate analysis (D) of risk scores and clinical characteristics that were simultaneously associated with OS.
(E) Differences in the risk score in terms of age, grade, and FIGO stage groups. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range).
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FIGURE 4 | Relationship between the risk score and infiltrating immune cells in the UCEC tumor-immune microenvironment. (A) The landscape of 22 types of
infiltrating immune cells in the low-risk score (n = 262) and high-risk score (n = 262) groups. (B) The landscape of 29 types of infiltrating immune cells and immune function
in the two groups. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). Blue: low risk, red: high risk. ***p < 0.001, **p < 0.01, *p < 0.05.
(C) The heatmap showed a difference in the infiltrating immune cells between the two groups in the UCEC tumor-immune microenvironment.
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clinical characteristics. The results demonstrated that the risk score
had satisfactory diagnostic ability and clinical characteristics (p< 0.05).

The Risk Score and AS Events Are
Associated With the Infiltration of Immune
Cells in the UCEC Microenvironment
First, the immune score in 29 types of infiltrating immune cells
and immune function was assessed by the ssGSEA method (He

et al., 2018). Figures 4B,C show the immune score differences of
each immune cell in the low and high-risk score groups (Figures
4B,C). We further explored the impact of the risk score on the
infiltration of 22 types of immune cells in the tumor
microenvironment using the CIBERSORT algorithm. The
landscape of 22 types of infiltrating immune cells in the low
and high-risk score groups is shown in Figure 4A. Differential
analysis results showed that eight types of immune cells [CD8
T cells, regulatory T cells (Tregs), activated natural killer (NK)

FIGURE 5 | The key immune checkpoint genes are related to the risk score in the UCEC tumor-immune microenvironment. (A) The landscape of 26 types of
immune checkpoint genes in low- and high-risk score groups. ***p < 0.001, **p < 0.01, *p < 0.05. (B) The correlation between the risk score and the six most important
checkpoint genes (CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1). The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). *:
statistically significant; red: positive correlation, blue: negative correlation.
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cells, monocytes, M0 macrophages, M1 macrophages, resting
dendritic cells, and activated dendritic cells] were significantly
different between the two groups (p < 0.05).

The Risk Score is Associated With the Key
Immune Checkpoint Genes in the UCEC
Tumor-Immune Microenvironment
The difference in the expression level of 47 immune checkpoint
genes in the low- and high-risk score groups was assessed, and 26
genes were found to have significant differences (Figure 5A).
Next, R packages (limma, corrplot, ggpubr, and ggExtra) were
used to screen the risk scores related to the six most important
checkpoint genes (CD274, PDCD1, PDCD1LG2, CTLA4,
HAVCR2, and IDO1). Two immune checkpoint genes,
PDCD1 and CTLA4, with negative correlation with risk score
were identified (p < 0.001; Figure 5B). The scatter plot displaying
the correlation of these two genes and the risk score were plotted
separately. Although two of the correlation coefficients did not
reach 0.3, the scatter plot showed a negative correlation
(Supplementary Figure S1). At the same time, we can find
that the expression of PDCD1 and CTLA4 in the high-risk
score group was lower than that in the low-risk score group
(Figure 5A).

Extraction of IRGs Depending on AS Events
and Their Correlation With Clinical
Parameters
The expressions of 11 genes (Table 2) were identified to analyze
the difference between UCEC and normal cohorts by the
“limma” package (with the threshold of |log2FC| > 1 and p <
0.05), and two genes, CYB561 (|logFC| = 1.1892, p < 0.001) and
FOLH1 (|logFC| = 1.0862, p < 0.001), were extracted for further
analysis. Next, we divided the tumor patients into high- and
low-expression groups according to the optimal cut-offs in
CYB561 and FOLH1 (4.67 in CYB561, 2.64 in FOLH1) for
clinical prognostic analysis.

The correlations between the expression of the two hub genes
and the clinicopathological parameters were evaluated using R
packages (limma, survival, and survminer). CYB561 and FOLH1
expression levels were significantly associated with grade and
FIGO stage (p < 0.05). The expression of CYB561 and FOLH1
decreased gradually with increases in the grade and stage.
However, no notable association between the two genes and
age was observed (p ≥ 0.05) (Figures 6A,B). Survival analysis
revealed that the low expressions of both CYB561 and FOLH1
were associated with poor prognosis (p < 0.001) (Figure 6C).

