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In the process of growth and development in life, gene expressions that control
quantitative traits will turn on or off with time. Studies of longitudinal traits are of
great significance in revealing the genetic mechanism of biological development. With
the development of ultra-high-density sequencing technology, the associated analysis
has tremendous challenges to statistical methods. In this paper, a longitudinal functional
data association test (LFDAT) method is proposed based on the function-on-function
regression model. LFDAT can simultaneously treat phenotypic traits and marker
information as continuum variables and analyze the association of longitudinal
quantitative traits and gene regions. Simulation studies showed that: 1) LFDAT
performs well for both linkage equilibrium simulation and linkage disequilibrium
simulation, 2) LFDAT has better performance for gene regions (include common
variants, low-frequency variants, rare variants and mixture), and 3) LFDAT can
accurately identify gene switching in the growth and development stage. The
longitudinal data of the Oryza sativa projected shoot area is analyzed by LFDAT. It
showed that there is the advantage of quick calculations. Further, an association analysis
was conducted between longitudinal traits and gene regions by integrating the micro
effects of multiple related variants and using the information of the entire gene region.
LFDAT provides a feasible method for studying the formation and expression of
longitudinal traits.
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1 INTRODUCTION

With sequencing technology development, genome-wide association studies (GWASs) have identified
thousands of genetic variants successfully (Robinson et al., 2014). This research plays an important role
in identifying the genetic associations of complex traits and diseases. However, GWASs that assess
quantitative traits at a single time cannot better reveal the genetic mechanism of biological
development. In fact, longitudinal traits have always been a major scientific issue in biology. As
early as 1962, Kheiralla andWhittingtom, 1962 found that genetic effects behave differently in different
periods. In the eighth decade of the last century, Lewis, 1978 revealed the molecular mechanism of
morphological development in Drosophila, which laid a foundation for developing trait developmental
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genetics. At present, more and more scholars are conducting
research on longitudinal traits and exploring the response
mechanism of longitudinal traits to genetic variation in the
development of crops. (Smith et al., 2010; Cousminer et al.,
2013; Tang et al., 2014).

With the development of molecular biotechnology, the
position of genes that control phenotypic traits in the genome
was determined via a linkage analysis and association analysis to
reveal the influence of genetic variations on phenotypic traits. For
quantitative traits, many QTL (quantitative trait locus) mapping
methods were proposed. Early QTL mapping methods that use a
linkage analysis were mainly divided into three types for
longitudinal traits: 1) treating phenotypes at different time
points as repeated values of one trait; 2) treating phenotypes
at different time points as measured values of different traits and
analyze them via multiple trait methods; and 3) establishing a
model between time points and phenotypes (Zhang, 2006). The
former two methods were discrete in both quantitative traits and
gene locus directions (as shown with a diamond in Figure 1). The
third method fits longitudinal traits to a continuous curve.
However, the locus direction still maintained a discrete state
(as shown with a square in Figure 1). In the longitudinal data
analysis, the third method was most commonly used. Further,
several statistical methods had been developed, such as random
effects models (Laird and Ware, 1982), hierarchical linear models
(Raudenbush and Bryk, 2002), empirical Bayes models (Hui and
Berger, 1983), and growth mixture models (Muthen, 2004). Now
with the development of GWASs, the above statistical methods
have been applied to test the single genetic variant of longitudinal
traits via an association analysis. Das et al. (2011) integrated the
growth curve describing traits into the GWAS framework and
established a functional GWAS model to improve the test power
of variants. Fan et al. (2012) proposed temporal association
mapping models for longitudinal population data. Both
parametric models and nonparametric models were proposed
to be applied to multiple diallelic genetic markers. Meanwhile,
Meirelles et al. (2013) established a shrinking average model
based on the empirical Bayes algorithm. The test power of that
dynamic model at multiple time points was significantly
increased compared with that of a single time point.

GWASs were mainly divided into two types of studies for
quantitative traits: 1) an association analysis based on common

variants and 2) and an association analysis based on rare variants.
At present, the single-variant association analysis has always been
used by GWAS based on common variants mainly. Many
methods were proposed in these studies and made great
progress. However, the single-variant association analysis was
limited to test rare variants common in high-throughput
sequencing (Han and Pan, 2010; Sha et al., 2016). Common
variants explained only a small part of genetic variation, and most
of the associated sites that controlled complex traits were rare
variants (Gibson, 2012; Marouli et al., 2017). A single-variant
association analysis often ignored the overall information of gene
region that rare variants were located. An association analysis
method based on gene region can analyze the combination of the
effects of the variant sites in the entire gene region. That method
reduced the burden of multiple testing and has larger test power
(Neale and Sham, 2004; Wu et al., 2010).

Most association analysis methods based on the gene region
were designed for the phenotypic traits at a single time point.
These methods were mainly divided into three types: 1) the
burden test method based on the idea of merging (Madsen
and Browning, 2009; Han and Pan, 2010; Morris and Zeggini,
2010; Price et al., 2010; Lin and Tang, 2011), 2) the variance
composition method based on mixture effects (Liu et al., 2007;
Kwee et al., 2008; Liu et al., 2008; Wu et al., 2010; Wu et al., 2011;
Schifano et al., 2012; Chen et al., 2013), and 3) the method based
on a functional data analysis (Luo et al., 2012; Svishcheva et al.,
2015; Svishcheva et al., 2016a; Svishcheva et al., 2016b; Li et al.,
2020). The current functional data analysis method maintained a
discrete state in the direction of quantitative traits at a single time
point and treated many discrete SNP sequences located in a
narrow gene region as continuous variables in the direction of the
gene locus. Then, gene regions that contained a large amount of
genetic variation were analyzed using a functional data analysis
(as shown with a triangle in Figure 1). Many studies have shown
that the test power of the functional data analysis method was
higher than that of the burden test method based on the
combination idea and the variance component method based
on the mixture effect (Luo et al., 2012; Fan et al., 2013; Svishcheva
et al., 2016a).

The literature on the statistical method of the gene region
association analysis for longitudinal traits was limited (Beyene
and Hamid, 2014; Wu et al., 2014; Yan et al., 2015; Chien et al.,
2016; Cao et al., 2017). In recent studies, a longitudinal trait
association test method with the covariates based on SKAT (the
sequence kernel association test) method (LSKAT; Longitudinal
SNP-set/SKAT) was proposed (Wang et al., 2017). This method
combined the features of linear mixed models and kernel machine
methods. The association between genetic variation regions and
longitudinal traits was analyzed using LSKAT. At the same time, a
longitudinal trait burden test (LBT) that tested the association
between traits and burden scores in a linear mixed model was
proposed in that study. However, the inversion of the correlation
matrix was required for these methods, and the calculation of the
p-value using the eigenvalue decomposition of the correlation
matrix brought a computational burden. Simultaneously, the
time-varying genetic effect was not considered, but the influence
of genes on traits might change over time.

FIGURE 1 | Research status on quantitative traits and genetic variants.
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In the functional data analysis, the function-on-function
regression model can fit the growth curve of quantitative traits
and transform dense discrete gene loci into continuous functions
(as shown with a dot in Figure 1). Therefore, we propose a
longitudinal functional data association test (LFDAT) method
where the function-on-function regression model is applied to
detect the association between the gene region and the
longitudinal trait. This method can aggregate the small effects
distributed at multiple sites, gather the association information of
the entire gene region, and improve the test power of related sites
with micro effects.

2 METHODS

2.1 Function-On-Function Regression
Model
Suppose that there are n individuals in a population, and the
group structure and other factors are not considered. The SNP
sequence constitutes the gene region [0, M] containing the L
genetic locus, and the growth and development traits are
measured in the time period [0, T]. Let yi(t) denote the
phenotype of the ith (i � 1, 2,/, n) subject at the time
point t (t ∈ [0, T]) and xis denote the marker information
of the ith subject at the sth (s ∈ [0, M]) genetic locus. Consider
a QTL with two alleles: Q and q. The two alleles can form three
genotypes: QQ, Qq, and qq. The value of xis is 2 for QQ, 1 for
Qq, and 0 for qq. At the time point t, the relationship between
the phenotypic trait and the marker information can be
described with the following multivariate linear genetic
model:

yi(t) � μ(t) +∑L
s�1
xisβs(t) + εi(t), i � 1, 2,/, n (1)

where μ(t) is the population mean, εi(t) is random error
following a normal distribution N(0, σ2), and ρ is the time
correlation coefficient between each εi(t). Further, βs(t) is the
genetic effect of the sth genetic locus at time point t. When the
number of genetic markers is infinitely dense, the genetic model
of the phenotype yi(t) can be expressed by a function-on-
function regression model:

yi(t) � μ(t) + ∫
M

0

xi(s)β(s, t)ds + εi(t), t ∈ [0, T], i � 1, 2,/, n.

(2)

where xi(s) is the genetic marker function of the ith subject in the
gene region [0,M] and β(s, t) is the genetic effect of the sth
genetic locus at the time point t, which is referred to herein as the
time-varying function of the genetic effect.

2.2 Parameter Estimation
The intercept function μ(t) is dropped by centralization to
simplify our discussion of the estimation of the model (2).
According to functional data analysis method (Malfait and

Ramsay, 2003; Zhao, 2015), let yp
i (t) � yi(t) − �y(t) and

xp
i (s) � xi(s) − �x(s), where �y(t) � 1

n∑n
i�1yi(t) and

�x(s) � 1
n∑n

i�1xi(s). Then, obtain the following:

yp
i (t) � ∫

M

0

xp
i (s)β(s, t)ds + εi(t) (3)

The asterisk is dropped in what follows to further simplify the
expression.

Let β̂(s, t) be the approximation of β(s, t). Based on functional
data analysis method, so β̂(s, t) can be linearly expressed by K
known two-dimensional basis functions φk(s, t):

β̂(s, t) � ∑K
k�1

bkφk(s, t) (4)

Combine (4) and (3) to obtain the following:

yi(t) � ∫
M

0

xi(s)(β(s, t) − β̂(s, t)) + xi(s)β̂(s, t)ds + εi(t)

� ∑K
k�1

bk ∫
M

0

xi(s)φk(s, t)ds + ∫
M

0

xi(s)ε(s, t)ds + εi(t)

� ∑K
k�1

bkψik(t) + ε′i(t)

(5)

where ψik(t) � ∫M

0
xi(s)φk(s, t)ds and ε(s, t) � β(s, t) − β̂(s, t).

ε′i(t) is the combined error composed of random error εi(t) and
approximation error ε(s, t).

In simplifying the notations, we further obtain the matrix
expression of Eq. 5:

y(t) � Ψ(t)b+e(t) (6)

where

y(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1(t)
y2(t)
..
.

yn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ b�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1
b2
..
.

bK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ψi(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψi1(t)
ψi2(t)
/

ψiK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ψ(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψ1(t)
ψ2(t)
..
.

ψn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ e(t)

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε′1(t)
ε′2(t)
..
.

ε′n(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The least-square method is used to estimate the coefficient
vector b for the sum of integrated squared errors, namely

SISE � ∫
T

0

∑n
i�1
{ε′i(t)}2dt (7)

This is equivalent to solving the following equation:

{∫
T

0

ΨT(t)Ψ(t)dt}b � ∫
T

0

ΨT(t)y(t)dt (8)
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We impose a roughness penalty term on the two-dimensional
basis function in each dimension separately.

Let PEN1 and PEN2 denote the roughness penalty in the s and
t directions, respectively.

PEN1 � λ1∫∫[D2β(s, t)
ds2

]2

dsdt

� λ1∫∫⎡⎣∑K
k�1

bkφ″k(s)(s, t)⎤⎦
2

dsdt

� λ1 ∫∫[bTφ1(s, t)]2dsdt
� λ1b

T{∫∫[φ1(s, t)φT
1(s, t)]dsdt}b

� λ1b
TR1b

(9)

where R1 � ∫∫[φ1(s, t)φT
1 (s, t)]dsdt is a K ×K matrix, λ1 is a

smoothing parameter and
φ1(s, t) � [φ″1(s)(s, t),/,φ″K(s)(s, t)]T, φ″k(s)(s, t) is the
second derivative of φk(s, t) for the direction of s.

