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Conventional animal selection and breeding methods were based on the phenotypic
performance of the animals. These methods have limitations, particularly for sex-limited
traits and traits expressed later in the life cycle (e.g., carcass traits). Consequently, the
genetic gain has been slow with high generation intervals. With the advent of high-
throughput omics techniques and the availability of multi-omics technologies and
sophisticated analytic packages, several promising tools and methods have been
developed to estimate the actual genetic potential of the animals. It has now become
possible to collect and access large and complex datasets comprising different genomics,
transcriptomics, proteomics, metabolomics, and phonemics data as well as animal-level
data (such as longevity, behavior, adaptation, etc.,), which provides new opportunities to
better understand the mechanisms regulating animals’ actual performance. The cost of
omics technology and expertise of several fields like biology, bioinformatics, statistics, and
computational biology make these technology impediments to its use in some cases. The
population size and accurate phenotypic data recordings are other significant constraints
for appropriate selection and breeding strategies. Nevertheless, omics technologies can
estimate more accurate breeding values (BVs) and increase the genetic gain by assisting
the section of genetically superior, disease-free animals at an early stage of life for
enhancing animal productivity and profitability. This manuscript provides an overview of
various omics technologies and their limitations for animal genetic selection and breeding
decisions.
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INTRODUCTION

Genetic selection and breeding are crucial tools for livestock improvement. They have resulted in
genetically superior and disease-free animals with improved production and efficiency in various
livestock species (Rexroad et al., 2019; Erasmus and van Marle-Köster 2021). In earlier days, the
genetic selection of animals for breeding was primarily based on their phenotypic characteristics,
such as production traits and breeding value (BV) estimation. Later, other economic traits, including
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reproduction and longevity traits, animal health, stress tolerance,
disease resistance, animal welfare traits, etc., also became vital
components of genetic improvement programs (Brito et al., 2020;
Brito et al., 2021). Selective breeding of genetically superior
animals ensured rapid genetic progress of production
efficiency traits to the next generation. Many breeding
techniques have thus, evolved to accrue the desired trait in
genetically selected animals to meet the market demand for
production and animal welfare (Plieschke et al., 2016).

Several selection indices have been developed for the genetic
selection of animals for breeding. However, no single trait is ideal
for these selection indices in all populations (Cole et al., 2021).
Further, while animals for selective breeding can be identified
based on phenotypic recordings, traits that are sex-limited,
expressed at a later stage of life, difficult to measure, or have
low heritability pose difficulties (Calus et al., 2013). The use of
complex statistical models, advanced analytic tools, and new
molecular methods may divulge newer traits and help identify
animals for efficient genetic selection and breeding with greater
accuracy (Stock et al., 2020).

The past three decades have seen tremendous advancements
in molecular genetics that have provided a better genetic
understanding of quantitative economic traits (Dekkers and
Hospital 2002). A number of genes and gene combinations
have been found to directly correlate with animal performance
and production efficiency (Rexroad et al., 2019; Ruan et al., 2021).
Many quantitative trait loci (QTL)—gene loci responsible for trait
diversity—have been identified for various production and
reproductive traits and used for selection and breeding
decisions (Zhang et al., 2021; Al-Sharif et al., 2022). Several
genetic markers have also been discovered for use in marker-
assisted selection (MAS) of breeding stock (Ma et al., 2021; Raza
et al., 2021). More recently, with advancements in high
throughput omics technologies, genome selection is becoming
widely accepted for the selection of animals for breeding (Tan
et al., 2017; Yang et al., 2020). The application of omics tools in
livestock improvement may provide a more accurate technology
for animal selection and breeding and therefore has become a hot

spot of research (Pedrosa et al., 2021; Ruan et al., 2021). This
manuscript provides an overview of various omics tools and
technologies for their application in livestock selection and
improvement programs.

OMICS TECHNOLOGY

Omics technologies such as genomics, metagenomics,
metabolomics, proteomics, transcriptomics, epigenomics,
translatomics, etc., can allow rapid and effective detection of
subtle phenotypic changes, dietary responses, and innate
phenotypic propensities in animals (Mu et al., 2022; Wang et al.,
2022). The utilization of omics tools in animal selection and
breeding programs is thus, expected to provide an accurate
estimation of BV for early selection, reduce generation interval
and increase the rate of genetic gain (Figure 1). The word ‘omics’
originates from the suffix ‘-ome’, derived from a Greek word that
means “whole”, “all” or “complete”. The suffix “-omics” is frequently
used to refer to a field of study in life sciences that emphasizes large-
scale high throughput data/information to understand life summed
up in “omes” (Yadav, 2007). Several omics tools have been
developed in the last two decades to collect and analyze high-
throughput data on proteins (proteomics), mRNA transcripts
(transcriptomics), gene sequences (genomics), microbial diversity
(metagenomics), epigenetic regulation of gene expression
(epigenomics), metabolic profile (metabolomics), lipid profile
(lipidomics), etc., of a particular cell, tissue, organ or whole
organism at a specific time point. The time (temporal) and
space (spatial) level information from omics data can be
integrated through robust bioinformatics and computational
tools to the systems biology level (Odom et al., 2021; Velten
et al., 2022). Network modeling of omics data can be used to
study the mechanism, relationship, interaction, and function of
cells, tissues, organs, and the whole organism at a molecular level in
an unbiased manner (Aardema and MacGregor, 2003). More
recently, multi-omics has emerged as high-dimensional biology
(HBD) for simultaneous study of genetic variations in biological

FIGURE 1 | Impact of omics technology in animal improvement.
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systems at the genes, transcripts, proteins, and metabolites level
(Romero et al., 2006; Krassowski et al., 2020).

