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Schizophrenia (SCZ) is an idiopathic psychiatric disorder with a heritable component and a
substantial public health impact. Although abnormalities in total brain volumetric measures
(TBVMs) have been found in patients with SCZ, it is still unknown whether these
abnormalities have a causal effect on the risk of SCZ. Here, we performed a
Mendelian randomization (MR) study to investigate the possible causal associations
between each TBVM and SCZ risk. Specifically, genome-wide association study
(GWAS) summary statistics of total gray matter volume, total white matter volume, total
cerebrospinal fluid volume, and total brain volume were obtained from the United Kingdom
Biobank database (33,224 individuals), and SCZ GWAS summary statistics were provided
by the Psychiatric Genomics Consortium (150,064 individuals). The main MR analysis was
conducted using the inverse variance weighted method, and other MR methods, including
MR-Egger, weighted median, simple mode, and weighted mode methods, were
performed to assess the robustness of our findings. For pleiotropy analysis, we
employed three approaches: MR-Egger intercept, MR-PRESSO, and heterogeneity
tests. No TBVM was causally associated with SCZ risk according to the MR results,
and no significant pleiotropy or heterogeneity was found for instrumental variables. Taken
together, this study suggested that alterations in TBVMs were not causally associated with
the risk of SCZ.

Keywords: schizophrenia, total brain volumetric measures, genetic, causality, Mendelian randomization

INTRODUCTION

Schizophrenia (SCZ) is one of the most serious mental disorders; it has a high disability rate
worldwide and has brought heavy economic burdens and life pressure to families and society
(Mueser and McGurk, 2004). SCZ has been shown to have a high rate of heritability (60-80%), much
of which is attributable to common risk alleles, suggesting that the genome-wide association study
(GWAS) can enhance our understanding of the etiology of SCZ (Kahn et al., 2015). The GWAS has
revealed that single-nucleotide polymorphisms (SNPs) at novel loci confer risk for SCZ, and these
results have been obtained by enlarging sample sizes and incorporating more ethnicities (Ripke et al.,
2013; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Lam et al.,
2019).
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In addition to the genetic basis, substantial efforts have been
made in the past decade to elucidate the neural basis of SCZ by
using neuroimaging techniques (Kahn et al, 2015).
Neuroimaging measures can be considered as endophenotypes,
which are quantitative indicators of brain structure or function
that index genetic liability for neuropsychiatric disorders (Meyer-
Lindenberg  and  Weinberger, 2006). Compared to
neuropsychiatric disorders, endophenotypes are hypothesized
to have less polygenicity, have a greater effect size of
susceptible SNPs, and require smaller sample sizes to discover
the SNPs (Gottesman and Gould, 2003; Meyer-Lindenberg and
Weinberger, 2006). A number of studies have reported alterations
in total brain volumetric measures (TBVMs), such as total gray
matter volume (TGMV), total white matter volume (TWMYV),
total cerebrospinal fluid volume (TCSFV), and total brain volume
(TBV), in patients with SCZ. For example, Haijma et al. (2013)
conducted a meta-analysis on TBVMs in more than 18,000
patients and controls, demonstrating a significant reduction in
intracranial volume (ICV, sum of TGMV, TWMYV, and TCSFV)
and TBV (sum of TGMYV and TWMYV) and an increase in TCSFV
in SCZ patients. In addition, progressive decreases in TBV and
ventricular expansions (increased in TCSFV) were found in
longitudinal studies of SCZ (Kempton et al., 2010; Olabi et al.,
2011). However, all these findings were based on observational
studies, which may be limited by the possibility of confounding
factors and reserve causation; thus, it is still unknown whether
TBVM alterations have a causal effect on the risk of SCZ.