The same, the matrix expression of PEN2 is as follows:

PEN2 � λ2∫∫[D2β(s, t)
dt2

]2

dsdt

� λ2b
TR2b

(10)

where R2 � ∫∫[φ2(s, t)φT
2 (s, t)]dsdt is a K ×K matrix, λ2 is a

smoothing parameter and
φ2(s, t) � [φ″1(t)(s, t),/,φ″K(t)(s, t)]T, φ″k(t)(s, t) is the
second derivative of φk(s, t) for the direction of t.

Now, we wish to minimize the sum of two penalties and the
sum of integrated squared errors, expressed as follows:

PENSISE � SISE + PEN1 + PEN2 (11)

This is equivalent to solving the following equation:

{∫
T

0

ΨT(t)Ψ(t)dt + λ1R1 + λ2R2}b � ∫
T

0

ΨT(t)y(t)dt (12)

We evaluate yi(t) and ψi1(t),ψi2(t),/,ψiK(t) at a set of time
points {tq|q � 0, 1,/, Q}.

Let

yi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yi(t0)
yi(t1)

..

.

yi(tQ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , y�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1
y2
/
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ψi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψi1(t0) / ψik(t0) / ψiK(t0)

..

.
1 ..

.
1 ..

.

ψi1(tQ) / ψik(tQ) / ψiK(tQ)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ψ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ψ1

Ψ2

/
Ψn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the regular equation of the least square method can be
obtained from Eq. 12

{ΨTΨ + λ1R1 + λ2R2}b � ΨTy (13)

Finally, the least square estimate of the coefficient vector in Eq.
13 is as follows:

b̂ � {ΨTΨ + λ1R1 + λ2R2}−1ΨTy (14)

2.3 Hypothesis Testing Based on the
Function-On-Function Regression Model
We usually consider the following hypothesis testing to detect
whether the association between the gene regions and the
phenotypes exists:

H0: β(s, t) � 0; H1: β(s, t) ≠ 0, for any s, s ∈ [0,M], t ∈ [0, T]

Since the time-varying function of the genetic effect β(s, t) �∑K
k�1bkφk(s, t) is a linear combination of two-dimensional basis

functions, the above hypothesis testing is equivalent to the
following:

H0: for any bk is 0; H1: not all bk is 0, k � 1, 2,/, K.

The following test statistics are available for the above
hypothesis testing:

F � (RSS0 − RSS1)/K
RSS1/(n −K − 1) ∼ F(K, n −K − 1) (15)

where RSS0 � ∑n
i�1y2

i (t) and RSS1 �� ∑n
i�1(yi(t) − ψi(t)b̂)2 are

the sums of the squared residuals under the null model and the
alternative model, respectively.

2.4 The Evaluation Indicators of the
Estimation Result of the Time-Varying
Function of the Genetic Effect
This was done to further measure the fitness of LFDAT for the
time-varying function of the genetic effect in the gene region and
provide other reference indicators for LFDAT in the process of
the association analysis of the longitudinal trait. Then, some
evaluation indicators are established for LFDAT.

LetN(β) denote the null region of β(s, t), and S(β) denote the
non-null region of β(s, t), which is defined as the following:

N(β) � {(s, t) ∈ [0,M] × [0, T]: β(s, t) � 0}
and

S(β) � {(s, t) ∈ [0,M] × [0, T]: β(s, t) ≠ 0}.
From a statistical genetic point of view, if the time-varying

function of the genetic effect β(s, t) is null, the sth genetic locus at
the time point t is not associated with the longitudinal trait.

For the null region and non-null region, as Lin et al. (2017)
and Centofanti et al. (2020) noted, we consider the integrated
squared errors (ISE) as the fitting criterion for the estimator
β(s, t). The ISE over the null region (ISE0) and the non-null
region (ISE1) are defined as follows:

ISE0 � 1
A0

∫ ∫
N(β)

(β̂(s, t) − β(s, t))2dsdt,
and

ISE1 � 1
A1

∫ ∫
S(β)

(β̂(s, t) − β(s, t))2dsdt.
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where A0 and A1 are the measures of the null and non-null
regions, respectively. The ISE0 and ISE1 are the measures of
integrated squared errors between the true function β(s, t) and an
estimated function β̂(s, t) on the null and non-null regions,
respectively.

The predictive performance is measured by prediction mean
squared errors (PMSE), defined as the following:

PMSE � 1
N

∑
(x,y)∈test

∫
T

0

(y(t) − μ̂(t) − ∫
M

0

x(s)β̂(s, t)ds)2

dt.

where test denotes the test sample data set, N is the size of
the test sample data set, and μ̂(t) is the estimated intercept
μ(t).

In the gene region, we define ISE0, ISE1, and PMSE as the
criterion to measure the fitness of the time-varying effect
function. ISE0 is used to measure the fitness of the null
effect, which denotes the overall deviation between the true
value and the estimated value at the site where there is no effect
value in the gene region. The expression is as follows:

ISE0 � 1

(|Γ| − 1) × (|S0| − 1) ∑t∈Γ ∑
s∈S0

(β̂(s, t) − β(s, t))2 (16)

where S0 denotes a collection of SNP sites that do not have an
association relationship in the region, |S0| represents the
number of elements in the collection S0, Γ denotes the
collection of measurement time points, |Γ| represents the
number of elements in the collection Γ, and β(s, t) and
β̂(s, t) represent the actual effect and estimated effect of the
sth genetic locus at time point t in the collection S0 × Γ,
respectively.

ISE1 is used tomeasure the fitness of the non-null effect, which
denotes the overall deviation between the true value and the
estimated value at the site where there is an effect value in the
gene region. The expression is as follows:

ISE1 � 1

(|Γ| − 1) × (|S1| − 1) ∑t∈Γ ∑
s∈S1

(β̂(s, t) − β(s, t))2 (17)

where S1 denotes a collection of SNP sites with an association
relationship in the region, |S1| represents the number of elements
in the collection S1, and β(s, t) and β̂(s, t) represent the actual
effect and estimated effect of the sth genetic locus at time point t
in the collection S1 × Γ, respectively.

PMSE is used to measure the fitness of the genetic model,
which denotes the overall deviation between the estimated value
of the trait obtained fitted by the model and the true value of the
trait in the test set. The expression is as follows:

PMSE � 1
N − 1

∑
yi(t)∈test

∑
t∈Γ

(yi(t) − ŷi(t))2 (18)

where test denotes the test sample data set, N is the size of test
sample data set, yi(t) denotes the true value of the trait of the ith
subject in test data set at time point t, and ŷi(t) denotes the
predictive value of the trait of the ith subject in test data set at time
point t.

3 SIMULATION STUDIES

The SNP sequence data set generated by the computer is used for
type I error simulation and power simulation to evaluate the
feasibility of the LFDAT. In Luo et al. (2012), the FLM and the
Smoothed FLM are proposed for test association between gene
region and quantitative trait. Because both the Smoothed FLM
and LFDAT have the smooth penalty, so we compare the power
of the Smoothed FLM to that of the LFDAT in simulation.
However, the Smoothed FLM is only applicable to a single
measurement, it’s applied to detect association between gene
region and trait at each time point.

In the simulation, we consider linkage equilibrium simulation
and linkage disequilibrium simulation. The SNP sequence data
set simulated contains a 50 kb gene region, and a 1 kb genetic
subregion is randomly selected from the gene region to assess
type I error rates and power. The sizes of the samples are 1,000,
1,500, and 2,000, respectively. Gene regions consider five cases: 1)
gene regions only have common variants, 2) gene regions only
have rare variants, 3) gene regions only have low-frequency
variants, 4) gene regions are randomly composed of 20%
common variants and 80% rare variants, and 5) gene regions
are randomly composed of 80% common variants and 20% rare
variants. In the simulation, the upper limit b and lower limit a of
U (a, b) corresponding to the MAF (minor allele frequency) of
gene regions are different. The gene regions of rare variants are
(0.0005, 0.01), gene regions of low-frequency variants are (0.01,
0.05), and gene regions of common variants are (0.05, 0.5).

The codes used in this paper are the linmod function in the fda
package of the R software (Ramsay et al., 2009). In the simulation,
set the number of two-dimensional B-spline basis functions K to
15 and the order d to 4. Leave-one-out cross-validation (Ramsay
et al., 2009) can be used to select the optimal parameter from a set
of smoothing coefficients [102, 103, 104, 105, 106] for λ1 and λ2.

Due to space limitations, all the simulated results are attached
to Supplementary Datas S1–S6.

3.1 Linkage Equilibrium Simulation
3.1.1 Type I Error Rates
We use the following model to generate phenotype data to assess
type I error rates of LFDAT:

yi(t) � μ(t) + εi(t), i � 1, 2,/, n

where t � 1, 2,/, 9, μ(t) � 1, εi(t) ∼ N(0, 1) and the time
correlation coefficient between each random error ρ is 0.5. We
randomly selected a 1 kb subregion from the SNP sequence data
set as the genotype data of the gene regions. Notice that the null
hypothesis is valid, and the phenotypes have nothing to do with
the current genotypes.

A total of 1,000 genotype-phenotype data sets for each sample
size were simulated. The test statistics and related p-value based
on the above genetic model were calculated. Under a given
significance level α, the ratio of genotype-phenotype data sets
that p-value is less than α is regarded as a type I error rate.

All results of type I error rates simulation can be seen
Supplementary Data S1. Table 1 shows the type I error rates
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TABLE 1 | Type I error rates of the LFDA and Smoothed FLM based on 1,000 simulated replicates for linkage equilibrium simulation.

α Sample
size

Gene
region

LFDA Smoothed FLM

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

0.05 1,000 Common 0.025 0.008 0.011 0.012 0.008 0.006 0.011 0.010 0.027 0.063 0.043 0.057 0.057 0.053 0.049 0.061 0.048 0.057
Rare 0.013 0.007 0.005 0.003 0.004 0.002 0.001 0.005 0.012 0.050 0.056 0.057 0.048 0.058 0.053 0.046 0.048 0.056
Low 0.014 0.012 0.005 0.004 0.004 0.006 0.005 0.004 0.016 0.055 0.059 0.055 0.047 0.045 0.041 0.053 0.053 0.057
Mixture
one

0.019 0.007 0.008 0.006 0.000 0.007 0.005 0.016 0.018 0.062 0.048 0.056 0.050 0.049 0.061 0.056 0.058 0.059

Mixture
two

0.021 0.011 0.006 0.010 0.008 0.009 0.006 0.010 0.017 0.054 0.053 0.040 0.048 0.059 0.059 0.060 0.052 0.052

1,500 Common 0.025 0.009 0.002 0.010 0.005 0.009 0.007 0.009 0.027 0.058 0.048 0.044 0.061 0.035 0.045 0.049 0.053 0.054
Rare 0.012 0.004 0.000 0.002 0.000 0.003 0.005 0.002 0.007 0.053 0.038 0.057 0.045 0.043 0.040 0.049 0.040 0.046
Low 0.019 0.006 0.011 0.008 0.002 0.006 0.004 0.013 0.017 0.060 0.042 0.063 0.050 0.064 0.055 0.052 0.062 0.059
Mixture
one

0.013 0.010 0.006 0.002 0.000 0.008 0.002 0.006 0.021 0.062 0.060 0.044 0.044 0.047 0.045 0.040 0.036 0.054

Mixture
two

0.031 0.014 0.009 0.012 0.005 0.007 0.010 0.010 0.028 0.061 0.073 0.050 0.053 0.046 0.049 0.045 0.045 0.054

2000 Common 0.022 0.009 0.009 0.005 0.005 0.009 0.011 0.007 0.020 0.047 0.041 0.044 0.038 0.048 0.057 0.053 0.044 0.039
Rare 0.011 0.013 0.002 0.003 0.005 0.004 0.004 0.007 0.010 0.053 0.058 0.046 0.043 0.045 0.040 0.054 0.044 0.037
Low 0.013 0.011 0.009 0.011 0.002 0.008 0.009 0.010 0.011 0.053 0.059 0.059 0.053 0.050 0.053 0.046 0.046 0.041
Mixture
one

0.023 0.005 0.011 0.004 0.007 0.004 0.009 0.015 0.014 0.049 0.053 0.059 0.051 0.047 0.046 0.051 0.047 0.048

Mixture
two

0.024 0.010 0.009 0.006 0.010 0.012 0.016 0.006 0.032 0.045 0.052 0.056 0.055 0.051 0.055 0.069 0.049 0.062