Associations Between CYB561 Expression
and Immune Cell Infiltration
The landscape of 22 types of infiltrating immune cells in the low-
and high- CYB561 expression groups are shown in Figure 7A. The
two groups differed between resting dendritic cells, neutrophils,
activated memory CD4 T cells, resting memory CD4 T cells, and
Tregs. Figure 7B shows the immune score difference of each

immune cell in the two groups (Figure 7B). We investigated the
association between CYB561 expression and the tumor-infiltrating
immune cells in UCEC using the TIMER database. The results
demonstrated that CYB561 expression was positively correlated
with B cell, CD4+ T cells, and CD8+ T cells, and was negatively
correlated with myeloid dendritic cells, macrophages, and
neutrophils (p < 0.05) (Supplementary Figure S2). However,
we found no strong correlation between immune cell infiltration
and CYB561 expression. Given that the risk score was related to
tumor immunity, we finally appraised the correlation between the
gene signature and the expression of immune checkpoints.
Figure 7C shows the 23 immune checkpoints with differential
expression in the low- and high-CYB561 expression groups. The
gene expression of CD40LG, TNFSF14, TNFRSF14, CD276,
VTCN1, HHLA2, TNFSF15, LGALS9, and CD44 was lower in
the low-CYB561 expression groups (Figure 7C).

Correlations Between FOLH1 Expression
and Immune Cell Infiltration
The landscape of 22 types of infiltrating immune cells in the low-
and high- FOLH1 expression groups are shown in Figure 8A.
Resting memory CD4 T cells, gamma delta T cells, resting NK
cells, resting dendritic cells, activated dendritic cells, and
neutrophils were different in the two groups. Figure 8B shows
the immune score difference of each immune cell in the two
groups. We further investigated the association between FOLH1
expression and the tumor-infiltrating immune cells in UCEC.
The results showed that FOLH1 expression was positively
correlated with macrophages, CD4+ T cells, and CD8+ T cells,
and was negatively correlated with B cells, myeloid dendritic cells,
and neutrophils (p < 0.05) (Supplementary Figure S3). However,
we also found no strong correlation between immune cell
infiltration and FOLH1 expression. Figure 8C shows the
immune checkpoints with differential expression in the low-
and high-FOLH1 expression groups.

The Tumor Purity, ESTIMATE Score,
Immune Score, Stromal Score and Between
the Low- and High-Expression Groups of
CYB561 and FOLH1
First, the violin plot assessed the differences in Tumor Purity,
ESTIMATE Score, Immune Score, and Stromal Score between the
two groups, calculated using the ESTIMATE algorithm
(Figure 9A). ESTIMATE Score and Immune Score were higher
in the low-risk score group, while Tumor Purity in the low-risk
score group was lower than that in the high-risk score group (p <
0.05). The Stromal Score showed no difference (p ≥ 0.05).

In order to determine the effectiveness of the grouping strategy
between the low- and high-expression groups of CYB561 and
FOLH1, the ESTIMATE method was applied to evaluate Tumor
Purity, ESTIMATE Score, Immune Score, and Stromal Score.
Compared with the high-CYB561 expression group, the low
expression group had a higher Stromal Score (p < 0.05)
(Figure 9B). The other parameters had no differences between
the two groups in CYB561 and FOLH1 (p ≥ 0.05) (Figures 9B,C).
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FIGURE 6 | The prognostic signature of CYB561 and FOLH1 expression. The expression of CYB561 (A) and FOLH1 (B) in age, grade, and stage groups. (C)
Kaplan-Meier survival curve of CYB561 and FOLH1 in high- and low-expression groups. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile
range).
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FIGURE 7 | Relationship between CYB561 expression and infiltrating immune cells in the UCEC tumor-immune microenvironment. (A) The box plot shows the
proportion difference of each immune cell between the low- and high- CYB561 expression groups. (B) The landscape of infiltrating immune cells and immune function in
both groups. (C) The expression of CYB561 was associated with the key immune checkpoint genes in the UCEC microenvironment. The bottom and top of the boxes
are the 25th and 75th percentiles (interquartile range). Blue: low risk, red: high risk. ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 8 | Relationship between FOLH1 expression and infiltrating immune cells in the UCEC tumor-immune microenvironment. (A) The box plot shows the
proportion difference of each immune cell between the low- and high-FOLH1 expression groups. (B) The landscape of infiltrating immune cells and immune function in
the two groups. (C) The expression of FOLH1 was associated with key immune checkpoint genes in the tumor microenvironment (TME). The bottom and top of the
boxes are the 25th and 75th percentiles (interquartile range). Blue: low risk, red: high risk. ***p < 0.001, **p < 0.01, *p < 0.05.
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The Quantity of Six Immune Cells in Gene
Copy Number of CYB561 and FOLH1
The correlations between the CYB561 copy number and six
immune cells were also analyzed using the TIMER database.
The number of cells was found to decrease with the increase in
the gene copy number in myeloid DC cells and CD8+ T cells, and
was found to decrease with the decrease in the gene copy number in
myeloid DC cells and CD8+ T cells (p < 0.05) (Supplementary
Figure S4). Next, we analyzed the correlations between the FOLH1
copy number and six immune cells. The number of cells was found
to decrease with the increase in the gene copy number in myeloid
DC cells, macrophage, CD8+ T cells, and the cells number was
found to decrease with the reduce in the gene copy number in
myeloid DC cells and CD8+ T cells (p < 0.05) (Supplementary
Figure S5). Notably, we observed that the change in gene copy
numbers in the two hub genes led to the deletion number of both
myeloid DC cells and CD8+ T cells.