Mendelian randomization (MR) is an epidemiological
approach that could overcome the limitations in observation
studies by using genetic variants associated with exposure as
instrumental variables to uncover the causal relationship between
an exposure and an outcome (Lawlor et al., 2008). In addition,
MR can control the confounding factors and reverse causation
that are usually encountered in observation studies. To date, MR
has been successfully applied to assess causal relationships in
pioneer studies of neuropsychiatric diseases (Hartwig et al.,
2017a; Liu et al., 2018; Vaucher et al., 2018; He et al., 2020;
Wang et al., 2020; Zhang et al., 2020). For instance, Hartwig et al.
found a protective effect of C-reactive protein and a risk-
increasing effect of soluble interleukin-6 receptor on SCZ risk
(Hartwig et al., 2017a). Vaucher et al. reported that the use of
cannabis was causally associated with an increased risk of SCZ
(Vaucher et al., 2018). Therefore, in this study, by leveraging data
from the largest GWAS summary statistics on both TBVMs and
SCZ, we performed a two-sample MR study to estimate the causal
effect of TBVMs, including TGMV, TWMYV, TCSFV, and TBV,
on the risk of SCZ.

MATERIALS AND METHODS
Study Design

MR is an approach that uses genetic variants as instrumental
variables to investigate the causal relationship between exposures
and outcomes, which should satisfy three principal assumptions:
1) the instrumental variables should be significantly associated
with exposure; 2) the instrumental variables should not be
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associated with any confounders; and 3) the instrumental
variables should affect the risk of the outcome only by the
exposure. The second and third assumptions are also
considered independent of pleiotropy. In this study, MR is
based on the publicly available GWAS summary datasets of
TBVMs (Smith et al., 2021) and SCZ (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014), and all
subjects provided informed consent in the original studies.
Specifically, the genetic variants that were significantly
associated with TBVMs were used as instrumental variables to
examine the causal influence of TBVMs on SCZ risk (Figure 1).

Total Brain Volumetric Measure

Genome-Wide Association Study Dataset
The GWAS summary data of TBVMs, including TGMV, TWMV,
TCSFV, and TBV, were downloaded from an open resource
named the Oxford Brain Imaging Genetics (BIG40) web server
(https://open.win.ox.ac.uk/ukbiobank/big40/), which included
GWAS summary statistics with 33,224 individuals in the
United Kingdom Biobank (Smith et al, 2021). The genome-
wide significance threshold was set at p < 5 x 10~ in the discovery
cohort (N = 22,138) and p < 0.05 in the replication cohort (N =
11,086). Only SNPs that met the significance level in both cohorts
were used as instrumental variables in MR analyses, and these
SNPs were independent and had no linkage disequilibrium, as
described in the original studies (Elliott et al., 2018; Smith et al,,
2021). Detailed information about the instrumental variables of
TGMV, TWMYV, TCSFV, and TBV is shown in Supplementary
Tables S1-S4.

Genome-Wide Association Study of

Schizophrenia

GWAS summary data regarding SCZ were downloaded from a
meta-analysis provided by the Schizophrenia Working Group of
Psychiatric Genomics Consortium (https://www.med.unc.edu/
pgc/pgc-workgroups/schizophrenia/), including 36,989 cases
and 113,075 controls of predominantly European ancestry
without population stratification. In total, 128 significant
associations in 108 genetic loci were identified (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014).

Pleiotropy Analysis

Comprehensive pleiotropy analyses were performed to assure
that instrumental variables met the MR assumptions. First, an
MR-Egger intercept test was performed to evaluate the potential
pleiotropic associations of the instrumental variables with known
and unknown confounders (Bowden et al., 2015; Bowden et al.,
2016; Burgess and Thompson, 2017). Second, an MR pleiotropy
residual sum and outlier (MR-PRESSO) analysis was carried out
to detect horizontal pleiotropy (i.e., MR-PRESSO global test)
(Verbanck et al, 2018). Heterogeneity across instrumental
variables is also an indicator of pleiotropy. Thus, Cochran’s Q
test and I statistic were calculated to estimate the heterogeneity
(Sun et al., 2021). Specifically, Cochran’s Q test is a conventional
test for heterogeneity and approximately follows a chi-square

Frontiers in Genetics | www.frontiersin.org

March 2022 | Volume 13 | Article 782476


https://open.win.ox.ac.uk/ukbiobank/big40/
https://www.med.unc.edu/pgc/pgc-workgroups/schizophrenia/
https://www.med.unc.edu/pgc/pgc-workgroups/schizophrenia/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhu et al.