0.01 1,000 Common 0.003 0.001 0.001 0.001 0.002 0.000 0.001 0.002 0.006 0.009 0.008 0.011 0.013 0.012 0.011 0.014 0.011 0.012
Rare 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.001 0.014 0.008 0.013 0.011 0.009 0.009 0.011 0.012 0.012
Low 0.003 0.002 0.000 0.001 0.000 0.000 0.001 0.000 0.004 0.011 0.016 0.009 0.009 0.007 0.012 0.012 0.010 0.011
Mixture
one

0.003 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.012 0.012 0.012 0.015 0.007 0.012 0.010 0.014 0.010

Mixture
two

0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.005 0.010 0.008 0.010 0.010 0.011 0.020 0.007 0.011 0.011

1,500 Common 0.005 0.002 0.000 0.001 0.001 0.000 0.000 0.002 0.003 0.009 0.009 0.002 0.015 0.006 0.008 0.011 0.007 0.008
Rare 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.013 0.006 0.005 0.008 0.007 0.009 0.013 0.006 0.009
Low 0.003 0.000 0.001 0.000 0.000 0.002 0.000 0.001 0.003 0.015 0.010 0.020 0.012 0.010 0.015 0.007 0.012 0.012
Mixture
one

0.002 0.003 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.010 0.010 0.009 0.004 0.004 0.014 0.005 0.008 0.010

Mixture
two

0.006 0.001 0.001 0.001 0.000 0.002 0.002 0.002 0.004 0.012 0.019 0.011 0.016 0.010 0.011 0.009 0.012 0.009

2000 Common 0.003 0.000 0.001 0.000 0.000 0.000 0.003 0.002 0.008 0.004 0.011 0.009 0.007 0.011 0.011 0.014 0.005 0.010
Rare 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.011 0.019 0.005 0.013 0.012 0.009 0.008 0.011 0.008
Low 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.008 0.008 0.013 0.018 0.006 0.012 0.015 0.006 0.005
Mixture
one

0.005 0.000 0.002 0.002 0.000 0.000 0.002 0.000 0.002 0.014 0.013 0.019 0.008 0.011 0.008 0.010 0.018 0.006

Mixture
two

0.006 0.002 0.000 0.002 0.001 0.002 0.003 0.001 0.004 0.012 0.014 0.010 0.013 0.013 0.019 0.018 0.009 0.010

0.001 1,000 Common 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.001 0.001 0.002 0.000 0.002 0.002 0.002
Rare 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.004 0.001
Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.001 0.000 0.001 0.000 0.002
Mixture
one

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.002 0.000 0.000 0.000
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of the LFDAT and Smoothed FLM at the significance level of
0.05, 0.01, and 0.001 for linkage equilibrium simulation. It can
be seen that LFDAT controls the type I error rates at each level
of significance. The type I error rates of rare gene regions and
low-frequency gene regions are lower than that of common
gene regions. The type I error rates of gene regions with more
common variants are generally higher than those with less
common variants. As the significance level increases, the type I
error rates of gene regions gradually decrease. For smaller
significance levels (α is 1e-4, 1e-5, and 1e-6), LFDAT still
performs well, and the type I error rates are all 0 (See
Supplementary Data S1). Compared with the type I error
rates of the LFDAT, the type I error rates of the Smoothed FLM
is severely inflated. It means that there are more false
associated gene regions with quantitative trait using the
Smoothed FLM method. Simulation studies have shown that
association analysis which combines the multiple
measurement of quantitative traits can reduce the type I
error rates.

3.1.2 Power
We randomly selected a 1 kb subregion from the SNP sequence
data set under the alternative hypothesis as the genotype data of
the variant region to measure the test power of LFDAT for the
gene regions. The generate phenotypic data is based on the
following model:

yi(t) � μ(t) +∑
s∈A

xisβs(t) + εi(t)

where xis is the genotype of the ith subject in sth genetic locus, A
denotes the collection of causal variants in simulated gene
regions, βs(t) is the genetic effect in sth variant at time point
t, t � 1, 2,/, 9, μ(t) � 1, εi(t) ∼ N(0, 1), and the time
correlation coefficient between each random error ρ is 0.5.

Consider the following scenarios for simulations: 1) the
proportion of causal variants in the gene regions is 1, 2, or
4%, and 2) the proportion of negative effects of causal variants
is 0, 20, 50%. Various processes in life activities are always
accompanied by the selective opening and closing of different
genes, and some genes are selectively expressed at a certain stage
of development. Based on this phenomenon, the following two
cases were considered for the time-varying function of the genetic
effect:

Case one. The time-varying function of the genetic effect is
β(s, t) � η(s) · θ(t), where η(s) � ln(c) × |log10(MAFs)|/2
(Wu et al., 2011; Lee et al., 2012; Chen et al., 2013; Fan
et al., 2013; Belonogova et al., 2018) is the genetic effect
function and θ(t) � 2 + 2 sin(πt/12) is the time effect
function. Then, MAFs is the minor allele frequency of sth
genetic locus. The constant c will directly affect the size of the
genetic effect function, which is set to 3, 5, or 7 in the
simulation.
Case two. The time-varying function of the genetic effect is
β(s, t) � η(s) · θ(t), where η(s) � ln(c) × |log10(MAFs)|/2 is
the genetic effect function and θ(t) � 2 + 2 sin(πt/2) is the
time effect function.T
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For each setting scenario, 1,000 genotype-phenotype data sets
are simulated. At the given significance level α, the ratio of
genotype-phenotype data sets with a p-value is less than α are
used as power. For each genotype-phenotype data set, the
variation area is the same for all individuals in the data set.
However, we allow the variation of different data sets to be
different.

Case One Simulation
We assess the test power of five gene regions under different
sample sizes (n � 1,000, 1,500, 2,000) by LFDAT, and the features
that result are the same for each sample size. All results of power
simulation can be seen Supplementary Data S1.

The figures of power based on LFDAT at nine time points are
also shown in Supplementary Data S1 for different significance
levels, constant c, the proportion of negative effects, and causal
variants. Figure 2 (Only show the power figures when c is 3 and a
sample size is 2000) show that the power of each time point is
different, which might be the unequal value of the time-varying
effect function at each time point. As constant c (See
Supplementary Data S1) and the proportion of causal
variants increase, the power also increases. However, as the
proportion of negative effects and significance levels increase,
the power gradually decreases. Overall, the power of the five gene
regions is higher. We find that whether it is common, rare or low-
frequency variants, as the genetic effects increase, the power of
testing gene region increases by simulation study. The proportion
of negative effects has a smaller impact on the power of mixture
gene region one than on the other four gene regions. It may be
that the effect values of rare variants are larger than that of
common variants, and the offset effects of mixture gene region
one are not as much as other regions. The LFDAT is applicable to
common variants, rare variants and low-frequency variants.

At the same time, we also compare the power of the LFDAT
and Smoothed FLM (See Supplementary Data S1). As the sample
size increases, the power increases. In Table 2 (Due to space
limitations, results of power are shown when significance level is
0.05, sample is 2000, c is 7, and proportion of causal variants is
1%), we can see that the power of the LFDAT is very close to that
of the Smoothed FLM. These results indicate that LFDAT can
reduce the probability of making the type I errors with keeping its
high power.

Case Two Simulation
In this case, the time effect function is θ(t) � 2 + 2 sin(πt/2). The
time effect is 0 at certain time points (t � 3 and t � 7). Therefore,
the genes do not express at time points 3 and 7. The rest of the
settings are the same as the case one simulation. All results of
power simulation can be seen Supplementary Data S2. The
setting of case two in Table 2 and Figure 2 are the same as
case one simulation. Figure 2 shows that the power based on
LFDAT is 0 at the time points 3 and 7 for five gene regions. It
means that the associated genes cannot be detected at these time
points. It further indicates that the LFDATmethod can accurately
detect the selective expression function of genes. Other features
and trends shown by these figures are consistent with the
simulation of case one. Similarly, we compare the power of

the LFDAT and Smoothed FLM for case two (See
Supplementary Data S1). In Table 2, the power of the
LFDAT is all 0 but the Smoothed FLM has weak power at
time points 3 and 7. It can be known from the results of
simulation that the performance of the LFDAT is stable in
different scenarios. It can detect gene switching more
accurately than the Smoothed FLM. While ensuring high
power, it can accurately identify whether genes are expressed.

3.1.3 Estimation of ISE0, ISE1, and PMSE
We estimate the three evaluation indicators of two cases for five
gene regions (See Supplementary Datas S1, S2), and we only
display results of case one and case two when c is 3 and a sample
size is 2000 in Table 3. In case one and case two simulations for
the five gene regions, the means of ISE0 and ISE1 with the gene
region of rare variants are the largest. Further, the means of PMSE
with the gene region of low-frequency variants are largest in five
gene regions. This indicates that LFDAT fits the time-varying
effect function better for smaller genetic variants effects. Given
the proportion of causal variants and the value of c, the change in
the proportion of negative effects has little effect on the means
and standard errors of ISE0, ISE1, and PMSE. Meanwhile, the
proportion of causal variants and c increases (See Supplementary
Datas S1, S2), and the means and the standard errors of ISE0 and
PMSE gradually increase, whereas the means and standard errors
of ISE1 decrease. The results of case two are smaller than that of
case one, which might be affected by gene switching. The time-
varying function of the genetic effect is null at a certain time point
in case one so that the difference between the estimated time-
varying function and the true time-varying function is smaller.

3.2 Linkage Disequilibrium Simulation
The measure of linkage disequilibrium is r2. It is randomly
generated from a uniform distribution U (a,b). The measure of
linkage disequilibrium between each SNP is not equal. We
consider two scenarios that the r2 is between 0.01 and 0.25,
and 0.25 and 0.64. Simulation settings of type I error rates and
power are the same as Section 3.1. All results of simulation can be
seen Supplementary Datas S3–S6. Due to space limitations and
the similar features and trends of the results of two scenarios, we
only display the partial results of second scenarios (r2 is between
0.25 and 0.64).

Table 4 shows the type I error rates of the LFDAT and
Smoothed FLM at the significance level of 0.05, 0.01, and
0.001 for linkage disequilibrium simulation. The part of power
results is shown in Table 5 (When significance level is 0.05,
sample is 2000, c is 7, and proportion of causal variants is 1%) and
Figure 3 (When sample is 2000, and c is 3). Type I error rates of
rare gene region and low-frequency gene region are still lower
than others. Type I error rates of the LFDAT is still lower than
that of the Smoothed FLM, and the type I error rates of the
Smoothed FLM is slightly inflated. It is verified once again that
the use of the multiple measurement of traits can reduce the
probability of making the type I errors. Power of linkage
disequilibrium is very high for two cases. Especially in case
one, power of five gene regions is 100% when the proportions
of the negative effect of causal variants are 0%, 20%. The power of
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linkage disequilibrium simulation has increased a lot compared
with linkage equilibrium simulation, which is due to consider the
overall effect together in gene region as loci correlation.

At the same time, we evaluate the three indicators of two cases
for five gene regions (See Supplementary Datas S3–S6), and here
we only display results of case one and case two when c is 3 in
Table 6 for second scenarios (r2 is between 0.25 and 0.64). Same
as linkage equilibrium simulation, the means of ISE0 and ISE1 of
rare gene region is largest and the means of PMSE of rare gene
region is smallest. This also verifies that LFDAT fits the time-
varying effect function better for smaller genetic effects of gene
regions.

3.3 Comparison of Simulation
Linkage equilibrium simulation and the two scenarios of linkage
disequilibrium simulation are compared and analyzed when
sample size is 1,500, constant c is 5, and the proportion of
casual variants is 2% (Tables 7–9). The characteristics of the
remaining simulation results are similar to that of above
simulation. In general, the type I error rates of the two
scenarios of linkage disequilibrium simulation is larger than
that of linkage equilibrium simulation. This is because the
increase in power will increase the type I error rates. From
results of two cases we can know that because the r2 measure
of linkage disequilibrium increase, the power also increases for
five gene regions. The power of linkage disequilibrium simulation
is significantly less affected by the proportion of negative effects

than that of linkage equilibrium simulation, which is also due to
the interaction between genes.

In two cases, as the r2 measure of linkage disequilibrium
increase, the means and standard errors of ISE0 of common
gene region, low-frequency gene region, and mixture gene region
two gradually decrease, and the standard errors of ISE1 of the five
gene regions decrease. The means of PMSE of common gene
region, rare gene region, and low-frequency gene region first
increase and then decrease, but the change is not large. These
phenomena may be caused by the fact that the fitting errors of the
LFDAT to the time-varying effect function gradually decreases as
the r2 measure of linkage disequilibrium increases. Although
LFDAT has a little bias for fitting of the time-varying effect
function, it does not affect its detection efficiency on a gene
region.