In the last two decades, a few landmark technological
revolutions took place in omics technologies that
revolutionized their application in genetic selection for animal
breeding. In 2007, the first “high density” panel of bovine genetic
markers was released commercially with a set of 54,001 single
nucleotide polymorphisms (SNPs). Using such high-density SNP
chips, genome-wide association studies (GWAS) demonstrated
the link between SNPs and QTLs, such as coat color and presence
or absence of horns (Matukumalli et al., 2009). In other studies,
high-density SNP chips were shown to be useful in the genetic
characterization of pig breeds for preserving their genomic
variability (Muñoz et al., 2019). Whole-genome sequencing
(WGS) by massively parallel sequencing was yet another
breakthrough for detecting molecular signatures for the
selection and breeding of animals (Elsik et al., 2009; Bovo
et al., 2020). The Bovine Genome Sequencing and Assembly
project (Elsik et al., 2009; The Bovine Genome Sequencing and
Analysis Consortium et al., 2009; The Bovine HapMap
Consortium, 2009) provided a landscape of genome sequence
that subsequently led to a paradigm shift in QTL- and candidate
gene-based approaches for genetic selection.

Molecular databases of NCBI (United States), EMBL (Europe),
and DDBJ (Japan) provide vast information on nucleotide and
protein sequences. These databases have been utilized in omics
technology for understanding the genomic variability and
molecular and physiological basis of economic traits (Wu
et al., 2018; Ng et al., 2021). Unfortunately, however, very
scant information is available on the precise regulatory
networks through which these genes and proteins determine
the phenotypic expression of economic traits. Further, a
significant unexplained source of variation among phenotypes
of various economic traits remains a matter of concern in
livestock. Newer machine learning (ML) tools have been
developed recently that can be exploited to analyze high
throughput omics data, available in databases, for a greater
understanding of gene regulatory networks (GRNs) and
identification of functional genes by a systems biology
approach (Guttula et al., 2020; Guttula et al., 2021; Ng et al.,
2021).

Omics technologies can help identify functional SNPs and
their prioritizing to increase the accuracy of genetic selection
(Chang et al., 2019). They can also be used for selecting
animals resistant to production diseases such as mastitis
and thereby enhance their productivity (Russell et al., 2012;
Bhattarai et al., 2017; Jaiswal et al., 2021). Further, population-
level omics (e.g., population genomics) hold tremendous
potential for classifying individuals based on allelic diversity
and identifying genetically-related individuals (Lippert et al.,
2017). Such strategies can help calculate homozygosity and
inbreeding coefficients (Ghoreishifar et al., 2020; Sumreddee
et al., 2021) for designing appropriate breeding programs to
maintain genetic diversity and avoid inbreeding depression
(Alemu et al., 2021; Bu et al., 2021). However, while many
WGS databases and consortiums have been formed in humans
(Zhang et al., 2018) (GenomeAsia 100K Consortium, 2019), no

high-resolution database of population-level genetic variants is
available for animals.

GENOMICS

The genome is defined as the complete set of genetic material
present in an organism. The term “genomics” was coined in 1986
by scientists who were naming a new journal (Kuska, 1998), and
thus, the era of omics began. The major developments in
genomics are the discovery of the genes and genetic codes,
polymerase chain reaction (PCR), Genome sequencing by
Sanger sequencing or Next Generation Sequencing (NGS), and
genome editing tools such as Transcription activator-like effector
nuclease (TALEN), Zinc-finer nuclease (ZNF), an Clustered
regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (CRISPR/Cas9) technologies. The
field of genomics started gaining popularity after the invention of
PCR in the year 1985. Thereafter, MAS- and candidate gene-
based approaches for selecting genetically superior animals
became very popular and were found to be better than
conventional phenotype-based selection and breeding
(Williams 2005). Gene map construction was also used for
genome sequencing. The gene map construction was initially
based on the segregation of enzyme markers across panels of
hybrid cell lines. However, with advancements in recombinant
DNA (rDNA) technology, denser physical and genetic maps
formed an important framework for genome sequencing
(Riggs and Gill, 2009). During the early 2000s, most livestock
genome sequencing was based on linkage maps using single
markers and quantifying one or a few genes by real-time
quantitative PCR (qPCR). Elsik and associates, in 2009,
published the first bovine genome assembly (Elsik et al., 2009).
Since then, rapid progress has been made in developing and using
several whole genome-omics tools that have accelerated cattle
genetics research (Reverter et al., 2013; Snelling et al., 2013).