The Potential Regulatory Network Between
SFs and AS Events
Thirty-six SFs (blue) were found to be significantly related to
19 survival-associated AS events, consisting of nine low-risk AS
events (RPS24|12297|AA, ZNF169|86927|AT, MAT2A|54280|

AT, C22orf39|61055|AT, VDAC1|73335|AP, FAM72A|9577|
AT, PPP2R5C|29315|AT, TMEM33|69133|RI, SYTL1|1321|AP;
purple) and 10 high-risk AS events (LEPROTL1|83274|AT,
ANKHD1|73652|AT, MAT2A|54281|AT, BUB3|13390|AA,
ATP5D|46401|RI, FAM72A|9578|AT, VDAC1|73334|AP,
MARVELD3|37467|AT, NDUFA3|51776|AT,SYTL1|1320|AP;
red). The majority of low-risk AS events were negatively
correlated with SF expression (blue lines), and all of the high-
risk AS events were positively correlated with SF expression (red
lines) (Figure 10).

DISCUSSION

Dysregulation of AS can affect essential biological processes and
thus drive disease-associated pathophysiology (Gamazon and
Stranger, 2014). Emerging data have demonstrated that
aberrant AS events are closely associated with cancer
progression, metastasis, therapeutic resistance, and other
oncogenic processes (Climente-González et al., 2017). Cancer
cells have general and cancer type-specific and subtype-specific
alterations in the splicing process, which can have prognostic
value and contribute to every hallmark of cancer progression,
including the cancer-immune responses (Bonnal et al., 2020).
Moreover, substantial preclinical work has identified a variety of

FIGURE 9 | Construction and verification of the immune-related UCEC subgroups. (A) The violin plot shows the differences in Tumor Purity, ESTIMATE Score,
Immune Score, and Stromal Score between the high- and low-risk score groups, calculated using the ESTIMATE algorithm. Comparison of Stromal Scores, Immune
Scores, ESTIMATE Scores, and Tumor Purity between two groups of CYB561 (B) and FOLH1(C).
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small molecule compounds and genetic and other approaches to
target the spliceosome or its products with potential therapeutic
effects (Bonnal et al., 2020). Therefore, it is of great importance to
further study the characteristics of AS in the immune
microenvironment for UCEC immunotherapy. In recent years,
the relationship between AS and UCEC has been studied. In
endometrial cancer, AS of vascular endothelial growth factor A
(VEGF-A) is regulated by RBM10 (Dou et al., 2020a). Popli et al.
found that SF3B1 plays a crucial oncogenic role in the
tumorigenesis of EC and hence may support the development
of SF3B1 inhibitors to treat this disease (Dou et al., 2020a). XQ
et al. showed that miR-335 modulates Numb AS via targeting
RBM10 in EC (Dou et al., 2020b).

We extracted IRGs depending on AS events and examined
their correlation with clinical parameters. Finally, two AS-related
genes, CYB561|42921|AP and FOLH1|15817|ES, were extracted
from the 11 genes involved in the AS prognostic model. CYB561
encodes the protein CYB561, named as such because of its optical
absorbance at 561 nm CYB561 is a heme-containing enzyme that
is necessary for the continuous regeneration of
semidehydroascorbate to ascorbate inside chromaffin granules
and neuropeptide secretory vesicles (van den Berg et al., 2018). It
is widely expressed in the adrenal glands, prostate, and 23 other
tissues, including the endometrium. However, data on the role of
the CYB561 gene in human cancers are very limited. A meta-
analysis showed that low mRNA expression of CYB561 was

prognostic of a poor outcome in ovarian cancer (Willis et al.,
2016). CYB561 serves as a potential prognostic biomarker and
target for breast cancer (Yang et al., 2021). We found the
expression of CYB561 decreased gradually with the increased
grade and FIGO stage which indicated a lower survival
probability (p < 0.001) in UCEC. Our results were consistent
with the previous ones. Besides, alternate promoter of CYB561
was associated with the OS of UCEC patients (p = 0.0003) in our
research. The changes in transcription is regarded as a defining
feature of cancer. Most human protein-coding genes are
regulated by multiple, distinct promoters, suggesting that the
selection of promoter is closely related to the expression of target
gene (Demircioğlu et al., 2019). How the AP contributes the low
expression of CYB561 in endometrial carcinoma remains to be
further explored.