In general, LFDAT performs well for both linkage equilibrium
and linkage disequilibrium simulations, and has a lower type I
error rates with a higher power for gene regions.

4 APPLICATION TO PSA DATA SET

We apply LFDAT to a longitudinal data set (Campbell et al.,
2018) of an Oryza sativa projected shoot area (PSA) to
demonstrate the applicability of LFDAT. That data set selected
378 lines of RDP1 (Zhao et al., 2011). All experiments were
carried on at the Plant Accelerator in the Australian Plant

FIGURE 2 | Power of linkage equilibrium’s case one and case two based on LFDAT for the five gene regions when c is 3, and sample size is 2000. The (A–C)
denotes the power results of case one. The (D–F) denotes the power results of case two. The time effect function is θ(t) � 2 + 2 sin(πt/12) for case one, and
θ(t) � 2 + 2 sin(πt/2) for case two. (A) Proportion of causal variants is 1% (B) Proportion of causal variants is 2% (C) Proportion of causal variants is 4%. (D) Proportion of
causal variants is 1% (E) Proportion of causal variants is 2% (F) Proportion of causal variants is 4%. Note: Common region denotes gene regions only with common
variants, Rare region denotes gene regions only with rare variants, Low region denotes gene regions only with low-frequency variants, Mixture region one denotes gene
regions with 20% of common variants and 80%of rare variants, and theMixture region two denotes gene regions with 80% of common variants and 20%of rare variants.
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TABLE 2 | The power of linkage equilibrium simulation based on LFDA and Smoothed FLM at significance level of 0.05 when sample size is 2000, c is 7 and proportion of causal variants is 1%.

Proportion
of negative

effects
(%)

Gene
region

LFDA Smoothed FLM

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

Case 1 0 Common 0.982 0.987 0.990 0.989 0.989 0.989 0.991 0.989 0.987 0.983 0.989 0.990 0.990 0.991 0.990 0.992 0.989 0.987
Rare 0.976 0.985 0.992 0.991 0.989 0.992 0.993 0.991 0.992 0.984 0.991 0.992 0.992 0.993 0.993 0.994 0.993 0.993
Low 0.990 0.991 0.992 0.992 0.992 0.995 0.993 0.995 0.993 0.992 0.991 0.992 0.992 0.992 0.995 0.995 0.996 0.994
Mixture one 0.908 0.915 0.924 0.937 0.934 0.931 0.932 0.931 0.925 0.916 0.922 0.932 0.940 0.937 0.934 0.938 0.938 0.929
Mixture two 0.979 0.974 0.984 0.984 0.981 0.986 0.986 0.986 0.983 0.979 0.977 0.984 0.985 0.983 0.988 0.987 0.988 0.985

20 Common 0.913 0.921 0.931 0.925 0.923 0.931 0.934 0.929 0.934 0.913 0.924 0.933 0.927 0.927 0.932 0.936 0.929 0.935
Rare 0.921 0.941 0.960 0.959 0.964 0.964 0.968 0.962 0.952 0.941 0.953 0.967 0.970 0.975 0.970 0.972 0.967 0.968
Low 0.945 0.948 0.959 0.962 0.962 0.958 0.964 0.960 0.954 0.951 0.954 0.961 0.963 0.963 0.961 0.965 0.963 0.960
Mixture one 0.884 0.883 0.898 0.906 0.899 0.909 0.898 0.896 0.901 0.893 0.896 0.902 0.914 0.910 0.915 0.906 0.901 0.903
Mixture two 0.941 0.944 0.948 0.950 0.955 0.951 0.953 0.953 0.950 0.944 0.951 0.955 0.954 0.955 0.952 0.957 0.955 0.951

50 Common 0.843 0.867 0.874 0.883 0.878 0.880 0.877 0.876 0.877 0.846 0.877 0.877 0.887 0.884 0.886 0.885 0.877 0.881
Rare 0.860 0.888 0.894 0.909 0.915 0.920 0.915 0.909 0.903 0.895 0.906 0.912 0.926 0.928 0.932 0.925 0.920 0.924
Low 0.887 0.912 0.916 0.916 0.916 0.920 0.916 0.911 0.912 0.897 0.916 0.918 0.926 0.924 0.922 0.917 0.919 0.915
Mixture one 0.833 0.853 0.859 0.866 0.870 0.870 0.877 0.866 0.863 0.846 0.859 0.866 0.875 0.876 0.876 0.880 0.873 0.867
Mixture two 0.870 0.889 0.899 0.902 0.896 0.900 0.899 0.896 0.899 0.878 0.895 0.905 0.908 0.905 0.903 0.901 0.900 0.905

Case 2 0 Common 0.986 0.971 0.000 0.967 0.933 0.968 0.000 0.973 0.987 0.991 0.98 0.063 0.97 0.99 0.972 0.047 0.98 0.989
Rare 0.979 0.950 0.000 0.949 0.972 0.939 0.000 0.947 0.982 0.995 0.972 0.058 0.971 0.994 0.963 0.055 0.972 0.993
Low 0.99 0.985 0.000 0.986 0.962 0.977 0.000 0.981 0.991 0.993 0.989 0.063 0.989 0.992 0.982 0.05 0.984 0.992
Mixture one 0.894 0.85 0.000 0.852 0.819 0.849 0.000 0.855 0.891 0.912 0.877 0.043 0.872 0.911 0.871 0.047 0.886 0.917
Mixture two 0.977 0.952 0.000 0.959 0.922 0.961 0.000 0.961 0.975 0.981 0.967 0.051 0.968 0.981 0.967 0.046 0.968 0.979

20 Common 0.924 0.879 0.000 0.881 0.787 0.882 0.000 0.88 0.921 0.94 0.908 0.051 0.896 0.938 0.899 0.057 0.906 0.932
Rare 0.919 0.881 0.000 0.876 0.892 0.884 0.000 0.882 0.924 0.971 0.925 0.05 0.913 0.967 0.917 0.045 0.923 0.968
Low 0.941 0.92 0.000 0.931 0.85 0.933 0.000 0.928 0.945 0.965 0.94 0.056 0.94 0.965 0.942 0.055 0.942 0.964
Mixture one 0.878 0.839 0.000 0.828 0.803 0.832 0.000 0.83 0.876 0.909 0.865 0.05 0.858 0.907 0.861 0.052 0.857 0.906
Mixture two 0.933 0.896 0.000 0.907 0.827 0.904 0.000 0.907 0.934 0.95 0.915 0.052 0.916 0.947 0.915 0.046 0.919 0.948

50 Common 0.852 0.809 0.000 0.811 0.686 0.804 0.000 0.81 0.855 0.884 0.837 0.039 0.838 0.886 0.83 0.043 0.844 0.89
Rare 0.838 0.796 0.000 0.793 0.794 0.799 0.000 0.791 0.852 0.921 0.857 0.053 0.838 0.928 0.852 0.059 0.842 0.928
Low 0.88 0.874 0.000 0.873 0.771 0.888 0.000 0.859 0.889 0.929 0.897 0.042 0.891 0.926 0.907 0.048 0.895 0.93
Mixture one 0.861 0.817 0.000 0.827 0.778 0.827 0.000 0.815 0.859 0.892 0.858 0.058 0.856 0.895 0.851 0.057 0.852 0.888
Mixture two 0.891 0.847 0.000 0.844 0.749 0.856 0.000 0.84 0.883 0.909 0.87 0.037 0.864 0.916 0.879 0.047 0.877 0.911

Note: Common denotes gene regions only with common variants, Rare denotes gene regions only with rare variants, Low denotes gene regions only with low-frequency variants, Mixture one denotes gene regions with 20% of common
variants and 80% of rare variants, and Mixture two denotes gene regions with 80% of common variants and 20% of rare variants.
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TABLE 3 | The means and standard errors (in the parenthesis) of three indicators based on LFDA for linkage equilibrium simulation when sample size is 2000, c is 3

Proportion
of causal
variants

(%)

Proportion
of negative

effects
(%)

ISE0 ISE1 PMSE

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Case
1

1 0 0.021 0.240 0.125 0.075 0.022 2.127 26.648 11.445 22.246 7.017 5.509 2.878 5.772 3.394 5.027
(0.029) (0.314) (0.170) (0.113) (0.032) (0.610) (3.242) (1.263) (4.131) (3.378) (0.568) (0.245) (0.305) (0.448) (0.618)

20 0.020 0.239 0.135 0.071 0.023 2.135 26.966 11.596 22.288 7.116 5.516 2.888 5.810 3.420 4.992
(0.028) (0.354) (0.176) (0.110) (0.030) (0.583) (3.127) (1.347) (4.128) (3.226) (0.567) (0.243) (0.312) (0.452) (0.585)

50 0.021 0.224 0.136 0.071 0.025 2.167 27.160 11.647 22.405 7.353 5.553 2.899 5.809 3.429 4.980
(0.028) (0.330) (0.183) (0.111) (0.032) (0.573) (3.247) (1.316) (4.060) (3.519) (0.536) (0.245) (0.325) (0.459) (0.609)

2 0 0.042 0.473 0.266 0.153 0.050 4.560 57.106 24.532 47.390 15.375 10.701 5.029 11.252 6.190 9.565
(0.056) (0.608) (0.375) (0.238) (0.063) (1.176) (7.101) (2.663) (9.112) (7.599) (1.163) (0.501) (0.689) (0.970) (1.296)

20 0.042 0.444 0.306 0.146 0.046 4.580 57.847 24.641 47.954 15.174 10.714 5.066 11.337 6.166 9.609
(0.058) (0.665) (0.412) (0.235) (0.058) (1.238) (7.153) (2.809) (8.801) (7.187) (1.168) (0.525) (0.676) (0.968) (1.277)

50 0.042 0.473 0.297 0.140 0.052 4.618 58.338 24.984 48.150 15.305 10.743 5.048 11.363 6.160 9.589
(0.055) (0.646) (0.404) (0.202) (0.070) (1.265) (6.747) (2.739) (9.142) (7.503) (1.188) (0.517) (0.685) (1.008) (1.328)

4 0 0.058 0.691 0.394 0.212 0.076 6.653 83.587 35.623 69.951 22.251 15.127 6.882 16.001 8.452 13.489
(0.086) (0.983) (0.510) (0.329) (0.107) (1.730) (10.062) (4.284) (12.158) (10.635) (1.739) (0.757) (1.011) (1.261) (1.861)

20 0.059 0.677 0.426 0.226 0.068 6.766 84.347 36.388 70.579 22.052 15.279 6.942 16.071 8.516 13.565
(0.084) (0.984) (0.556) (0.358) (0.094) (1.877) (9.980) (4.281) (12.590) (10.306) (1.787) (0.770) (1.015) (1.408) (1.836)

50 0.058 0.608 0.413 0.177 0.073 6.827 85.606 36.675 70.777 23.065 15.242 6.919 16.126 8.542 13.488
(0.078) (0.781) (0.592) (0.264) (0.102) (1.868) (10.091) (4.380) (12.597) (11.529) (1.726) (0.769) (0.964) (1.387) (1.938)

Case
2

1 0 0.009 0.104 0.058 0.028 0.010 1.185 15.102 6.505 12.644 4.087 3.533 2.077 3.717 2.341 3.241
(0.012) (0.144) (0.073) (0.038) (0.013) (0.315) (1.666) (0.670) (2.355) (2.006) (0.312) (0.140) (0.183) (0.253) (0.346)

20 0.008 0.108 0.056 0.030 0.010 1.197 15.315 6.568 12.569 4.064 3.559 2.076 3.725 2.375 3.258
(0.010) (0.147) (0.079) (0.046) (0.013) (0.330) (1.683) (0.650) (2.257) (1.901) (0.324) (0.142) (0.184) (0.255) (0.351)

50 0.009 0.104 0.056 0.030 0.009 1.192 15.240 6.553 12.618 3.877 3.534 2.091 3.749 2.369 3.282
(0.011) (0.137) (0.076) (0.049) (0.014) (0.331) (1.670) (0.701) (2.390) (1.885) (0.321) (0.138) (0.195) (0.263) (0.342)