The concept of “Genetical Genomics”, which integrates
structural and functional genomic data, has evolved with the
development of microarray technology for gene expression
analysis, which divulged marker genotypes across whole
genome. The field of Genetical Genomics has expanded with
the availability of high throughput tools for genomic analysis such
as high-density (HD) genotyping-chips (Illumina, San Diego,
CA), WGS, genotyping by sequencing, and RNA-sequencing
(RNAseq) to measure the gene expression in the entire
transcriptome (Wickramasinghe et al., 2014). Several SNP
chips of 60 K for pig and chicken, 50 K for sheep, and 77 K
for cattle have also been developed (Suravajhala et al., 2016). The
GWAS studies have become very popular among different
livestock species focusing on production and health traits
(Shamra et al., 2015). For example, GWAS on female
reproduction traits in tropically adapted beef cattle (Hawken
et al., 2012), feed efficiency traits in pigs (Do et al., 2013 and
2014), body weight in broilers (Wang et al., 2014), and obesity
and metabolic diseases using the pig as a model (Kogelman et al.,
2014) have been conducted. The genomic selection is particulary
advantagious as it can be used for selecting animals for breeding
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at an early stage of life without having reference to their own
breeding or production records. Studies have shown that genomic
selection improved the genetic gain as much as 60–120% in dairy
cattle by decreasing genetic interval by 2 years, although the
extent of added genetic gain was lower in other livestock
species (Table 1). The term “systems genetics” or “systems
genomics” was also proposed by Kadarmideen (2014). This
branch has a wide range of approaches ranging from relating
the individual’s omics levels data to their functional annotation
and analysis of signaling pathways by integrating different multi-
omic levels data to phenotypes.

TRANSCRIPTOMICS

Transcriptomic methods can be used to compare a biological
response to different conditions or treatments or to assess
physiological responses to external stimuli (Brannan et al.,
2014). Whole transcriptome sequencing is the most widely
used method for studying RNA functions, exploring and
analyzing the gene structure and function, and revealing
intrinsic links between gene expression and life phenomena
(Shi and Zhang, 2019). To date, extensive research has been
carried out in different livestock species using high-throughput
RNAseq technology that has replaced the earlier usedMaxam and
Gilbert chemical degradation sequencing method. The NGS
technologies generate sequence data by producing millions of
short DNA fragments in parallel. The template is broken into
many smaller fragments by sheering, which are then ligated to
adapters to create cDNA libraries by the bridge (e.g., Illumina
sequencing) or emulsion (e.g., pyrosequencing) PCR. The clones
of cDNA fragments of each library are then sequenced to obtain
short reads; the length and number of the reads vary with the
specific technology but generally range between 30 and 300 bases,
which is shorter than those obtained from Sanger sequencing
(Ghaffari et al., 2013). NGS has led to the characterization and
quantification of many omics, including genomics (DNA
sequencing), transcriptomics (RNA and cDNA sequencing),
and epigenomics (ChiP-seq and DNA methylation analysis).
More recently, third-generation sequencing methods involving
single-molecule real-time (SMRT) sequencing have emerged
(Sahoo et al., 2021a; Sahoo et al., 2021b). These newer SMRT
sequencing methods do not require PCR amplification of

templates and hence are devoid of PCR biases. Moreover, the
SMRT sequencing approaches generally produce longer reads for
better genome assembly and identification of indels
(Athanasopoulou et al., 2021). However, SMRT methods such
as NanoporeTM and PacBioTM sequencing also offer versatility in
terms of rapid time and the transportability of the equipment.
Newer techniques such as tunneling currents DNA sequencing,
sequencing with mass spectrometry, microscopy-based
sequencing, etc., are under development.

The RNAseq has made a revolutionary impact on
transcriptome analysis (Mortazavi et al., 2008). RNAseq has
major advantages such as a large dynamic range and
sensitivity, precise, unbiased quantification of transcripts, and
comprehensive coverage of all expressed sequences in a given
tissue sample. The direct RNAseq is vital for functional studies to
capture the dynamic RNA population under different
environmental conditions (Athanasopoulou et al., 2021). It has
revolutionized gene annotation, which was hitherto very difficult
with genome sequencing. The RNAseq also finds application in
analyzing molecular features such as alternate isoforms, splice
variants, fusion transcripts, RNA editing, etc. (Li and Wang
2021). Combination of genome sequencing with RNAseq can
be utilized to interpret mutations on regulatory regions of genes,
which do not produce an obvious effect on the protein sequence
(Cohen et al., 2020).

Today, very accurate and efficient sequencing platforms are
available, which can distinguish closely related transcripts from
each other (Marguerat and Braga-Neto, 2015). Therefore,
RNAseq has become very popular for the identification and
quantification of splice variants, fused transcripts, and
mutants. In RNAseq technology, messenger RNAs are first
randomly fragmented into small pieces by sheering and
converted to a library of complementary DNA (cDNA)
fragments. These cDNA fragments are then amplified and
sequenced in parallel and mapped to a given region of the
target genome. PCR-free cDNA sequencing and direct
RNAseq without first-strand cDNA synthesis have also
become possible with SMRT technology such as NanoporeTM

sequencing. In expression quantification, a count, which is
determined by the number of reads mapping to each gene
(FPKM or TPM; fragments per kilobase of transcripts per
million mapped reads or transcripts per million), is a discrete
measure of the corresponding gene expression level
(Ghaffariet al., 2013, Li et al., 2012) (Figure 2). The
differentially expressed genes (DEGs) between two samples
can be obtained by transcript compilation with gene
annotation file followed by gene identification and differential
expression analysis based on FPKM or TPM values (Alessandrì
et al., 2019). Functional analysis of DEGs by bioinformatics tools
revealed that the immune and inflammatory responses were the
most impacted pathways between purebred and crossbred cattle
populations (Moridi et al., 2019). Such type of RNAseq-based
transcriptomic studies on animals of high- and low-genetic merit
may be helpful for the selection and breeding of elite animals in
the future to enhance health, productivity, and profitability.

