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Late-onset Alzheimer’s disease (AD) is associated with sleep-related phenotypes (SRPs). The fact
that whether they share a common genetic etiology remains largely unknown. We explored the
shared genetics and causality between AD and SRPs by using high-definition likelihood (HDL),
cross-phenotype association study (CPASSOC), transcriptome-wide association study (TWAS),
and bidirectional Mendelian randomization (MR) in summary-level data for AD (N = 455,258) and
summary-level data for seven SRPs (sample size ranges from 359,916 to 1,331,010). AD shared
a strong genetic basis with insomnia (7 = 0.20; p = 9.70 x 107°), snoring (rg=0.13;p=2.45 x
107, and sleep duration (ry = -0.11; p = 1.18 x 10°°). The CPASSOC identifies 31 independent
loci shared between AD and SRPs, including four novel shared loci. Functional analysis and the
TWAS showed shared genes were enriched in liver, brain, breast, and heart tissues and
highlighted the regulatory roles of immunological disorders, very-low-density lipoprotein
particle clearance, triglyceride-rich lipoprotein particle clearance, chylomicron remnant
clearance, and positive regulation of T-cel-mediated cytotoxicity pathways. Protein—protein
interaction analysis identified three potential drug target genes (APOE, MARK4, and HLA-DRA)
that interacted with known FDA-approved drug target genes. The CPASSOC and TWAS
demonstrated three regions 11p11.2, 6p22.3, and 16p11.2 may account for the shared basis
between AD and sleep duration or snoring. MR showed insomnia had a causal effect on AD
ORw = 1.02, Py = 6.7 x 1079, and multivariate MR suggested a potential role of sleep
duration and major depression in this association. Our findings provide strong evidence of shared
genetics and causation between AD and sleep abnormalities and advance our understanding of
the genetic overlap between them. Identifying shared drug targets and molecular pathways can
be beneficial for treating AD and sleep disorders more efficiently.

Keywords: sleep, late-onset Alzheimer’s disease, common genetic etiology, genetic correlation, Mendelian
randomization, transcriptome-wide association study

Abbreviations: SRPs, sleep-related phenotypes; HDL, high-definition likelihood; LDSC, linkage disequilibrium score re-
gression; GNOVA, genetic covariance analyzer; SUPERGNOVA, super genetic covariance analyzer; CPASSOC, cross phe-
notype association study; TSEA, tissue-specific enrichment analysis; MR, Mendelian randomization; TWAS,
transcriptome-wide association study; SNP, single nucleotide polymorphism; GTEx, genotype-tissue expression portal.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive memory loss and overall cognitive
decline (McKhann et al., 2011) and is highly heritable (heritability
58-79%) (Sims et al., 2020). Growing evidence indicates that AD
patients frequently have sleep disorders, implying common causes of
these complex phenotypes. Emerging epidemiological studies suggest
that AD is associated with a significantly increased risk of sleep
disorders and vice versa (Andrade et al., 2018; Brzecka et al., 2018; Shi
et al, 2018 Sadeghmousavi et al, 2020). Furthermore,
neuropathological studies have shown that extracellular levels of
both AP and tau fluctuate during the normal sleep-wake cycle
(Wang and Holtzman, 2020). In animal models, sleep disturbance
and increased arousal lead to increased AP production and decreased
AP clearance, while chronic increased arousal promotes AP
aggregation and deposition, thus leading to sleep disturbance
(Wang and Holtzman, 2020). Importantly, amyloid p and tau
protein, which are core hallmarks of AD, can exacerbate the
sleeping status sleep disorder in an AD person (Liu et al, 2019).
Taken together, we hypothesized that there might be a shared genetic
basis underlying these connections between AD and sleep disorders.
Genome-wide association studies (GWASs) have yielded new
insights into the genetics of AD (Iris E. Jansen et al., 2019; Kunkle
et al.,, 2019) and SRPs (Dashti et al., 2019; Lane et al., 2019; Philip
R. Jansen et al., 2019; Campos et al., 2020). Despite the large
sample sized GWAS cohorts, the identified genome-wide loci
account for only a small portion of the variance of AD and sleep
disorders (Manolio et al., 2009). The combined effects of whole-
genome single nucleotide polymorphisms (SNPs), including
those that do not reach genome-wide significance (Boyle et al.,
2017) and shared genetic architecture are expected to account for
the missing heritability. However, no cross-trait genome-wide
study has been conducted to quantify the level of genetic overlap
and identify the shared loci between AD and sleep disorders.
Therefore, to improve our understanding of genetic overlap and
causality and to identify genomic loci shared between AD and sleep
disorders, we conducted a large-scale cross-trait genome-wide study
to explore genetic correlations and shared genetic components
among these complex phenotypes using data from the Psychiatric
Genomic Consortium (PGC)® and the Complex Trait Genetics Lab
(CTGlab)"!. We further compared shared genes between AD and
insomnia with known target genes of AD and insomnia meditation
using protein—protein interaction analysis, which may provide
insights into potential target genes for identifying drug targets.