2 0 0.018 0.196 0.128 0.061 0.020 2.574 32.611 13.920 26.987 8.521 6.470 3.297 6.832 3.948 5.866
(0.025) (0.262) (0.167) (0.092) (0.028) (0.696) (3.627) (1.367) (4.893) (4.069) (0.685) (0.280) (0.384) (0.542) (0.726)

20 0.018 0.188 0.117 0.067 0.019 2.626 32.912 14.042 26.612 8.770 6.515 3.302 6.859 3.982 5.859
(0.024) (0.267) (0.167) (0.111) (0.025) (0.712) (3.757) (1.324) (4.753) (4.163) (0.669) (0.313) (0.390) (0.520) (0.713)

50 0.019 0.197 0.122 0.066 0.021 2.570 32.996 14.117 27.021 8.695 6.479 3.308 6.886 3.957 5.858
(0.026) (0.272) (0.170) (0.106) (0.031) (0.691) (3.549) (1.557) (4.992) (4.238) (0.667) (0.301) (0.398) (0.542) (0.755)

4 0 0.024 0.293 0.162 0.080 0.030 3.742 47.563 20.455 39.247 13.014 8.974 4.364 9.521 5.261 7.990
(0.033) (0.394) (0.224) (0.135) (0.042) (1.029) (5.306) (2.079) (7.110) (6.094) (0.976) (0.422) (0.568) (0.780) (1.046)

20 0.024 0.284 0.168 0.090 0.028 3.791 47.697 20.684 39.809 12.961 9.038 4.405 9.541 5.266 8.105
(0.031) (0.355) (0.230) (0.136) (0.040) (1.006) (5.391) (2.106) (7.001) (5.980) (0.936) (0.436) (0.565) (0.787) (1.048)

50 0.024 0.292 0.161 0.096 0.030 3.813 48.092 20.674 39.038 12.581 9.070 4.391 9.587 5.376 8.141
(0.033) (0.424) (0.232) (0.162) (0.040) (1.006) (5.468) (2.026) (6.924) (6.147) (0.999) (0.437) (0.588) (0.816) (1.062)

Note: Common region denotes gene regions only with common variants, Rare region denotes gene regions only with rare variants, Low-frequency region denotes gene regions only with low-frequency variants, Mixture region one denotes
gene regions with 20% of common variants and 80% of rare variants, and the Mixture region two denotes gene regions with 80% of common variants and 20% of rare variants.
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TABLE 4 | Type Ⅰ error rates of LFDA and Smoothed FLM based on 1,000 simulated replicates for linkage disequilibrium simulation.

α Sample
size

Gene
region

LFDA Smoothed FLM

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

0.05 1,000 Common 0.029 0.009 0.019 0.010 0.010 0.014 0.010 0.010 0.028 0.052 0.041 0.059 0.043 0.049 0.049 0.044 0.034 0.041
Rare 0.010 0.005 0.005 0.008 0.005 0.004 0.005 0.008 0.010 0.041 0.054 0.051 0.051 0.056 0.052 0.056 0.047 0.048
Low 0.018 0.007 0.008 0.002 0.009 0.005 0.009 0.006 0.021 0.034 0.048 0.047 0.044 0.045 0.044 0.061 0.055 0.042
Mixture
one

0.030 0.014 0.011 0.007 0.003 0.006 0.003 0.003 0.032 0.051 0.055 0.053 0.043 0.040 0.046 0.042 0.043 0.053

Mixture
two

0.032 0.010 0.011 0.013 0.011 0.016 0.009 0.017 0.036 0.048 0.033 0.049 0.043 0.053 0.060 0.058 0.055 0.052

1,500 Common 0.036 0.009 0.010 0.011 0.008 0.011 0.015 0.009 0.033 0.062 0.048 0.057 0.049 0.044 0.043 0.057 0.050 0.049
Rare 0.010 0.004 0.003 0.004 0.004 0.005 0.002 0.005 0.010 0.049 0.050 0.041 0.047 0.056 0.044 0.044 0.044 0.056
Low 0.015 0.007 0.004 0.004 0.008 0.008 0.006 0.008 0.021 0.048 0.056 0.041 0.053 0.069 0.050 0.054 0.051 0.055
Mixture
one

0.034 0.013 0.012 0.005 0.009 0.007 0.008 0.009 0.039 0.057 0.055 0.058 0.061 0.056 0.039 0.050 0.045 0.064

Mixture
two

0.035 0.007 0.015 0.008 0.011 0.019 0.010 0.016 0.039 0.052 0.042 0.053 0.044 0.052 0.055 0.050 0.061 0.057

2000 Common 0.032 0.020 0.016 0.011 0.018 0.015 0.020 0.019 0.043 0.046 0.054 0.041 0.045 0.057 0.052 0.048 0.060 0.054
Rare 0.019 0.003 0.007 0.004 0.008 0.007 0.011 0.011 0.017 0.048 0.047 0.054 0.045 0.057 0.062 0.045 0.048 0.055
Low 0.016 0.015 0.010 0.007 0.006 0.006 0.008 0.008 0.023 0.043 0.051 0.052 0.039 0.055 0.055 0.038 0.039 0.044
Mixture
one

0.023 0.006 0.007 0.007 0.012 0.003 0.011 0.007 0.026 0.053 0.047 0.043 0.055 0.065 0.059 0.064 0.045 0.048

Mixture
two

0.036 0.014 0.016 0.018 0.014 0.017 0.017 0.018 0.036 0.052 0.054 0.058 0.048 0.049 0.048 0.047 0.059 0.050

0.01 1,000 Common 0.006 0.004 0.002 0.003 0.003 0.006 0.001 0.001 0.003 0.014 0.010 0.018 0.012 0.013 0.013 0.006 0.007 0.005
Rare 0.001 0.002 0.001 0.000 0.001 0.002 0.001 0.003 0.004 0.009 0.008 0.008 0.012 0.008 0.011 0.010 0.014 0.011
Low 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.004 0.009 0.010 0.002 0.011 0.007 0.012 0.004 0.008
Mixture
one

0.008 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.006 0.016 0.017 0.010 0.011 0.007 0.010 0.003 0.004 0.013

Mixture
two

0.008 0.002 0.002 0.003 0.002 0.001 0.000 0.002 0.007 0.012 0.007 0.012 0.011 0.010 0.013 0.011 0.016 0.011

1,500 Common 0.005 0.001 0.001 0.002 0.002 0.001 0.001 0.000 0.006 0.013 0.008 0.010 0.011 0.008 0.008 0.012 0.009 0.008
Rare 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.002 0.009 0.009 0.005 0.014 0.014 0.009 0.005 0.011 0.014
Low 0.004 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.003 0.007 0.010 0.005 0.010 0.009 0.010 0.015 0.012 0.008
Mixture
one

0.006 0.003 0.001 0.000 0.002 0.000 0.001 0.002 0.008 0.013 0.015 0.012 0.010 0.018 0.009 0.007 0.014 0.018

Mixture
two

0.006 0.001 0.002 0.002 0.003 0.003 0.003 0.001 0.007 0.010 0.005 0.014 0.008 0.014 0.013 0.007 0.009 0.009

2000 Common 0.009 0.002 0.004 0.001 0.002 0.003 0.004 0.001 0.007 0.011 0.013 0.012 0.005 0.011 0.011 0.018 0.013 0.011
Rare 0.003 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.004 0.013 0.004 0.010 0.007 0.012 0.012 0.017 0.010 0.013
Low 0.005 0.002 0.000 0.000 0.001 0.001 0.001 0.000 0.004 0.009 0.015 0.009 0.010 0.009 0.011 0.006 0.010 0.010
Mixture
one

0.003 0.001 0.001 0.001 0.003 0.001 0.002 0.002 0.005 0.007 0.005 0.008 0.013 0.018 0.003 0.012 0.012 0.013

Mixture
two

0.011 0.002 0.003 0.004 0.004 0.002 0.003 0.001 0.004 0.013 0.007 0.012 0.013 0.009 0.012 0.012 0.012 0.011

0.001 1,000 Common 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.002 0.001 0.005 0.001 0.002 0.001
Rare 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.002 0.001 0.002 0.001 0.004 0.002
Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.003 0.001 0.001 0.001 0.000
Mixture
one

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.003 0.000 0.001 0.000 0.000 0.000 0.001

(Continued on following page)
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Phenomics Facility at the University of Adelaide, SA, Australia.
The experiments were repeated three times from February to
April 2016. For details of the experimental design, see Campbell
et al. (2018). Briefly, we first transplanted three uniformly
germinated seedlings into pots. Seven days after the transplant
(DAT), the plants were thinned to one seedling per pot. The
plants were imaged daily from 13 to 33 DAT using a red-green-
blue camera from two side-view angles, separated by 90° and a
single top view. Each experiment adopted a partially replicated
design with 54 lines selected randomly, and they were repeated
twice. Three experiments produced 73,537 images, and “Plant
pixels” were extracted from RGB images using the LemnaGrid
software. The sum of the “plant pixels” extracted from the three
RGB images is used as an indicator to measure shoot biomass.
This indicator is referred to as PSA. PSA has been proved to be an
accurate expression of shoot biomass (Golzarian et al., 2011;
Campbell et al., 2015; Knecht et al., 2016), which can describe the
morphology and dynamic growth of plants.

The first set of data from the first repeated experiment is
selected as the phenotypic data, and samples with missing values
are eliminated. The 350 samples remaining are used for the
subsequent analysis. The development trajectories of the shoot
biomass are shown in Figure 4, with the shoot biomass
trajectories for all individuals indicated in the background.
The genotype data contains a total of 36,901 markers on 12
chromosomes. The missing genotype is estimated, and SNPs with
a minimum allele frequency of less than 0.005 are deleted. Finally,
36,058 SNPs remained. In order to be consistent with the results
of Campbell et al. (2015), we treat each chromosome as a gene
region for the association analysis. The number of SNPs and the
p-value of the association analysis of each gene region are shown
in Table 10. The correlation coefficients between the measured
traits at each time point are close to one. Significant SNP sites
have been identified on each chromosome. Further, the SNP sites
of chromosome 3 are more significant. In the type I error rates
simulation, it can be seen from Table 1 that the type I error rates
is low, which indicates that the LFDAT method is less likely to
identify false gene region. Therefore, the detection of the
significant SNPs on each chromosome is basically credible in
our study, which is consistent with the results of Campbell et al.
(2015). However, significant SNP sites were not detected at the
first two time points. It may be that the PSA growth trajectory is
exponentially increasing, and the value is too large, leading to the
variation range of PSA being too small at the first and second time
points. Then, the difference between the rice populations cannot
be identified.

The calculation of the whole process was taken 15 s on the
Intel Core 3.40 GHz CPU. This result indicates that the genetic
region association analysis method based on the LFDAT method
is computationally feasible.

5 DISCUSSION

Considering the association analysis of quantitative traits at
multiple time points, it is possible to better observe the
influence of time-changing genes on quantitative traits.T
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TABLE 5 | The power of linkage disequilibrium simulation based on LFDA and Smoothed FLM at significance level of 0.05 when sample size is 2000, c is 7 and proportion of causal variants is 1%.