TBVMs and Schizophrenia

Instrumental variables
should affect the outcome
only by the exposure

Instrumental variables -
(genetic variants of TBVMs)

The instrumental variables
should be significantly
associated with exposure

\ 4

L Exposure factors

(TBVMs)

FIGURE 1 | Study design based on MR principal assumptions. In this study, MR is based on the publicly available GWAS summary datasets in TBVMs and SCZ.
Specifically, the genetic variants that are significantly associated with TBVMs were used as the instrumental variables to examine the causal influence of TBVMs on SCZ

risk. Abbreviations: SCZ, Schizophrenia; TBVMs, total brain volumetric measures.
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distribution with n-1 degrees of freedom (here, # is the number of
instrumental variables). The I? index is another measure to
quantify heterogeneity, which divides the difference between
the Q statistic and its degrees of freedom by the Q statistic
itself and then multiplies by 100. The value of the I* index
ranges from 0 to 100%, with 0%-25%, 25%-50%, 50%-75%,
and 75%-100% representing low, moderate, large, and extreme
heterogeneity, respectively (Liu et al., 2013; He et al., 2020). The
significance threshold of all the MR-Egger intercept, MR-
PRESSO, and Cochran’s Q tests was set at p < 0.05.

Aligning Effect Alleles With Exposure and

Outcome

The effect alleles of the instrumental variables were adjusted to be
associated with increased TBVMs (i.e., the effect estimates of
SNPs were larger than zero). Subsequently, the effect alleles of
these genetic variants were aligned to be consistent with the effect
alleles in the SCZ GWAS dataset. If the instrumental SNPs were
not available in the outcome dataset, a proxy SNP that was in high
linkage disequilibrium (+* > 0.8) with the requested SNP was
searched instead with the online tool SNiPA (https:/snipa.
helmholtz-muenchen.de/snipa3/index.php) (Arnold et al., 2015).

Two-Sample Mendelian Randomization

Analysis

The inverse variance weighted (IVW) method was employed to
estimate the causal effects of TGMV, TWMYV, TCSFV, and TBV
on SCZ risk. Specifically, for each TBVM, the effect estimates of
each instrumental variable on TBVMs and SCZ were extracted,
and Wald estimates and their standard errors were then
calculated (Burgess et al., 2017b). The Wald estimates of all
the instrumental variables were combined with a weighted

mean using inverse variance weights. The significance

threshold of the associations between exposures and outcomes
was set at p < 0.05.

Power Analysis

For each TBVM, the proportion of variance explained by each
instrumental variable (R*) was calculated using the following
formula:

) 2 x MAF x (1 - MAF) x

"2 x MAF x (1- MAF) x f* +2 x MAF x (1- MAF) x N x se(B)’

where MAF represents the minor allele frequency for a given
SNP, j3 represents the effect size associated with the TBVM for a
given SNP, se (f8) represents the standard error of the effect size
associated with the exposure for a given SNP, and N represents
the sample size of the exposure GWAS data.

Then, the strength of instrument variables can be measured by
F-statistics, which were calculated based on the following
equation:

2
-2
P Rx(N-2)
1-R

where R? is the proportion of the variance explained by each SNP,
and N represents the sample size of the exposure GWAS data. To
minimize weak instrument bias, SNPs with F-statistics > 10 were
retained for subsequent analyses (Lawlor et al., 2008).