Canovas et al. (2014) integrated the RNAseq data with GWAS
and bovine transcriptional factors in multiple tissues from pre-

TABLE 1 | Impact of genomic selectiona.

Animals Added genetic Gain References

Dairy cattle 60–120% Pryce and Daetwyler, (2011)
Beef cattle 15–44% Pimentel and Konig, (2012)
Dairy goat 26.2% Shumbusho et al. (2013)
Dairy sheep 51.7% Shumbusho et al. (2013)
Meat sheep 17.9% Shumbusho et al. (2013)
Pig 23–91% Lillehammer et al. (2011)
Layers 60% Sitzenstock et al. (2013)
Broilers 20% Dekkers et al. (2009)
Dairy Bulls 30–71% Doublet et al. (2019)

aSource: Modified from Ibisham et al., 2017.
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and post-pubertal cattle and constructed co-expression GRNs,
which revealed genes and their complex interactions during
puberty in cattle. Therefore, early selection of individuals
based on multi-omics data from early sexual maturity may
help increase the genetic gain by reducing generation intervals.
In another study, the resistance or susceptibility of Creole goats to
gastrointestinal nematodes was studied by RNAseq (Aboshady
et al., 2021). Aboshady et al. (2021) reported that the T-cell
receptor signaling pathway was one of the top significant
pathways that distinguish the resistant from the susceptible
genotype, with 78% of the genes involved in this pathway
showing genomic variants in Creole goats. This shows another
important example of applying omics for selecting disease-
resistant animals.

PROTEOMICS

Wilkins and Williams first described proteomics in the mid-1990s
(Speicher, 2004). Proteomics allows analysis of all proteins, including
their isoforms, in a particular cell, tissue, or organ at a specific time in
a single experiment. Advance proteomic tools can also provide
information on various protein isoforms, their quantification, and
protein-protein interaction. However, the application of proteomics
in livestock research has been limited in the past due to its high cost
and lack of optimized protocols for various cell types in different
species (Baykalir et al., 2018). Nevertheless, with advancements in
new analytical methods and computational tools for the analysis of

proteomic data, reports on proteomics studies in animal science are
increasing for understanding the animal health status and
production and reproduction efficiency (Zhao et al., 2021; Kaya
et al., 2022; Ye et al., 2022).

Proteomics techniques range from one-dimensional (ID) gel
electrophoresis, two-dimensional (2D) gel electrophoresis,
Chromatography (liquid and gas) methods to sophisticated mass
spectrometry (MALDI-MS, ESI-MS, LC-MS/MS, MALDI-TOFMS,
etc.,), whichmeasures mass-to-charge (m:z ratio) of ionized peptides
to identify proteins (Gupta et al., 2009a). In a typicalMS experiment,
the proteins are isolated from target cells/tissue/organ/biological
fluid, separated by 1D or 2D gel electrophoresis or liquid
chromatography, and digested by a sequence-specific protease
such as trypsin (Figure 3). The trypsin digests are then purified
by affinity chromatography or biochemical fractionation and ionized
by electronspray ion (ESI), matrix-assisted laser desorption
ionization (MALDI), or surface-enhanced laser desorption
ionization (SELDI) before being pushed into the mass
spectrometer to measure the m:z ratio. The m:z ratio can be
measured in quadrupole (Q), ion trap (e.g., quadrupole ion trap
or QIT and linear ion trap or LIT), time-of-flight (TOF), quadrupole
mass filters (QMF), ion cyclotron resonance (ICR), high-resolution
orbitraps, or a hybrid of mass spectrometers. The MS spectra are
then matched with protein databases to identify proteins using a
variety of algorithms that usually come in-built with the MS
machines (e.g., SpectraMillTM) (Gupta et al., 2009b). Several
methods have also been developed for relative or absolute
quantification (AQUA) of proteins and identification of post-

FIGURE 2 | A software pipeline and computational resources used for analysis of RNAseq data. Each type of RNAseq has distinct requirements and challenges but
there is a common workflow/pipeline.
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translational modifications bymodifiedMS such as selected reaction
monitoring (SRM), isotope labeling of amino acids in cell culture
(SILAC), isotope-coded affinity tags (ICAT), isobaric mass tagging
(iTRAQ), etc.

The number of proteomics studies associated with
reproductive problems has been increased dramatically in the
last decade (Peddinti et al., 2011). The research applications in
proteomics range from early growth and development to
postmortem events important for meat quality (Yarmush and
Jayaraman, 2002; Bendixen, 2005). One of the major areas of
interest in proteomics is finding out robust protein biomarkers
that could be useful in disease surveillance, monitoring the health
and wellbeing of animals, elucidating disease mechanisms, and
assessing pharmacologic response to therapeutics (Oskoueian
et al., 2016) (Muhanguzi et al., 2022). Proteomics can also be
applied for different animal products post-harvest like meat, milk,
cheese, etc., to identify genetic variants with desirable traits for
selection and breeding (Almeida et al., 2015).