Proportion
of negative

effects
(%)

Gene
region

LFDA Smoothed FLM

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

Case 1 0 Common 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Rare 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture one 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture two 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 Common 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Rare 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture one 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture two 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 Common 0.999 0.999 0.999 1.000 1.000 0.999 0.999 1.000 0.999 0.999 0.999 0.999 1.000 1.000 0.999 0.999 1.000 0.999
Rare 0.997 0.999 1.000 0.999 1.000 0.999 0.999 0.999 1.000 0.997 0.999 1.000 1.000 1.000 0.999 0.999 0.999 1.000
Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture one 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture two 0.999 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999

Case 2 0 Common 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.052 1.000 1.000 1.000 0.060 1.000 1.000
Rare 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.051 1.000 1.000 1.000 0.049 1.000 1.000
Low 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.042 1.000 1.000 1.000 0.049 1.000 1.000
Mixture one 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.058 1.000 1.000 1.000 0.043 1.000 1.000
Mixture two 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.057 1.000 1.000 1.000 0.051 1.000 1.000

20 Common 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 0.048 1.000 1.000
Rare 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.049 1.000 1.000 1.000 0.044 1.000 1.000
Low 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.060 1.000 1.000 1.000 0.065 1.000 1.000
Mixture one 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 0.063 1.000 1.000
Mixture two 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 0.041 1.000 1.000

50 Common 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.051 1.000 1.000 1.000 0.054 1.000 1.000
Rare 0.998 0.994 0.000 0.998 0.998 0.998 0.000 0.996 0.998 0.998 0.996 0.052 0.998 0.998 0.998 0.044 0.999 0.998
Low 1.000 1.000 0.000 1.000 0.999 1.000 0.000 1.000 1.000 1.000 1.000 0.052 1.000 1.000 1.000 0.054 1.000 1.000
Mixture one 1.000 0.999 0.000 1.000 0.999 0.998 0.000 0.999 1.000 1.000 0.999 0.061 1.000 1.000 0.998 0.054 1.000 1.000
Mixture two 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 0.058 1.000 1.000

Note: (i) The r2 measure of linkage disequilibrium is between 0.25 and 0.64; (ii) Common denotes gene regions only with common variants, Rare denotes gene regions only with rare variants, Low denotes gene regions only with low-frequency
variants, Mixture one denotes gene regions with 20% of common variants and 80% of rare variants, and Mixture two denotes gene regions with 80% of common variants and 20% of rare variants.
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Further, longitudinal trait research based on gene regions can
improve the power. We propose the LFDAT method and that the
function-on-function regression model is applied to detect the
association between gene regions and longitudinal traits. This can
simultaneously lead to continuous phenotypic traits and marker
information and make full use of the information carried by the
traits to explore the influence of genes on longitudinal traits.
Compared with other dynamic association analysis methods, the
LFDAT method considers the genetic effects of variants in the
entire gene region and the time effects of genes. It can also
accurately detect the selective expression function of genes. The
gene region association analysis based on the LFDATmethod has
few restrictions on the direction of gene effects, low
computational cost, fast detection speed, low false positives,
and high power. It further has a stronger explanatory for the
effect of genes on the quantitative traits concerning time.

We consider linkage equilibrium simulation and linkage
disequilibrium simulation, the powers of the five gene regions
are compared to prove the feasibility of LFDAT for a longitudinal
trait association analysis in two simulation studies. At the same
time, two cases are set for the time-varying function of the genetic
effects to explore whether LFDAT can detect the selective
expression of genes at different time points. The simulated
results show that LFDAT has a lower type I error rates and
higher power on the association analysis of the five gene regions
and can accurately detect the selective expression of genes in two

simulations. In addition, different settings for the variance and
correlation coefficient of the random error are simulated. When
the variance is 25, compared with the variance of 1, the powers of
linkage equilibrium and linkage disequilibrium are significantly
reduced, three indicators of linkage disequilibrium increase, and
ISE0 and PMSE of linkage equilibrium increase. However, ISE1 of
linkage equilibrium decrease. When the correlation coefficient is
0.95, compared with the correlation coefficient of 0.5, power of
linkage disequilibrium increase, and three indicators of linkage
disequilibrium decrease, however the changes of power and three
indicators of linkage equilibrium are not obvious.

For the continuous effect function, we try to plot the figure the
estimated time-varying function of the genetic effect in linkage
equilibrium and linkage disequilibrium simulation at first time
point, in which time effect function and genetic effect function are
fixed to constants and causal variants are 55, 66, 77, 88, 99, 110,
121, 132, 143, and 154-th SNP respectively. We find that the
fitting of the time-varying function of the genetic effect in the
linkage disequilibrium simulation is smoother than that of the
linkage equilibrium simulation in most figures (As shown in
Supplementary Data S7). This is because there is an association
between each SNP, which makes the fitting of the time-varying
function more constrained. Furthermore, Haseman and Elston
(1972) proposed a linear model for detecting linkage between a
marker and a QTL in a full-sib design. Then, the mathematical
expectation of the regression coefficient is expressed by the

FIGURE 3 | Power of linkage disequilibrium’s case one and case two based on LFDAT for the five gene regions when c is 3, and sample size is 2000. The (A–C)
denotes the power results of case one. The (D–F) denotes the power results of case two. The time effect function is θ(t) � 2 + 2 sin(πt/12) for case one, and
θ(t) � 2 + 2 sin(πt/2) for case two. Case one: (A) Proportion of causal variants is 1% (B) Proportion of causal variants is 2% (C) Proportion of causal variants is 4%. Case
two: (D) Proportion of causal variants is 1% (E) Proportion of causal variants is 2% (F) Proportion of causal variants is 4%. Note: The r2 measure of linkage
disequilibrium is 0.25 to 0.64; Common region denotes gene regions only with common variants, Rare region denotes gene regions only with rare variants, Low region
denotes gene regions only with low-frequency variants, Mixture region one denotes gene regions with 20% of common variants and 80%of rare variants, and theMixture
region two denotes gene regions with 80% of common variants and 20% of rare variants.
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TABLE 6 | The means and standard errors (in the parenthesis) of three indicators based on LFDA for linkage disequilibrium simulation when sample size is 2000, c is 3

Proportion
of causal
variants

(%)

Proportion
of negative

effects
(%)

ISE0 ISE1 PMSE

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Case
1

1 0 0.014 0.215 0.097 0.076 0.018 1.500 24.640 10.842 10.978 2.220 5.262 2.822 5.603 5.492 5.897
(0.021) (0.286) (0.128) (0.109) (0.023) (0.200) (1.945) (0.866) (2.210) (0.424) (0.405) (0.167) (0.299) (0.514) (0.466)

20 0.012 0.220 0.096 0.071 0.018 1.522 24.998 10.966 11.203 2.226 5.258 2.821 5.660 5.500 5.928
(0.017) (0.305) (0.136) (0.098) (0.025) (0.219) (2.132) (0.836) (2.241) (0.410) (0.411) (0.170) (0.318) (0.524) (0.459)

50 0.014 0.201 0.103 0.072 0.018 1.545 25.089 11.083 11.206 2.243 5.303 2.831 5.645 5.520 5.933
(0.019) (0.291) (0.139) (0.101) (0.026) (0.214) (1.918) (0.837) (2.293) (0.433) (0.414) (0.168) (0.319) (0.527) (0.467)

2 0 0.029 0.427 0.209 0.154 0.038 3.262 52.701 23.190 23.840 4.727 10.148 4.903 10.905 10.629 11.507
(0.038) (0.588) (0.285) (0.223) (0.055) (0.478) (4.013) (1.631) (5.010) (0.917) (0.882) (0.361) (0.665) (1.164) (0.977)

20 0.030 0.469 0.209 0.159 0.039 3.312 53.610 23.556 24.294 4.814 10.226 4.929 10.975 10.589 11.605
(0.042) (0.679) (0.275) (0.219) (0.058) (0.473) (3.914) (1.711) (4.985) (0.976) (0.840) (0.348) (0.657) (1.153) (1.010)

50 0.028 0.449 0.208 0.163 0.039 3.312 53.686 23.834 24.057 4.820 10.257 4.973 11.011 10.697 11.639
(0.041) (0.625) (0.321) (0.223) (0.053) (0.478) (4.070) (2.070) (4.988) (0.927) (0.894) (0.346) (0.680) (1.157) (0.957)

4 0 0.041 0.713 0.302 0.252 0.053 4.770 77.248 33.976 34.620 6.915 14.435 6.714 15.535 15.082 16.429
(0.053) (0.970) (0.415) (0.376) (0.073) (0.674) (6.265) (2.621) (7.464) (1.333) (1.259) (0.520) (0.985) (1.629) (1.400)

20 0.042 0.671 0.318 0.240 0.050 4.829 78.215 34.583 35.011 7.012 14.472 6.774 15.571 15.114 16.459
(0.058) (0.941) (0.426) (0.331) (0.070) (0.701) (6.598) (3.307) (7.349) (1.386) (1.250) (0.526) (0.949) (1.763) (1.368)

50 0.042 0.637 0.310 0.241 0.052 4.817 78.831 34.598 35.228 7.045 14.468 6.787 15.662 15.237 16.546
(0.059) (0.932) (0.428) (0.354) (0.071) (0.692) (6.105) (2.502) (7.163) (1.380) (1.282) (0.525) (0.989) (1.659) (1.381)

Case
2

1 0 0.006 0.091 0.041 0.029 0.007 0.878 13.948 6.194 6.516 1.312 3.476 2.069 3.661 3.548 3.855
(0.008) (0.129) (0.056) (0.039) (0.009) (0.107) (0.906) (0.392) (1.372) (0.264) (0.221) (0.100) (0.187) (0.330) (0.259)

20 0.006 0.092 0.040 0.027 0.007 0.880 14.068 6.257 6.589 1.320 3.480 2.066 3.662 3.523 3.870
(0.008) (0.116) (0.057) (0.039) (0.010) (0.109) (1.015) (0.367) (1.412) (0.248) (0.226) (0.101) (0.188) (0.318) (0.247)

50 0.006 0.089 0.041 0.027 0.007 0.884 14.164 6.311 6.522 1.351 3.471 2.066 3.666 3.538 3.878
(0.009) (0.120) (0.053) (0.037) (0.010) (0.114) (0.923) (0.398) (1.332) (0.310) (0.226) (0.102) (0.176) (0.305) (0.262)

2 0 0.013 0.190 0.087 0.053 0.016 1.864 29.977 13.332 13.878 2.856 6.275 3.292 6.697 6.461 7.146
(0.019) (0.246) (0.110) (0.074) (0.022) (0.233) (1.974) (0.810) (2.794) (0.626) (0.467) (0.203) (0.370) (0.658) (0.561)

20 0.013 0.194 0.088 0.053 0.016 1.892 30.220 13.441 13.989 2.892 6.319 3.292 6.688 6.461 7.146
(0.018) (0.269) (0.121) (0.074) (0.022) (0.244) (1.954) (0.747) (2.993) (0.688) (0.471) (0.208) (0.393) (0.702) (0.570)

50 0.013 0.204 0.087 0.059 0.017 1.895 30.472 13.560 14.027 2.873 6.320 3.288 6.696 6.446 7.179
(0.018) (0.298) (0.114) (0.082) (0.023) (0.244) (2.134) (0.865) (2.908) (0.609) (0.480) (0.209) (0.386) (0.670) (0.535)

4 0 0.019 0.261 0.125 0.081 0.022 2.727 43.856 19.508 20.433 4.123 8.745 4.354 9.340 8.970 9.984
(0.029) (0.347) (0.169) (0.118) (0.030) (0.343) (2.944) (1.198) (4.177) (0.816) (0.703) (0.293) (0.540) (0.949) (0.804)

20 0.019 0.260 0.119 0.089 0.021 2.759 44.145 19.702 20.322 4.214 8.754 4.347 9.334 9.022 10.045
(0.025) (0.346) (0.155) (0.129) (0.027) (0.350) (2.815) (1.187) (4.260) (0.853) (0.698) (0.296) (0.565) (0.984) (0.796)

50 0.018 0.289 0.127 0.077 0.022 2.775 44.346 19.757 20.320 4.224 8.802 4.355 9.374 9.003 10.032
(0.024) (0.442) (0.185) (0.105) (0.030) (0.344) (2.867) (1.210) (4.165) (0.973) (0.716) (0.299) (0.543) (0.975) (0.791)

Note: (i) The r2 measure of linkage disequilibrium is between 0.25 and 0.64; (ii) Common region denotes gene regions only with common variants, Rare region denotes gene regions only with rare variants, Low-frequency region denotes gene
regions only with low-frequency variants, Mixture region one denotes gene regions with 20% of common variants and 80% of rare variants, and the Mixture region two denotes gene regions with 80% of common variants and 20% of rare
variants.
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additive genetic variance of the QTL. Chen (2014, 2016) proposed
that variance component methods, such as the Haseman-Elston
(HE) regression and the linear mixed model (LMM), provide
valid estimate of heritability based gene effect in GWAS data for
complex traits. The estimated heritability may reveal the genetic
architecture underlying a complex trait. For the study about
between the heritability and the continuous effect function
within a gene region based on functional data analysis, there is
currently no relevant research in this field. In the future, we will
conduct in-depth research in this direction.

Of course, LFDA that converts gene loci into continuous
variables has some shortcomings. First, the covariates,
population structure, and locus weights are not considered. In
gene regions, the weak effects of rare variants are difficult to find,
making it challenging to identify the gene regions of rare variants.
The common solution is to assign different weights to different
types of variants. In the research on LSKAT and LBT methods
proposed by Wang et al. (2017), covariates and population
structures were considered, and common and rare variants
were given different weights. We sought to study the growth

TABLE 7 | Compare the type Ⅰ error rates of linkage equilibrium and linkage disequilibrium simulation based on LFDAT when sample size is 1,500.