FOLH1 is also known as prostate-specific membrane antigen
(PSMA), which encodes a transmembrane glycoprotein that acts
as a glutamate carboxypeptidase on different alternative
substrates. In the prostate, this protein is up-regulated in
cancerous cells and is used as an effective diagnostic and
prognostic indicator of prostate cancer (Date et al., 2017).
PSMA is highly and specifically expressed in the
neovasculature of ovarian, endometrial, and cervical squamous
carcinomas (Wernicke et al., 2017). Mhawech-Fauceglia et al.
showed that PSMA is under-expressed in advanced stage
endometrial adenocarcinoma (Mhawech-Fauceglia et al., 2008),

FIGURE 10 | Regulatory network between SFs and AS events. Blue ellipse: spliced factors, purple ellipse: low-risk AS events, red ellipse: high-risk AS events, blue
line: negative correlation, red line: a positive correlation.
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which is consistent with our findings. Their research indicated
that the loss of PSMA expression can be considered a prognostic
marker in patients with endometrial adenocarcinoma and could
be due to epigenetic silencing (Mhawech-Fauceglia et al., 2008).
FOLH1 likely arose from a duplication event of a nearby
chromosomal region. Alternative splicing gives rise to multiple
transcript variants encoding several different isoforms (Watt
et al., 2001; Zink et al., 2020). Our research found ES in
FOLH1 was associated with the OS of UCEC patients (p =
0.0000). What’s more, ES was also the most frequent splice
type among the seven AS types (34.4%) in UCEC. If the
normal exon can be restored into the exon of ES occurred, it
will bring hope to the treatment of many diseases (Verhaart and
Aartsma-Rus, 2019). However, the mechanism of ES in FOLH1
leading to a high stage and poor prognosis of UCEC is unknown.

Next, two immune checkpoint genes, Cytotoxic Lymphocyte
Antigen 4 (CTLA-4) and Programmed Cell Death 1 (PDCD1),
showed negative correlations with the risk score of AS in UCEC.
CTLA-4 is expressed on the surface of naive effector T cells and
Tregs (Billeskov et al., 2017; Menéndez-Menéndez et al., 2019).
Based on its role as a negative regulator of T cell activation,
CTLA-4 has become an attractive target for therapies aiming to
enhance the effector activity of T lymphocytes. The first targeted
drug for CTLA-4, ipilimumab, was approved by the Food and
Drug Administration (FDA) in 2011 to treat melanoma (Lipson
and Drake, 2011). At present, both nivolumab and ipilimumab
are undergoing phase II clinical trials in UCEC (Grywalska et al.,
2019). In our study, the CTLA-4 gene expression, the number and
immune score of Tregs all decreased in the high-risk score group,
which predicted a worse prognosis. Therefore, we supposed that a
high-risk score of AS might be related to the decreased immune
activity of Treg cells and the low expression of CTLA-4. It is
possible that the targeted regulation of AS can improve the
immune activity of Treg cells and increase the expression of
CTLA-4, which may be valuable in improving the survival rate of
UCEC patients, although further confirmation is needed.

PDCD1, also known as PD-1, functions primarily in
peripheral tissues. It is expressed on the surface of activated
T cells, Tregs, activated B cells, and NK cells (Page et al., 2014). In
2014, the first FDA-approved immune checkpoint inhibitor
targeting PD-1 was nivolumab (Grywalska et al., 2019).
During the 2015 annual meeting of the Society of Gynecologic
Oncology, Herzog et al. reported that the highest PD-1 expression
rates among studied cancer types were in EC (75.2%) (Page et al.,
2014). We found that PDCD1 expression was suppressed in the
high-risk score group, and the 5-year survival rate was lower than
that in the low-risk score group. It has been confirmed that there
are variable splicing events in the PD1 gene (Nielsen et al., 2005;
Wang et al., 2021). Another research considered the AS events in
PD-1 may be a novel source for diagnostic and therapeutic target
on celiac disease (Ponce de León et al., 2021). Why the high-risk
AS events in PDCD1 lead to a worse prognosis of endometrial
cancer needs further study.

The current study also has several limitations that should be
noted. Firstly, this study is based on bioinformatics analysis, and
there are no recruited cohorts for prognostic verification.
Secondly, the values of the two-gene signatures for

immunotherapeutic drugs prediction have not been verified in
patient cohorts.

CONCLUSION

This study assessed the heterogeneity of tumor-infiltrating
immune cells in UCEC and identified two AS-related genes,
CYB561 and FOLH1, from the 11 genes involved in the AS
prognostic model. Two immune checkpoint genes, CTLA4 and
PDCD1, were negatively correlated with the risk score. The
outcomes of this study are significant for investigating the
immune-related mechanisms of tumor progression and
exploring novel prognostic predictors and precise therapy
methods.
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