MATERIALS AND METHODS

Study Design, Data Source, and Study

Population

Our overall study design is shown in Figure 1. We used the
GWAS summary-level data from PGC and CTGlab for AD and
seven SRPs (Iris E. Jansen et al., 2019; Philip R. Jansen et al.,
2019) (Supplementary Table S1). The AD/AD-by-proxy
meta-analysis summary statistics combined 71,880 cases and
383,378 controls from four cohort-level GWASs, including the
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Alzheimer workgroup initiative of the Psychiatric Genomic
Consortium (PGC-ALZ), the International Genomics of
Alzheimer’s Project (IGAP), the Alzheimer’s Disease
Sequencing Project (ADSP), and UKB, whereas the SRP
meta-analysis summary statistics combined ~13,31,010
participants from the UKB and 23 and Me. In the original
GWASs, AD cases were diagnosed according to the
recommendations of the National Institute on
Aging-Alzheimer’s Association (NIAAA) criteria, the
National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) criteria,
or the International Classification of Diseases (ICD-10)
criteria’’. Details of the definition of each self-reported SRP
are present in Supplementary Table S2. All participants were
of European ancestry, with no overlapping samples
(Supplementary Methods).

Genetic Correlation Analysis

To evaluate genetic correlation (rg) between AD and SRPs, we
used the conventional cross-trait linkage disequilibrium score
regression (LDSC) (Bulik-Sullivan et al, 2015) and the more
recent high-definition likelihood (HDL) method (Ning et al,
2020). As the HDL method yields more precise estimates of
genetic correlations than LDSC, we chose the HDL method as the
main result. The HDL method uses the LD reference computed
from 335,265 genomic British individuals in the United Kingdom
Biobank (UKB) (Ning et al., 2020). The p value was corrected by
the Bonferroni procedure (Pgonferroni < 0.05).

Annotation-Specific Genetic Correlation
We calculated an annotation-specific genetic correlation using
genetic covariance analyzer (GNOVA) software (Lu et al., 2017).
As with LDSC, GNOVA is able to statistically correct for any
sample overlap between two different sets of GWAS summary
statistics. Compared to LDSC, GNOVA provides greater
statistical power and higher estimation accuracy, especially in
the case of moderate correlations (Lu et al., 2017). We estimated
the genetic correlation across ~5 million well-imputed SNPs in
the 1,000 Genomes Project and partitioned the estimates among
categories of SNPs defined by 20 functional categories implicated
in open chromatin, histone modification, and transcription factor
binding sites (TFBSs) (Lu et al., 2015), 22 autosome annotations
(Lu et al,, 2015), ten broadly defined tissue type annotations (Lu
et al,, 2016), and 66 epigenetic cell types (Lu et al., 2016). Using
0.5 as the cutoff, we converted continuous annotation scores into
binary annotation scores (i.e., 0 andl). A detailed description of
these different subdivisions can be found in (Supplementary
Tables S3-S5).

Local Genetic Correlation

We estimated local genetic correlations between AD and related
SRPs in 1703 pre-specified LD-independent segments with a super
genetic covariance analyzer (SUPERGNOVA) (Zhang et al., 2020).
This method is designed to identify small contiguous regions of the
genome where genetic associations are locally consistent with two
traits. SUPERGNOVA quantifies the local genetic correlation and
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Alzheimer’s disease phenotype Sleep-related phenotypes

Identification of shared variants and
biological functions

Genetic correlation, causal inference
and sensitivity analysis

Insomnia (109402 cases, 277131
controls)

Cross-trait meta-analysis between

Genome-wide genetic Alzheimer’s disease and

Morningness (N=345552)  —

Sleep duration (N=384317) —

Alzheimer’s disease
(24087 cases, 55058
controls)

Ease of getting up in the morning
(N=385949)

Daytime napping (20102 cases,
366475 controls)

Daytime dozing (10050 cases, 376498
controls)

Snoring (134248 cases, 225668
controls)

FIGURE 1 | Workflow of the study.
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p-values (PsyperGnova) between pairs of traits in local regions.
SUPERGNOVA has stronger statistical performance than
Heritability Estimation from Summary Statistics (HESS) (Zhang
et al,, 2020), which is not robust to incorrectly specified overlapping
sample sizes and is subject to type I error inflation when inaccurate
overlapping sample sizes and phenotypic correlation values are
provided. AD and SRPs were considered to have a genetic
correlation in the local region if Psypprgnova Was significant
after correcting for suggestive p-value (Psupgranova < 1.0 X 107%.