α Simulation Gene
region

LFDA

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

0.05 LE Common 0.025 0.009 0.002 0.010 0.005 0.009 0.007 0.009 0.027
Rare 0.012 0.004 0.000 0.002 0.000 0.003 0.005 0.002 0.007
Low 0.019 0.006 0.011 0.008 0.002 0.006 0.004 0.013 0.017
Mixture one 0.013 0.010 0.006 0.002 0.000 0.008 0.002 0.006 0.021
Mixture two 0.031 0.014 0.009 0.012 0.005 0.007 0.010 0.010 0.028

LD1 Common 0.029 0.012 0.012 0.009 0.012 0.010 0.008 0.017 0.031
Rare 0.007 0.005 0.004 0.005 0.003 0.003 0.003 0.006 0.011
Low 0.020 0.007 0.007 0.006 0.007 0.006 0.004 0.006 0.022
Mixture one 0.019 0.005 0.006 0.003 0.006 0.012 0.005 0.011 0.021
Mixture two 0.030 0.011 0.008 0.008 0.006 0.008 0.006 0.014 0.028

LD2 Common 0.036 0.009 0.010 0.011 0.008 0.011 0.015 0.009 0.033
Rare 0.010 0.004 0.003 0.004 0.004 0.005 0.002 0.005 0.010
Low 0.015 0.007 0.004 0.004 0.008 0.008 0.006 0.008 0.021
Mixture one 0.034 0.013 0.012 0.005 0.009 0.007 0.008 0.009 0.039
Mixture two 0.035 0.007 0.015 0.008 0.011 0.019 0.010 0.016 0.039

0.01 LE Common 0.005 0.002 0.000 0.001 0.001 0.000 0.000 0.002 0.003
Rare 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Low 0.003 0.000 0.001 0.000 0.000 0.002 0.000 0.001 0.003
Mixture one 0.002 0.003 0.001 0.001 0.000 0.000 0.000 0.001 0.001
Mixture two 0.006 0.001 0.001 0.001 0.000 0.002 0.002 0.002 0.004

LD1 Common 0.003 0.002 0.001 0.002 0.000 0.001 0.001 0.005 0.005
Rare 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.002
Low 0.003 0.002 0.000 0.001 0.002 0.001 0.000 0.000 0.002
Mixture one 0.005 0.000 0.002 0.000 0.002 0.000 0.001 0.001 0.001
Mixture two 0.007 0.001 0.000 0.002 0.001 0.001 0.000 0.004 0.002

LD2 Common 0.005 0.001 0.001 0.002 0.002 0.001 0.001 0.000 0.006
Rare 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.002
Low 0.004 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.003
Mixture one 0.006 0.003 0.001 0.000 0.002 0.000 0.001 0.002 0.008
Mixture two 0.006 0.001 0.002 0.002 0.003 0.003 0.003 0.001 0.007

0.001 LE Common 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rare 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mixture one 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Mixture two 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

LD1 Common 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rare 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Mixture one 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mixture two 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LD2 Common 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000
Rare 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Mixture one 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
Mixture two 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Note: Common denotes gene regions only with common variants, Rare denotes gene regions only with rare variants, Low denotes gene regions only with low-frequency variants, Mixture
one denotes gene regions with 20% of common variants and 80% of rare variants, and Mixture two denotes gene regions with 80% of common variants and 20% of rare variants. LE,
denotes linkage equilibrium simulation, LD1 denotes linkage disequilibrium simulation when r2 is between 0.01 and 0.25, LD2 denotes linkage disequilibrium simulation when r2 is between
0.25 and 0.64.
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TABLE 8 | Compare the power of linkage equilibrium and linkage disequilibrium simulation based on LFDAT when significant level is 0.05, sample size is 1,500, c is 5, and proportion of casual variants is 2%.

Gene
region

Simulation Proportion
of negative

effects
(%)

Case 1 Case 2

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

Common LE 0 0.991 0.990 0.988 0.990 0.987 0.988 0.990 0.991 0.989 0.988 0.976 0.000 0.979 0.951 0.982 0.000 0.981 0.993
20 0.917 0.922 0.929 0.927 0.924 0.932 0.932 0.937 0.927 0.917 0.886 0.000 0.894 0.733 0.897 0.000 0.886 0.919
50 0.735 0.734 0.744 0.752 0.752 0.757 0.760 0.755 0.759 0.708 0.676 0.000 0.684 0.482 0.675 0.000 0.684 0.700

LD1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 0.996 0.996 0.996 0.997 0.996 0.997 0.997 0.998 0.998 0.994 0.992 0.000 0.991 0.986 0.992 0.000 0.988 0.992
50 0.938 0.949 0.952 0.954 0.957 0.950 0.949 0.951 0.947 0.942 0.916 0.000 0.913 0.851 0.923 0.000 0.915 0.942

LD2 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.000 0.999 0.998 1.000 0.000 1.000 1.000

Rare LE 0 0.992 0.996 0.998 0.998 0.999 0.998 0.998 1.000 1.000 0.989 0.976 0.000 0.980 0.983 0.981 0.000 0.981 0.988
20 0.913 0.944 0.944 0.949 0.954 0.958 0.952 0.954 0.951 0.895 0.881 0.000 0.874 0.861 0.880 0.000 0.873 0.896
50 0.786 0.837 0.854 0.861 0.864 0.859 0.862 0.859 0.848 0.721 0.709 0.000 0.713 0.657 0.716 0.000 0.713 0.722

LD1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 0.993 0.996 0.997 0.995 0.996 0.998 0.996 0.996 0.996 0.996 0.987 0.000 0.989 0.994 0.988 0.000 0.987 0.997
50 0.946 0.952 0.954 0.962 0.959 0.961 0.955 0.957 0.945 0.914 0.903 0.000 0.905 0.876 0.898 0.000 0.908 0.911

LD2 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.995 0.000 0.998 0.996 0.997 0.000 0.994 0.999

Low LE 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.000 0.997 0.983 0.997 0.000 0.996 0.998
20 0.948 0.948 0.955 0.954 0.962 0.962 0.955 0.955 0.953 0.895 0.887 0.000 0.903 0.798 0.907 0.000 0.893 0.895
50 0.827 0.837 0.837 0.846 0.840 0.855 0.849 0.850 0.839 0.752 0.761 0.000 0.781 0.587 0.785 0.000 0.776 0.749

LD1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.999 1.000 0.000 1.000 1.000
20 0.996 0.996 0.996 0.998 0.997 0.998 0.998 0.996 0.997 0.998 0.997 0.000 0.998 0.989 0.999 0.000 0.996 0.999
50 0.955 0.956 0.964 0.965 0.965 0.963 0.962 0.958 0.958 0.942 0.938 0.000 0.938 0.860 0.941 0.000 0.934 0.940

LD2 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
50 0.998 0.998 0.999 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.000 0.999 0.996 0.999 0.000 0.998 0.999

Mixture One LE 0 0.961 0.969 0.972 0.968 0.974 0.975 0.972 0.975 0.971 0.958 0.928 0.000 0.938 0.905 0.939 0.000 0.930 0.958
20 0.913 0.917 0.930 0.931 0.927 0.925 0.933 0.930 0.919 0.915 0.876 0.000 0.896 0.821 0.887 0.000 0.868 0.903
50 0.846 0.874 0.878 0.890 0.894 0.897 0.901 0.890 0.881 0.840 0.807 0.000 0.814 0.714 0.815 0.000 0.800 0.847

LD1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 0.999 1.000
20 0.991 0.995 0.995 0.994 0.992 0.993 0.994 0.992 0.993 0.997 0.991 0.000 0.994 0.984 0.995 0.000 0.989 0.996
50 0.980 0.984 0.985 0.990 0.987 0.990 0.988 0.988 0.985 0.980 0.966 0.000 0.966 0.925 0.969 0.000 0.961 0.978

LD2 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
50 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999 0.000 0.999 0.999 0.999 0.000 1.000 0.999

Mixture Two LE 0 0.992 0.993 0.990 0.991 0.992 0.995 0.994 0.995 0.995 0.991 0.979 0.000 0.985 0.951 0.985 0.000 0.983 0.991
20 0.915 0.923 0.925 0.936 0.937 0.940 0.931 0.933 0.929 0.909 0.875 0.000 0.893 0.761 0.883 0.000 0.874 0.899
50 0.789 0.795 0.806 0.808 0.813 0.815 0.813 0.813 0.808 0.768 0.743 0.000 0.734 0.538 0.741 0.000 0.721 0.777

LD1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 0.992 0.992 0.994 0.992 0.993 0.994 0.992 0.994 0.993 0.997 0.996 0.000 0.994 0.985 0.995 0.000 0.997 0.997
50 0.932 0.941 0.942 0.950 0.948 0.944 0.944 0.944 0.940 0.942 0.928 0.000 0.943 0.854 0.931 0.000 0.932 0.941

LD2 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000
50 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.998 0.000 0.998 0.997 0.997 0.000 0.996 0.997

Note: Common denotes gene regions only with common variants, Rare denotes gene regions only with rare variants, Low denotes gene regions only with low-frequency variants, Mixture one denotes gene regions with 20% of common
variants and 80% of rare variants, and Mixture two denotes gene regions with 80% of common variants and 20% of rare variants. LE, denotes linkage equilibrium simulation, LD1 denotes linkage disequilibrium simulation when r2 is between
0.01 and 0.25, LD2 denotes linkage disequilibrium simulation when r2 is between 0.25 and 0.64.
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TABLE 9 |Compare the estimatedmeans and standard errors (in the parenthesis) of three indicators for linkage equilibrium and linkage disequilibrium simulation based on LFDAmethod when sample size is 1,500, c is 5, and
proportion of casual variants is 2%.

Simulation Proportion
of negative

effects
(%)

ISE0 ISE1 PMSE

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Common
region

Rare
region

Low-
frequency
region

Mixture
region
one

Mixture
region
two

Case
1

LE 0 0.094 0.940 0.652 0.301 0.095 4.263 53.520 23.161 44.892 14.530 20.067 8.967 21.179 11.246 17.846
(0.132) (1.256) (0.897) (0.437) (0.123) (0.878) (5.466) (2.597) (6.130) (4.935) (1.694) (0.758) (1.117) (1.399) (1.858)

20 0.095 0.882 0.594 0.292 0.102 4.344 55.046 23.742 45.444 14.881 20.240 9.086 21.481 11.305 17.961
(0.132) (1.211) (0.792) (0.430) (0.147) (0.907) (5.469) (2.519) (5.994) (5.050) (1.890) (0.771) (1.152) (1.392) (1.882)

50 0.093 0.893 0.658 0.305 0.102 4.382 55.385 24.188 45.453 14.475 20.398 9.159 21.587 11.319 18.199
(0.128) (1.177) (0.937) (0.466) (0.134) (0.872) (5.589) (2.774) (5.847) (4.688) (1.738) (0.814) (1.180) (1.339) (1.893)

LD1 0 0.072 0.867 0.502 0.345 0.104 3.570 50.547 22.150 31.986 6.287 20.154 9.112 21.366 16.162 21.750
(0.100) (1.089) (0.709) (0.493) (0.144) (0.607) (3.914) (2.014) (4.871) (1.444) (1.617) (0.647) (1.021) (1.702) (1.639)

20 0.068 0.867 0.496 0.342 0.100 3.625 51.869 22.681 32.242 6.434 20.348 9.179 21.705 16.390 22.008
(0.092) (1.211) (0.686) (0.470) (0.138) (0.583) (4.084) (2.083) (4.817) (1.489) (1.562) (0.666) (1.063) (1.758) (1.633)

50 0.071 0.817 0.501 0.348 0.102 3.679 52.621 23.049 32.364 6.558 20.545 9.232 21.754 16.488 22.139
(0.096) (1.118) (0.703) (0.473) (0.139) (0.584) (3.878) (2.112) (4.895) (1.580) (1.549) (0.640) (1.148) (1.804) (1.594)