Proteomics has also enabled the identification of candidate
protein markers of fertility for molecular breeding. The LC-MS/
MS analysis of pig sperm revealed eight fertility-related proteins
over-represented in Tibetan pigs having heritable adaptation to
hypoxic environments (Zhao et al., 2021). In another study,
analysis of seminal plasma proteins by LC-MS/MS found a
consistent correlation of 1,343 proteins with fertility (Willforss
et al., 2021). Thus, identifying fertility markers by proteomics can
help identify fertile bulls to reduce non-return rates (NRR) and
increase productivity. Proteomic tools can also be harnessed to

identify superior genetic variants to dietary response and muscle
growth for selective breeding. By a newly described
transcriptome-assisted label-free shotgun proteomics method,
Mullins et al. (2021) identified 24 differentially abundant
proteins in liver tissues from cattle that were fed ad libitum or
restricted diet. Identifying protein markers by proteomics could
help the selection of genetic variants for compensatory growth
upon undernutrition, which may accelerate genetic gain and
increase profitability (Mullins et al., 2021).

METABOLOMICS

An emerging area in the application of omics tools is the
interrogation of the metabolome. Metabolomics is a
comprehensive, qualitative and quantitative study of all the
small molecules in an organism (Kalaiselvi et al., 2019; (Lippa
et al., 2022). Metabolomic tools are being increasingly used to
generate an unbiased global profile of metabolites in samples
(i.e., untargeted analysis) or to quantify with high sensitivity a
small panel of metabolites (targeted analysis) (Riggs et al., 2017;
Evans et al., 2020). In dairy cattle, many potential biomarkers of
milk yield and quality have been detected by studying the
metabolome of different body fluids (Sun et al., 2015). One
advantage of profiling metabolites is exploring the impact of
metabolism on systemic health by monitoring the production and
further metabolism of compounds present in the diet, digesta, and
plasma (Seidel et al., 2014). It can also be used to evaluate feed

FIGURE 3 | Workflow of global proteome sequencing and quantification by mass spectrometry (MS/MS).
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conversion efficiency, metabolic response of animals to
environmental conditions, and estimation of production
efficiency and carcass quality traits (Jorge-Smeding et al., 2021;
Martin et al., 2021; Artegoitia et al., 2022). Studies have also
shown that the heritability of water-soluble compounds such as
free amino acids, nucleotides, and sugars in beef was less than
0.30 and varied with animal age (Sakuma et al., 2016). However,
these water-soluble compounds were negatively correlated with
carcass weight and beef marbling standard at the genetic level.
Thus, metabolomics may help identify animals with high carcass
quality for breeding. In another study, metabolic profiling of
muscle by GC-MS and LC-MS could distinguish grass- and grain-
fed cattle with 100% predictive accuracy (Carrillo et al., 2016).
These results suggest that metabolic signatures could be a good
indicator of animals’ feeding habits and carcass quality and,
therefore, could be utilized to select animals with desired traits
(Figure 4).

Metabolomic selection is an emerging breeding technology
based on nuclear magnetic resonance (NMR) or LC-MS
metabolomics (Evans et al., 2020; Lippa et al., 2022). The
NMR spectra of biological samples can be analyzed for
chemical shifts, peak intensities, and coupling patterns to
identify and quantify various metabolites and generate NMR
fingerprints of the sample (Figure 4). Metabolomic studies on
muscle and fat from cattle, pigs, and poultry have shown tissue-
and species-specific differences in metabolites with specific
compounds detected in each species (Ueda et al., 2018). The
GC-MS could also distinguish between cattle breeds (Ueda et al.,
2018). Thus, comparing NMR spectra from different animals
such as those from low- and high-performing animals may help
identify NMR fingerprints in high-performing animals. Such
NMR fingerprints can then be used for the genetic selection of
animals for breeding purposes (Figure 4). Metabolomic analysis
of muscle from Nellore cattle having high- or low-growth traits

revealed that high growth animals had a distinct metabolic profile
with a higher concentration of specific metabolites affecting
protein and fatty acid metabolism (Cansolo et al., 2020) that
can be harnessed for selection of animals for growth.

High-resolution MS (HRMS) can detect metabolites at nano-
to the pico-molar concentration of metabolome and, therefore,
can provide a better landscape of metabolites than NMR
(Goldansaz et al., 2017). The MS is usually combined with
separation techniques such as capillary, liquid, or gas
chromatography, depending on the polarity and lipophilicity
of the metabolites of interest. The separated molecules are
ionized by ESI, electron ionization (EI), chemical ionization
(CI), or atmospheric pressure CI (APCI) and evaluated for m:
z ratio in the mass spectrometer based on TOF, Fourier
transformation ion cyclotron resonance (FT-ICR) or orbitrap
to obtain structural information for identifying the metabolites.
Several databases such as METLIN, Human Metabolome
Database (HMDB), and MassBank are available that can be
used to match the MS spectra of metabolites for their
identification. A number of statistical and bioinformatic tools
can then be applied to discover molecular pathways involved in
the generation of critical metabolites. Software such as
MetaboAnalyst and Kyoto Encyclopedia of Genes and
Genomes (KEGG) can be used for multivariate analysis and
visualization of metabolic pathways. The correlation analysis
between animal performance parameters and metabolic
profiles may help identify key metabolic markers of animals’
performance for genetic selection. Metabolomics has also been
used in GWAS for metabolite-featured phenotyping and animal
breeding (Fontansesi, 2016).

The metabolomic tools can also be combined with molecular
breeding tools such as WGS and high-density SNP chips to
increase the accuracy of genetic selection and livestock
breeding (Wang and Kadarmideen 2020) (Ehret et al., 2015).