Cross-Trait Meta-Analysis

We conducted a pairwise cross-trait meta-analysis using Cross
Phenotype Association (CPASSOC). CPASSOC combines effect
estimates and standard errors of GWAS summary statistics to test
the hypothesis of association between a SNP and two traits. (Zhu
et al, 2015). We used the heterogonous version of cross-
phenotype association (SHet) that is based on a sample size-
weighted, fixed-effect model and is more powerful when there is a
heterogonous effect present between studies (Zhu et al., 2018).
The cross-trait meta-analysis was not inflated (Supplementary
Figures S1-S3, Supplementary Methods).

Fine-Mapping Credible Set Analysis

For each of the shared loci between AD and SRPs that meet the
cross-trait meta-analysis significance criteria, we extracted
variants within 500 kb of the index SNP and then identified a
99% credible set of causal SNPs using the Bayesian likelihood
fine-mapping algorithm (FM-summary) (Farh et al.,, 2015).

Co-Localization Analysis
We extracted summary statistics for variants within 500 kb of the

index SNP at each of the shared loci between AD and SRPs and
used the R ‘coloc’ package to perform genetic co-localization
analysis, which calculated the probability that the two traits
shared a common genetic causal variant. In our study, we
considered loci with a probability (H4) greater than 0.4 to be
co-localized (Giambartolomei et al., 2014).

Tissue-Specific Enrichment Analysis

To test if shared gene sets identified from cross-trait meta-
analysis were highly enriched or specifically expressed in
tissues, we conducted tissue-specific enrichment analysis
(TSEA) by using the R ‘TissueEnrich’ package (Jain and
Tuteja, 2019). The p value was corrected by the
Benjamini-Hochberg program.

Functional Enrichment Analysis

To obtain biological insights for identified shared genes (P, <1.67 X
10"®) from the cross-trait meta-analysis, we used the plug-in ClueGO
(version: 2.5.7) of the Cytoscape (version: 3.82) tool to access
enrichment of the gene sets in the Gene Ontology (GO) biological
process (18,483 terms\pathways with 17,972 available unique genes)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(328 terms\pathways with 8,024 available unique genes) and displayed
the relationship between genes and GO\KEGG terms (Shannon et al.,
2003; Bindea et al, 2009). The Bonferroni procedure was used to
account for multiple testing (Pponferroni < 0.05).
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Drug Target Gene Enrichment Analysis
We queried the Therapeutic Target Database (TTD) to identify

Food and Drug Administration (FDA)-approved drugs that were
used for AD and insomnia (Wang et al., 2020). Meditation target
genes for AD and insomnia were extracted from the DrugBank
5.0 database (Wishart et al., 2018), respectively.

Protein—Protein Interaction Analysis

We searched the STRING (version: 11.0) database to identify
protein-protein interactions (PPIs) among AD drug target genes
and insomnia drug target genes and identified AD and insomnia
shared genes from CPASSOC (Szklarczyk et al, 2019). We
selected Homo sapiens as the organism and considered total
scores above 0.40 (medium confidence) to correspond to the
combination of the following three different scores: co-
expression, experimental, and text mining.

Mendelian Randomization Analysis

To examine evidence for potential causal relationships between AD
and genetically associated SRPs, we conducted instrumental
variable analysis using bi-directional Mendelian randomization
(MR) implemented in two-sample MR (TSMR, version: 0.5.6)
(Hemani et al, 2018) and used inverse-variance weighting
(IVW) as the primary method (Hemani et al, 2017).
Furthermore, as horizontal pleiotropy is an important
confounder that could bias the estimates and often results in an
inflated test statistic in MR analysis, we used MR-Egger regression
(Bowden et al., 2015) and MR-Pleiotropy Residual Sum and Outlier
(MR-PRESSO) methods (Verbanck et al., 2018) to detect horizontal
pleiotropy. p-values were corrected for multiple testing using the
Bonferroni procedure(p < 0.05/3). Given the strong association
between different SRPs and the significant genetic similarity
between some psychiatric disorders (e.g., major depression
(MDD)) and sleep abnormalities, we used multivariate MR
(MVMR) (Sanderson et al., 2021) to assess the direct effect of
genetic susceptibility to insomnia, sleepdur, and MDD on AD. We
conducted sensitivity analyses using weighted median, simple
median, MR-Steiger, and MR-Robust Adjusted Profile Scores
(MR-RAPS). We applied MR-Steiger to assure that the causal
direction between the hypothesized exposure and outcome was
correctly assigned (Hemani et al, 2017). Considering the
measurement error in SNP-exposure effects, the MR-RAPS is
unbiased when there are many weak instruments and is robust
to systematic and idiosyncratic pleiotropy (Zhao et al., 2020). A
heterogeneity test was also performed to determine that each SNP
has the same effect on the results. If exposure is a binary variable, we
interpreted the causal estimates as the average change in outcome
per doubling (2-fold increase) in the odds of exposure, which could
be obtained by multiplying the causal estimate by 0.693 (log.2)
(Burgess and Labrecque, 2018).