Sensitivity Analysis

A series of sensitivity analyses were conducted to validate the
robustness of the results. First, four different MR methods
including MR-Egger, weighted median, simple mode, and
weighted mode methods were performed to estimate the
causal effect of TBVMs on SCZ risk. Specifically, the MR-
Egger method allows all variants to have pleiotropic effects
and can provide a consistent estimate of the causal effect
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under a weaker instrument strength independent of direct effects
(InSIDE) assumption (Burgess and Thompson, 2017); the
weighted median method can provide valid causal estimates
even if up to 50% of instruments are not valid (Bowden et al,
2016); and the model-based methods (i.e., simple mode and
weighted mode) use the causal effect estimates for individual
SNPs to form clusters, and the causal effect is estimated in the
largest cluster of SNPs (Hartwig et al., 2017b). Second, a leave-
one-out sensitivity analysis was carried out to identify SNPs that
could potentially bias the causal relationship. To this aim, by
sequentially removing each SNP, we estimated the relationship
between the remaining SNPs and the risk of SCZ using the IVW
method. Finally, reverse causation bias may occur when the
outcome variable is at an earlier time point (i.e., the risk of
SCZ causally influences the changes of each TBVM). Therefore,
we also tested the possibility of reverse causation by treating the
risk of SCZ as an exposure and each TBVM as an outcome.
Specifically, the instrumental variables were the significant
genetic variants associated with SCZ risk, and the same
procedures as the main analyses were used to perform reverse
MR causality detection.

All statistical analyses were conducted using R version 4.0.4 (R
Foundation for Statistical Computing, Vienna, Austria) using the
packages of “TwoSampleMR” (Hemani et al., 2018b) and “MR-
PRESSO” (Verbanck et al., 2018).

RESULTS

Association of Total Brain Volumetric

Measure Variants With Schizophrenia

Only two genetic variants without linkage disequilibrium were
found to be associated with TGMV, and their summary statistics
were extracted from SCZ GWAS data for MR analyses
(Supplementary Table S1). Of the five genetic variants
associated with TWMYV, rs742396 was a palindromic SNP.
Thus, we deleted it in the subsequent MR analyses
(Supplementary Table S2). Seven genetic variants were
associated with TCSFV. All seven instrumental SNPs were
located on different chromosomes and were not in linkage
disequilibrium with each other. However, rs4843550 is a
palindromic SNP and was removed from the subsequent MR
analyses. The summary statistics for these TCSFV variants are
shown in Supplementary Table S3. Of the five genetic variants
associated with TBV, the summary statistics for the four variants
could be extracted from the SCZ GWAS data. The SNP rs2732714
was not available in the SCZ GWAS data, therefore, we used the
information of its proxy SNP rs113138968, which was in high
linkage disequilibrium (+* > 0.8), to perform the following
analyses. All five instrumental SNPs were not in linkage
disequilibrium with each other, and none of them were
palindromic SNPs. Detailed information about these five
instrumental SNPs is shown in Supplementary Table S4.

Pleiotropy Analysis
Both the MR-Egger intercept test and MR-PRESSO test showed
no significant pleiotropy for the genetic variants of TBVMs (all ps

TBVMs and Schizophrenia

> 0.05). Furthermore, Cochran’s Q test and I statistic revealed no
significant heterogeneity for these SNPs (Supplementary
Table S5).

Two-Sample Mendelian randomization

Analysis

We performed a two-sample MR analysis by using genetic
variants from TGMV, TWMYV, TCSFV, and TBV as
instrumental variables. As shown in Table 1, we did not find
any causal influence on the risk of SCZ with the IVW method
(p > 0.05).

Power Analysis

The explained variances (R?) and F-statistics of each instrumental
variable are shown in Supplementary Tables S1-S4, and the
F-statistics of each instrumental variable were larger than 10,
indicating no weak instrumental bias among these variables.

Sensitivity Analysis

All other MR approaches, including the MR-Egger, weighted
median, simple mode, and weighted mode methods, did not
identify any significant causal effects of TGMV, TWMYV, and
TBV on the risk of SCZ (Table 1). Although TCSFV was found to
be causally associated with the risk of SCZ when using the MR-
Egger method (BETA = 0.646, SE = 0.220, p value = 0.042), this
result was not validated by other methods. In leave-one-out
sensitivity analyses, no genetic variants could significantly
affect the MR estimates (Figure 2). For the reverse MR
causality analysis, 111 leading SNPs associated with SCZ risk
were extracted from the GWAS summary data of TBVMs.
Among them, ten palindromic SNPs were removed, and the
remaining 101 SNPs were retained for subsequent analyses
(Supplementary Table S6). All the MR methods indicated
that there was no causal influence of any TBVM on SCZ risk
(Supplementary Table S7).