FIGURE 4 | Workflow for application of metabolomics on genetic selection of animals.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 7741137

Chakraborty et al. Omics Technologies for Livestock Selection

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Given that genomic prediction to predict breeding values based
on phenotypic, pedigree, and genomic data is insufficient to
describe the genetic potential of animals, incorporating the
whole-metabolomic data in the genomic prediction equation
may play a crucial role in increasing the genetic gain by
increasing the accuracy of selection. The latter is further
substantiated by the fact that metabolites represent cells’
ultimate physiological response and thereby represent a link
between genotype and phenotype (Wang and Kadarmideen
2020). GWAS-based studies, using SNP chips and LC-MS
metabolomics, the identified mechanism underlying the
genetic variation in pigs for feed efficiency (Banerjee et al.,
2020; Wang and Kadarmideen 2020). Integrating high-density
SNP data and metabolite information with predictive value was
also found to help improve the accuracy of genetic selection in
cattle (Ehret et al., 2015). The power of metabolomics is that it
non-invasively detects subtle phenotypic changes, innate
phenotypic propensities, and dietary responses in livestock
research, breeding, and assessment through new varieties of
bio-samples such as semen, amniotic fluid, saliva, and urine.

Wu et al. (2021) found that small metabolite profiling of pig
feces by LC-MS metabolomics correlated with their feed
efficiency and can be used as a reference for selecting animals
with high feed conversion efficiency and responsiveness to new
feed additives (Wu et al., 2021). Given that fecal metabolome are
reflections of intestinal microbiota, cellular metabolism and
digestion/absorption of nutrients in the gut (Zierer et al., 2018;
Malheiros et al., 2021), the metabolites present in the feces could
indicate their feed conversion efficiency (Wu et al., 2021). Fecal
metabolome was also shown to change as a function of stress in
beef cattle (Valerio et al., 2020). Thus, metabolic profiling of fecal
matter may be used to identify animals with “metabolic
fingerprints” that are known to exist in animals of high feed
conversion efficiency or tolerance to stress. Such animal can then
be selected for breeding purposes. Metabolomics has also been
used to study the effect of genetic selection on indirect genetic
effects (IGE) in breeding programs (Dervishi et al., 2021). Future
metabolomics research may be integrated with multi-omics
experiments using various analytical platforms/techniques (e.g.,
ICP-MS, MSI, and fluxomics) by using more sensitive platforms,
such as ESI-MS, to get more accurate information.

METAGENOMICS

Metagenomics is the collection and analysis of genetic material
(genomes) from a mixed community of organisms.
Metagenomics is an area of considerable research interest,
particularly in ruminant animals to study microbial
communities in rumen and milk. In metagenomics, genomic
sequencing tools are used to identify the complex structure of the
rumenmicrobiota and their changes in response to diet in concert
with the host ruminant genome. These rumen microbiotas may
influence a range of phenotypes in the host, including feed
efficiency, the inflammatory state in the digestive tract, and
volume of methane production in the rumen (Morgan et al.,
2014; Ritchie et al., 2015). Metagenomics is also the best way to

reveal modern species’ phylogenetic and evolutionary
relationships with the natives and ancestors of livestock and
poultry (Sahu et al., 2017). Other important applications of
metagenomics in livestock improvement are to identify the
disease-resistant strains for drug of choice and information
generation for genotype and environmental interactions for
better control over management (Sahu et al., 2017).

A typical metagenomic experiment involves isolation of genomic
DNA from microbial population and amplicon sequencing of 16
rRNA hypervariable V3-V4 region of bacteria and/or WGS by NGS
(e.g., IlluminaTM sequencing) or the third-generation sequencing
[e.g., Oxford Nanopore TechnologyTM (ONT) and PacBioTM]
(Figures 5, 6). The DNA reads obtained from WGS data are
assembled computationally to obtain larger DNA sequences and
identify the operational taxonomic units (OUTs) of the microbes.
Statistical tools can then be utilized to estimate richness (number of
taxonomic groups) and evenness (distribution of abundances of the
groups) of various microbial populations by computing alpha and
beta-diversities. A number of tools such as Mothur, QIIME2
(Quantitative Insights Into Microbial Ecology), DADA2 (Divisive
Amplicon Denoising Algorithm), Usearch etc. are available for
amplicon sequencing of 16 rDNA in bacteria. A typical
bioinformatics pipeline and relavent tools for analysis of amplicon
sequencing is shown in Figure 5. On the other hand, while WGS
allows high analysis of entire community of microbs, including
viruses and fungi, they are relatively expensive, time consuming
and computationally demanding. A bioinformatic pipeline and tools
forWGS analysis ofWGS is shown in Figure 6. The details of various
metagenomic pipelines for amplicon sequencing and WGS can be
seen elsewhere (Florian et al., 2019).