LD2 0 0.061 0.871 0.444 0.270 0.080 3.072 49.213 21.558 22.395 4.428 19.331 8.883 20.777 20.075 21.867
(0.081) (1.120) (0.580) (0.371) (0.106) (0.354) (3.871) (1.747) (3.489) (0.603) (1.483) (0.688) (1.386) (1.890) (1.755)

20 0.062 0.853 0.474 0.304 0.078 3.111 50.440 22.191 22.617 4.489 19.424 8.973 21.022 20.434 21.967
(0.084) (1.143) (0.638) (0.440) (0.107) (0.337) (4.512) (1.834) (3.493) (0.601) (1.430) (0.662) (1.339) (1.987) (1.785)

50 0.059 0.864 0.432 0.310 0.078 3.173 51.085 22.448 22.797 4.601 19.634 9.008 21.251 20.501 22.222
(0.077) (1.199) (0.579) (0.420) (0.110) (0.356) (3.620) (1.779) (3.516) (0.655) (1.454) (0.671) (1.319) (2.002) (1.772)

Case
2

LE 0 0.035 0.357 0.244 0.128 0.046 2.429 30.721 13.170 25.563 8.196 11.782 5.561 12.572 6.809 10.601
(0.048) (0.480) (0.345) (0.202) (0.060) (0.479) (2.844) (1.155) (3.300) (2.727) (1.009) (0.454) (0.644) (0.767) (1.104)

20 0.039 0.358 0.241 0.121 0.043 2.479 31.295 13.446 25.666 8.430 11.987 5.578 12.666 6.861 10.603
(0.050) (0.480) (0.322) (0.171) (0.055) (0.488) (2.569) (1.227) (3.197) (2.843) (1.005) (0.431) (0.651) (0.788) (1.046)

50 0.036 0.355 0.245 0.119 0.041 2.507 31.339 13.552 25.849 8.106 12.044 5.630 12.715 6.867 10.740
(0.048) (0.496) (0.361) (0.182) (0.058) (0.475) (2.575) (1.123) (3.401) (2.628) (0.991) (0.459) (0.647) (0.863) (1.066)

LD1 0 0.028 0.366 0.199 0.118 0.037 2.026 28.752 12.660 17.391 3.731 11.978 5.712 12.698 9.943 12.798
(0.037) (0.513) (0.268) (0.163) (0.053) (0.299) (1.915) (0.947) (2.573) (0.887) (0.900) (0.363) (0.570) (0.958) (0.878)

20 0.028 0.351 0.203 0.135 0.036 2.068 29.114 12.845 17.498 3.759 12.078 5.761 12.801 10.026 12.851
(0.038) (0.467) (0.284) (0.181) (0.045) (0.320) (1.858) (0.811) (2.616) (0.916) (0.902) (0.383) (0.618) (1.017) (0.925)

50 0.027 0.376 0.204 0.116 0.037 2.074 29.618 13.026 17.808 3.781 12.143 5.741 12.865 9.947 12.952
(0.037) (0.510) (0.284) (0.153) (0.048) (0.297) (2.271) (0.974) (2.595) (0.900) (0.880) (0.368) (0.596) (1.029) (0.889)

LD2 0 0.024 0.344 0.174 0.117 0.030 1.771 28.726 12.259 12.307 2.711 11.549 5.487 12.611 12.333 13.343
(0.032) (0.450) (0.231) (0.155) (0.041) (0.185) (1.572) (0.795) (1.803) (0.349) (0.852) (0.375) (0.768) (1.101) (0.999)

20 0.023 0.323 0.160 0.123 0.034 1.810 29.327 12.513 12.495 2.737 11.626 5.456 12.575 12.266 13.416
(0.031) (0.416) (0.210) (0.191) (0.046) (0.186) (1.668) (0.823) (1.804) (0.369) (0.851) (0.351) (0.733) (1.083) (1.001)

50 0.023 0.381 0.176 0.119 0.031 1.840 29.771 12.644 12.547 2.780 11.702 5.444 12.575 12.276 13.494
(0.031) (0.537) (0.255) (0.161) (0.042) (0.184) (1.907) (0.723) (1.756) (0.359) (0.848) (0.395) (0.775) (1.079) (0.950)

Note: Common denotes gene regions only with common variants, Rare denotes gene regions only with rare variants, Low denotes gene regions only with low-frequency variants, Mixture one denotes gene regions with 20% of common
variants and 80% of rare variants, and Mixture two denotes gene regions with 80% of common variants and 20% of rare variants. LE, denotes linkage equilibrium simulation, LD1 denotes linkage disequilibrium simulation when r2 is between
0.01 and 0.25, LD2 denotes linkage disequilibrium simulation when r2 is between 0.25 and 0.64.
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and development mechanism of plants in this paper mainly.
However, we could consider adding factors, such as the
population structure, and introduce the idea of weight to
improve the detection ability of LFDAT in future research.

Second, the fitting errors of indicators ISE0, ISE1, and PMSE
are relatively large. It might be because of the limitations of
LFDAT, which cannot compress the time-varying function of
genetic effects to a state close to null, as stated by Lin et al. (2017).
This is one direction of our future research.

Third, in the simulation of the selective gene expression, it can
be seen that the powers of linkage equilibrium for five gene region
are unstable, and the powers are lower at some time points of the
gene opening. We find it is related to the time-varying function of
genetic effects by simulating a different time-varying function of
the genetic effects. Therefore, accurately grasping how genetic
effects change over time is a direction worth studying.

Fourth, for the application on the PSA of the Oryza sativa data
set, no significant SNP loci are detected at the first two time points.
This indicates that the gene region association analysis based on
LFDAT needs to be further improved to make the detection effect
more accurate. Then, it could be better applied to the gene region
association analysis of different longitudinal traits.

This paper applies the LFDATmethod to the real data process,
and each chromosome is analyzed as an independent gene region.
However, the variants that control longitudinal traits might be
distributed in different gene regions. If there is a correlation
between the causal variants in different gene regions, it is
necessary to perform association analysis on multiple gene
regions. This is also true if each chromosome is regarded as a
gene region and the region is too large to accurately detect genes

FIGURE 4 | The shoot biomass development trajectory of 350 samples.
The solid gray line represents the trajectory curve of 350 samples, and the
solid black line represents the average trajectory curve.

TABLE 10 | The number of SNPs and the p-value of the association analysis of each gene region based on LFDAT at significance level of 0.05

Chr No.
Of SNPs
in test

p-value

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

1 6,332 1 1 2.0 × 10−2 3.2 × 10−6 6.6 × 10−8 3.0 × 10−8 8.3 × 10−9 3.2 × 10−10 2.3 × 10−11 1.7 × 10−12

2 3,808 1 1 6.7 × 10−1 1.5 × 10−5 7.2 × 10−7 1.1 × 10−6 2.4 × 10−7 6.8 × 10−8 3.3 × 10−9 1.2 × 10−9

3 4,298 1 1 1.9 × 10−2 1.2 × 10−8 3.6 × 10−10 2.2 × 10−10 5.9 × 10−11 3.0 × 10−12 7.0 × 10−14 5.7 × 10−14

4 2,802 1 1 9.8 × 10−3 1.4 × 10−6 7.0 × 10−8 5.2 × 10−8 6.6 × 10−9 3.9 × 10−9 2.4 × 10−10 1.2 × 10−10

5 2,800 1 1 1.2 × 10−2 5.1 × 10−7 1.1 × 10−8 9.3 × 10−9 7.5 × 10−10 7.0 × 10−11 4.6 × 10−12 4.8 × 10−12

6 3,177 1 1 9.1 × 10−4 2.7 × 10−8 2.5 × 10−10 1.2 × 10−10 2.2 × 10−11 3.1 × 10−12 4.8 × 10−14 1.8 × 10−13

7 2024 1 1 1.2 × 10−5 1.0 × 10−9 4.5 × 10−11 7.0 × 10−11 3.4 × 10−12 1.8 × 10−12 3.1 × 10−13 2.8 × 10−13

8 2,233 1 1 5.8 × 10−3 2.6 × 10−6 1.9 × 10−7 6.7 × 10−8 4.9 × 10−9 1.1 × 10−9 1.0 × 10−10 2.7 × 10−11

9 1939 1 1 1.7 × 10−2 4.6 × 10−6 4.2 × 10−7 1.6 × 10−7 4.9 × 10−9 7.7 × 10−9 7.8 × 10−10 3.3 × 10−10

10 1,672 1 1 1.5 × 10−3 4.5 × 10−8 2.2 × 10−9 3.3 × 10−9 3.6 × 10−10 7.2 × 10−11 2.4 × 10−12 1.4 × 10−12

11 2,857 1 1 1.4 × 10−1 1.2 × 10−5 7.4 × 10−7 5.4 × 10−7 1.1 × 10−7 1.7 × 10−8 1.3 × 10−9 2.2 × 10−10

12 2,121 1 1 2.5 × 10−2 1.0 × 10−7 5.6 × 10−9 1.7 × 10−9 2.5 × 10−10 7.2 × 10−11 5.2 × 10−12 3.6 × 10−12

Chr No.
Of SNPs
in test

p-value

t = 11 t = 12 t = 13 t = 14 t = 15 t = 16 t = 17 t = 18 t = 19 t = 20

1 6,332 1.2 × 10−11 5.7 × 10−13 1.2 × 10−13 9.9 × 10−14 5.7 × 10−14 4.0 × 10−14 1.5 × 10−14 4.3 × 10−15 6.9 × 10−15 7.5 × 10−15

2 3,808 2.0 × 10−9 1.5 × 10−10 2.9 × 10−11 1.0 × 10−11 5.1 × 10−12 1.3 × 10−11 4.1 × 10−12 1.4 × 10−12 1.3 × 10−12 8.7 × 10−13

3 4,298 2.9 × 10−14 2.9 × 10−15 3.3 × 10−16 2.9 × 10−16 3.8 × 10−17 6.0 × 10−17 7.6 × 10−18 3.8 × 10−18 4.8 × 10−18 8.1 × 10−19

4 2,802 5.0 × 10−10 6.5 × 10−11 4.1 × 10−11 1.6 × 10−11 5.5 × 10−12 1.4 × 10−11 3.3 × 10−12 1.5 × 10−12 3.5 × 10−12 9.3 × 10−13

5 2,800 5.8 × 10−12 4.5 × 10−13 2.8 × 10−13 1.7 × 10−13 7.4 × 10−14 1.2 × 10−13 1.4 × 10−13 9.3 × 10−14 2.4 × 10−13 2.9 × 10−13

6 3,177 2.4 × 10−13 1.4 × 10−14 2.5 × 10−15 1.0 × 10−15 9.1 × 10−16 2.0 × 10−15 3.2 × 10−16 1.5 × 10−16 2.3 × 10−16 9.4 × 10−17

7 2024 2.0 × 10−13 1.6 × 10−14 3.2 × 10−14 3.8 × 10−14 3.8 × 10−15 1 × 10−14 8.3 × 10−15 6.8 × 10−15 5.0 × 10−15 1.4 × 10−15

8 2,233 1.4 × 10−10 1.6 × 10−11 1.3 × 10−11 6.7 × 10−12 2.3 × 10−12 3.8 × 10−12 3.5 × 10−12 2.4 × 10−12 4.5 × 10−12 2.0 × 10−12

9 1939 1.5 × 10−9 1.2 × 10−10 5.4 × 10−11 3.4 × 10−11 3.8 × 10−12 7.4 × 10−12 2.9 × 10−12 1.0 × 10−12 8.6 × 10−13 3.0 × 10−13

10 1,672 4.2 × 10−12 2.7 × 10−13 1.6 × 10−13 6.1 × 10−14 1.0 × 10−14 1.1 × 10−14 4.5 × 10−15 2.7 × 10−15 6.3 × 10−15 5.2 × 10−15

11 2,857 1.6 × 10−10 1.2 × 10−11 3.7 × 10−12 1.9 × 10−12 2.0 × 10−13 3.7 × 10−13 1.5 × 10−13 6.9 × 10−14 1.2 × 10−13 5.9 × 10−14

12 2,121 1.0 × 10−11 8.5 × 10−13 1.6 × 10−13 4.8 × 10−14 5.7 × 10−14 2.3 × 10−13 8.3 × 10−14 1.0 × 10−13 3.4 × 10−13 5.0 × 10−13
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that control longitudinal traits. Then, the SNP sequence needs to
be refined into multiple gene regions. The extension of the
longitudinal trait association analysis based on the functional
data analysis to multiple gene regions will be a future research
direction.
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