DISCUSSION

SCZ is a chronic, complex mental disorder characterized by an
array of symptoms, including delusions, hallucinations,
disorganized speech, and impaired cognitive ability, that
typically emerges in late adolescence and early adulthood
(Mueser and McGurk, 2004; Sheffield and Barch, 2016;
Marder and Cannon, 2019; McCutcheon et al., 2020). Several
lines of evidence have suggested that structural brain
abnormalities play an important role in the pathology of SCZ
(Okada et al., 2016; Zhao et al., 2018; Kuo and Pogue-Geile, 2019).
Using neuroimaging methods, some researchers found TBVM
abnormalities in patients with SCZ relative to age-matched
healthy controls (Staal et al., 1998; Haijma et al, 2013), and
progressive reductions in TBVMs might be associated with
disease progression (Kempton et al., 2010). However, evidence
has pointed toward the possibility that antipsychotic drugs might
have an effect on TBVM alterations (Olabi et al., 2011; Guo et al.,
2015; Emsley et al., 2017). In addition, as a risk factor for SCZ,
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TABLE 1 | Results of the causal effect of TBVMs on SCZ risk.

TBVMs and Schizophrenia

MR methods TGMV TWMV TCSFV TBV

BETA SE p value BETA SE p value BETA SE p value BETA SE p value
VW 0.085 0.163 0.601 0.062 0.132 0.636 -0.089 0.089 0.315 0.114 0.090 0.202
MR-Egger — — — 0.004 0.831 0.997 -0.646 0.220 0.042 1.204 0.914 0.279
Weighted median - - - 0.025 0.122 0.841 0.012 0.088 0.089 0.081 0.094 0.384
Simple mode — — — 0.003 0.178 0.986 0.064 0.127 0.635 0.070 0.141 0.649
Weighted mode — - - 0.001 0.159 0.997 0.060 0.118 0.631 0.064 0.145 0.681

Abbreviations: BETA, regression coefficient; VWV, inverse variance weighted; MR, Mendelian randomization; SE, standard error; TBV, total brain volume; TCSFV, total cerebrospinal fluid

volume; TGMV, total gray matter volume;, TWMV, total white matter volume.

Notably, only the VW method worked when there were two instrumental variables in TGMV-SCZ MR analysis.
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FIGURE 2 | Leave-one-out analysis for MR causality analysis between TBVMs and SCZ risk. (A). Leave-one-out analysis for MR causality analysis between TGMV
and SCZ risk. (B). Leave-one-out analysis for MR causality analysis between TWMV and SCZ risk. (C). Leave-one-out analysis for MR causality analysis between TCSFV
and SCZ risk. (D). Leave-one-out analysis for MR causality analysis between TBV and SCZ risk. The red points and red lines represent the BETA and 95% confidence
interval in MR analyses, while the black points and black lines represent the BETA and 95% confidence interval after removing each SNP sequentially. Of note, only
the IVW method was used in the leave-one-out sensitivity analysis. Abbreviations: SCZ, Schizophrenia; TBV, total brain volume; TCSFV, total cerebrospinal fluid volume;
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experience with cannabis use could also lead to brain structural
alterations (Kumra et al., 2012; Rapp et al.,, 2012; Navarri et al,,
2022). Hence, the causality between the changes in TBVMs and
the risk of SCZ remains largely unclear.