Metagenomic studies have been used extensively in cattle, pigs,
and horses to understand the importance of the microbiome in
the gut and mammary microbiome and their relation to feeding
efficiency, immunity, and mastitis (Chen C. et al., 2021; Gomez
et al., 2021). Metagenomics has shown that gut microbiota can
affect feed intake, feed conversion ratio, and production traits
such as daily weight gain and back-fat thickness in pigs (Aliakbari
et al., 2021; Jiang et al., 2021; Tiezzi et al., 2021). It can also relieve
immune stress and help maintain homeostasis in the intestine
(Sun et al., 2021). Similarly, parasitic infestations of tapeworm in
horses were also found to alter the colonic microbiome (Slater
et al., 2021). Such changes in gut microbiota showed implications
in individual animals’ performance and metabolic health. An
improved understanding of gut microbiota by metagenomics can,
therefore, help to genetic selection of animals for better animal
health and productivity. The meganomic profile of fecal matter or
oral swab may be used to identify animals with “microbial
fingerprints” that are known to exist in animals of high
genetic merit and can subsequently be used for breeding
purposes. Thus, metagenomics may offer a non-invasive
means of animal selection and breeding. Metagenomic studies
have also revealed that the milk microbiome varies with health
status (e.g., mastitis, endometritis, bacteremia, etc.,), age, parity,
lactation duration, and feed composition (Bach et al., 2021).
Consequently, characterization of milk microbiomes may help
identify novel “microbial fingerprints” for healthy mammary
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FIGURE 5 | A software pipeline for analysis of amplicon sequencing of bacteria. Each type of experiment has distinct requirements and challenges but there is a
common workflow/pipeline.

FIGURE 6 | A software pipeline for analysis of whole genome metagenomic sequencing data. Each type of experiment has distinct requirements and challenges
but there is a common workflow/pipeline.
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glands and genetic selection of healthy dairy animals (Andrews
et al., 2019).

EPIGENOMICS

Epigenomics is another branch of omics technology that deals with
studying epigenetic changes in a cell. Epigenetic changes regulate gene
expression without changing the actual DNA sequence. Epigenetic
modifications can be altered by external or internal environmental
factors such as diet, exercise, drugs, and chemicals and can change gene
expression and define specific phenotypes. Mapping epigenomics
components in many cell types helped identify millions of putative
regulatory elements (Zentner and Henikoff, 2015). A whole-genomic
bisulfate sequencing identified breed-specific hypomethylated regions
that were associated with male fertility (Chen S. et al., 2021).
Epigenomic biomarkers of male fertility were also identified in the
genome-wide DNA methylation map of pig testis (Wang and
Kadarmideen 2019). However, studies on global-level epigenomics
for genetic selection and breeding of animals are very limited.

ANALYSIS OF OMICS DATA

Omics technologies generate a voluminous amount of complex
data in gigabyte to terabyte range (hence, called Big Data) that are
difficult to handle by traditional data management tools (Angerer

et al., 2017). Expertise from different biological fields, skilled and
knowledgeable bioinformaticians, statisticians, and computer
scientists are required to analyze and interpret these data
(Riggs et al., 2017). The tremendous high-dimensional data
resulting from a large number of experimental variables (e.g.,
physiological state, age, sex, parity, nutritional status,
experimental design, etc.) and simultaneous evaluation of
multiple genes/proteins/metabolites/transcripts, etc. requires
implementation of complex statistical techniques and models
to avoid spurious results and misinterpretation of research data.
Various open-source and commercial bioinformatics softwares
are now available in online and offline modes in R packages of
Bioconductor, EMBOSS, Galaxy, Staden, Biophython, Bioconda,
Linux, etc., for various omics data analysis (Table 2).

Data handling is a vital component of analyzing raw data from
omics experiments for their correct biological interpretation. Data
handling must address issues related to data filtering, imputation,
transformation, normalization, quality control, and scaling (Li
et al., 2022). Several algorithms and pipelines are now available
for the analysis of various omics data, including transcriptomics
(Figure 3), proteomics (Figure 4), and metagenomics (Figure 4).
However, using one pipeline or tool may yield different results
from other pipelines. One approach to avoid this problem is to
use multiple well-documented analysis pipelines for each step in
the pipeline (Misra et al., 2019). The detailed discussion on
various omics and multi-omics pipelines is beyond the
manuscript’s scope. There are excellent reviews available on

TABLE 2 | Overview of some free bioinformatics software for integrating information across several omics techniques.

Name Integration of types of
omics

References and URL

Cytoscape Mainly protein-protein, protein–DNA, and DNA–DNA interactions, but
plug-ins (apps) are available for all types of omics

https://cytoscape.org/; Shannon et al. (2003)

MOFA All types (multi-omics) https://github.com/bioFAM/MOFA; Argelaguet et al. (2018)
LUCID Mainly genomics and metabolomics; integration of phenotypic data https://github.com/USCbiostats/LUCIDus; Peng et al. (2020)
MultiDataSet Epigenomics, transcriptomics, assay data, feature data, phenotypic

data stored in a single object
https://bioconductor.org/packages/release/bioc/html/MultiDataSet.
html; Hernandez-Ferrer et al. (2017)

Logicome Profiler Applied to genomics and metagenomics, but applicable to any omics
data

https://github.com/fukunagatsu/LogicomeProfiler; Fukunaga and
Iwasaki, (2020)

CoCoNet Integration of GWAS and gene expression data http://www.xzlab.org/software.html; Shang et al. (2020)
NEO Integration of GWAS and gene expression data https://horvath.genetics.ucla.edu/html/aten/NEO/; Aten et al. (2008)
WGCNA Mainly gene-expression data, but can be applied to other omics https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/

Rpackages/WGCNA Zhang and Horvath, (2005); Langfelder and
Horvath, (2008)

DIABLO in mixOmics All types (multi-omics) http://mixomics.org/mixdiablo Tenenhaus et al., (2014); Rohart et al.,
(2017); Singh et al. (2019)