In this study, we aimed to explore whether there is a causal
effect of changes in TBVMs on the risk of SCZ by using MR, one
of the powerful genetic-epidemiological approaches. Here, we
used four reliable TBVMs (TGMV, TWMV, TCSFV, and TBV)
derived from structural neuroimaging data. Specifically, genetic
variants of TGMV, TWMYV, TCSFV, and TBV without any
pleiotropy and heterogeneity were selected as the instrumental

variables, and five MR methods were used to ensure the reliability
of the results. Different from the observational studies, no
significant result was found using MR between any TBVMs
and SCZ risk. The possible explanations for the difference are
as follows: 1) the substantial brain structural heterogeneity exists
across the individuals with SCZ (Alnzes et al., 2019). The changes
in TBVMs might not be a sensitive risk factor for SCZ, since
alterations (increase or decrease) in the volume of some specific
brain regions have been reported in patients with SCZ (Kuo and
Pogue-Geile, 2019); 2) some observational studies showed that
the decrease in TBVMs in SCZ might be the result of
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antipsychotics, aging, or other unknown confounders (Kumra
et al., 2012; Emsley et al.,, 2017); and 3) SCZ is a cognitive and
behavioral dysfunction with complex symptoms (Sheffield and
Barch, 2016), the onset of which might be linked to functional
abnormalities rather than structural abnormalities of the brain.
Hence, more attention should be devoted to the changes in
specific brain region volumes by removing the effects of
antipsychotics and aging and the functional neural
mechanisms of SCZ.

Our study design has many advantages. First, the exposure and
outcome datasets were from a large-scale GWAS of TBVMs (N =
33,224) and SCZ (36,989 cases and 113,075 controls). The large
sample sizes of GWAS typically led to higher levels of statistical
power (van der Sluis et al., 2013). Second, we utilized independent
SNPs as the instrumental variables in each MR analysis, which
could effectively avoid the influence caused by linkage
disequilibrium. Third, a series of pleiotropy and sensitivity
analyses based on different principles and assumptions were
carried out to detect pleiotropy and heterogeneity to ensure
that the instrumental variables we used here were reliable
(Burgess et al, 2017a; Hemani et al, 2018a). Finally, to
increase the robustness of the MR results, different methods
were applied to investigate the causal relationship between the
exposures and the outcomes. Assessing the causal relationship by
using a variety of methods is more reliable because the different
MR methods we used here were based on the different
assumptions (Burgess and Thompson, 2017).

Some limitations needed to be addressed in this study. First, the
subjects from the outcome GWAS dataset were of transancestral
descent (both European and East Asian); however, the subjects from
the TBVM GWAS dataset were of pure European descent.
Population stratification might have a potential confounding effect
on the causal estimate. Second, although a series of statistical methods
were used to identify pleiotropy, it is impossible to fully remove all
pleiotropy in MR studies. Third, the instrumental variables of
TBVMs were obtained from United Kingdom Biobank GWAS
summary data. The participants in the United Kingdom Biobank
were aged from 45 to 81 years (Smith et al., 2021), which is not the
typical age of onset for SCZ (Howard et al, 2000). The genetic
variants determining TBVMs in childhood and/or adolescence may
differ from those determining TBVMs in adulthood used in this
study. Therefore, it would be better to use instrumental variables from
large-scale TBVMs GWAS data in childhood and/or adolescence that
are not publicly available to date. Fourth, the generalized summary-
based MR (GSMR) method is also a popular MR approach to assess
the causal association between exposure and outcome (Zhu et al,
2018). The rule of thumb advises that the application of GSMR
requires ten or more independent genome-wide significant SNPs, but
there were fewer than ten instrumental variables used in each two-
sample MR analysis in our study, especially those of TGMV. Thus,
we could not use the GSMR method to test the causal associations of
TBVMs with SCZ risk. Finally, ICV is also an important TBVM, and
alterations in ICV were found in SCZ patients (Haijma et al., 2013).
We did not investigate the causal relationship between ICV and SCZ
risk in this study because there are no GWAS summary data of ICV
in the United Kingdom Biobank database.

TBVMs and Schizophrenia

CONCLUSION

In conclusion, although the previous neuroimaging studies
showed the changes in TBVMs in patients with SCZ, our MR
results demonstrated that there was no causal relationship
between alterations in TBVMs and the risk of SCZ at the
genetic level. Further studies with independent data are
warranted to confirm these findings.
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