The Cancer Genome
Atlas (TCGA)

RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV, DNA methylation, and
RPPA

https://cancergenome.nih.gov/

Omics Discovery Index Genomics, transcriptomics, proteomics, and metabolomics https://www.omicsdi.org/ Perez-Riverol et al. (2017)
OMICtools NGS, microarray, polymerase chain reaction (PCR), MS and NMR

technologies
http://omictools.com/

NGOMICS-WF Metagenomic, metatranscriptomic, RNA-seq and 16S data https://github.com/weizhongli/ngomicswf
Paintomics Integrated visual analysis of transcriptomics and metabolomics data http://www.paintomics.org
GalaxyP, GalaxyM Integrated omics analysis, proteomics informed by transcriptomics

analysis
https://usegalaxy.org/

Omics Integrator Integrate proteomic data, gene expression data and/or epigenetic data
using a protein-protein interaction network

http://fraenkel.mit.edu/omicsintegrator, https://github.com/fraenkel-
lab/OmicsIntegrator

IMPaLA Joint pathway analysis of transcriptomics or proteomics and
metabolomics data

http://impala.molgen.mpg.de
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transcriptomic (Wadapurkar et al., 2021), proteomic (Halder
et al., 2021), metagenomic (Yang et al., 2021), and
metabolomic (Du et al., 2022) pipelines and their integration
formulti-omics (Subramanian et al., 2020; Reel et al., 2021), which
can be referred. GitHub (https://github.com/danielecook/
Awesome-Bioinformatics) and Biostars (https://www.biostars.
org/) are also good sources of various updates on omics-
related softwares and data analysis, respectively.

CHALLENGES IN APPLICATIONS OF
OMICS STRATEGIES IN LIVESTOCK
SELECTION AND BREEDING
Applications of omics technology to explore the full potential of
livestock face many practical challenges. Some of those challenges
are as follows:

Proper Maintenance of Data
Data recording and handling of raw data is a big challenge for breeders.
To avoid errors and bias in data processing and analysis, suitable
cutoffs (e.g., microbial relative abundance, gene expression threshold,
metabolite similarity, differential expression cutoff, enriched function
cutoff, significant impact value of pathways), data preprocessing
options (e.g., data baseline filtering and calibration, peak alignment,
deconvolution analysis, peak identification), data normalization, data
transformation, and data scaling methods should be carefully
considered and addressed within each study. Database construction
is an important way for data storage and data maintenance. One such
database is ASlive, which has been designed for livestock to capture
alternative splicing events in heterogeneous samples from awide range
of tissues, cell types, and biological conditions (Liu et al., 2020). More
such databases will accelerate the study and applications of omics
technology for animal improvement.

Lack of Phenomics Data
Most organized animal farms maintain the performance records of
various economic traits, including production traits, reproduction
traits, and growth traits. However, organism-wide phenotypic data
of animals during different growth phases, various physiological or
production stages, in response to dietary changes or upon their
selective breeding (i.e., phenome-level data) are challenging to
maintain and are generally missing (Pérez-Enciso and Steibel
2021). Accurate phenomics data on adaptability, fitness, body
conformation, disease resistance/susceptibility, production
performance, reproduction, and growth characteristics will help
better estimate accurate BV and selection of genetically superior
animals (Juárez et al., 2021; Pérez-Enciso and Steibel 2021).
Particular emphasis should be given for multi-omics with other
“big data”; for example, those detected by advanced management
technologies (e.g., using remote sensors communicating with the
Internet of Things to measure physiological and behavioral data,
which can be applied to monitor estrus, lameness, or rumination)
to have complete data set (Sun et al., 2019). The systematic
collection of large data sets from different biological layers will
help generate a more holistic understanding of the biological
factors affecting the performances of the animals.

Expertise
Omics technology generates enormous amounts of data at the
genome, transcriptome, proteome, or metabolome levels. Proper
handling of omics data and advanced knowledge of statistics and
bioinformatics are prerequisites for the adequate utilization of
omics technology. One should have good knowledge in the above-
mentioned fields and computer knowledge to interpret the data
generated through omics technology. Lack of good expertise may
mislead for selection of suitable animals. There are many
challenges associated with proper data recording, processing,
quality control, normalization, and genetic prediction (Yamada
et al., 2021). Breeders, biological scientists, veterinarians,
statisticians, and computer scientists should be trained to
overcome these problems. All should collaborate to interpret
and adequately utilize omics data, including phenomics data for
animal improvement.

CONCLUSION

The goal of animal production is to achieve increased
productivity to fulfill human demand while enhancing the
health and wellbeing of animals. Population growth, climate
change, resource depletion, human health and nutrition, and
sustainability are all issues with which the world is grappling.
Different new breeding technologies and molecular technologies
such as genomic selection, WGS, and gene editing contribute
tremendously to the selection and breeding of livestock species
for sustainable improvement in productivity and profitability.
Omics technologies such as genomics, proteomics,
transcriptomics, metagenomics, and metabolomics offer
powerful analytical tools that can be combined with molecular
breeding for the accurate selection of animals for improved
productivity. Genomics, in particular, can make conventional
breeding and advanced breeding techniques more efficient and
precisely targeted by increasing consistency and predictability.
Integration of multi-layers of omics technology, including
phenomics, into the breeding models, will be helpful for
proper selection and breeding for animal improvement in the
near future.
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