Transcriptome-Wide Association Studies

To identify shared genes revealing the shared mechanisms of genetic
correlations between AD and SRPs, we next traced down to the gene
level to evaluate tissue-specific expression-trait associations and the
shared expression-trait associations between AD and each genetically
correlated SRP using transcriptome-wide association studies (TWAS

Sleep and Late-Onset Alzheimer’s Disease

method: FUSION) (Gusev et al., 2016). The Benjamini-Hochberg
(BH) procedure was applied to identify significant expression-trait
associations adjusted for multiple comparisons for all gene-tissue
pairs tested for each trait (~230,000 gene tissue pairs in total,
significant expression-trait associations were defined as Ppy <
0.05). We further tested for conditional relationships among the
shared genes to identify an independent set of gene-based genetic
models using an extension of TWAS that leverages previous methods
for joint/conditional tests of SNPs using summary statistics (Gusev
et al,, 2018) (Supplementary Material).

RESULTS
Genetic Correlations of AD With SRPs

There was a positive overall positive genetic correlation of AD with
insomnia (1 = 0.20; p = 9.70 x 107) and snoring (ry=0.13; p = 2.45 x
107%) and a negative genetic correlation with sleep duration (rg =
~0.11; p = 1.18 x 10™>) using HDL (Table 1). No significant genetic
correlations of AD with daytime dozing, ease of getting up in the
morning, morningness, and daytime napping were observed.
Annotation-specific genetic correlation analyses showed that
shared effects were concentrated in some chromosomes with the
strongest positive genetic correlation at chrl6 (r, = 0.63; p = 1.24 x
10™*) between AD and insomnia and at chr4 (r, = 0.62; p = 1.48 x
107%) between AD and snoring (Figure 2A). We also observed a
stronger genetic correlation at open chromatin, histone modification,
and TEBS regions between AD and insomnia (Figure 2C). Figures
2B,D exhibit consistent results with the GNOVA estimate, with
evidence of a positive genetic correlation in bone, breast, brain, heart,
gastrointestinal, muscle, pancreas, adipose, skin, fetal, lung, and
embryonic stem cell tissues between AD and insomnia.

The local genomic regions around individual AD loci from
GWASs showed signals of genetic overlap with related SRPs.
Accounting for correction, there was a genome-wide significant
local genetic correlation between AD and SRPs at three regions
(chr16:29036613-31382943 harboring previous AD locus GDPD3
for AD with insomnia and snoring; chr19:4348967-5811852
harboring previous AD locus APOE for AD and insomnia;
and chr2:201576284-202818637 harboring previous migraine
locus CDKI15 for AD and sleep duration) using
SUPERGNOVA (PgyperGnova < 1.0 x 107%).

Cross-Trait Meta-Analysis Between AD and
SRPs

In total, we identified 31 independent loci shared between AD
and three genetically correlated SRPS (pyera < 1.67 X 1078 and
single-trait p < 1 x 1073) (Table 2). The credible set of SNPs for
each of these shared loci was also identified (Supplementary
Tables S6-S8). Among the 31 independent shared loci, two
colocalized at the same candidate causal variant within each
variant  (rs12292911 and rs3121427) (Supplementary
Table S9).

We identified 7, 12, and 12 independent loci shared between
AD and insomnia, sleep duration, and snoring, respectively
(Table 2). Notably, we identified one novel locus (10q23.33,
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TABLE 1 | Genetic correlation of Alzheimer’s disease with related sleep-related phenotypes estimated by the high-definition likelihood method and linkage disequilibrium

score regression.

Method Trait rg rg, SE
HDL Dozing 0.10 0.066
Getting up -0.02 0.038
Insomnia 0.20 0.052
Morningness 0.00 0.035
Napping 0.16 0.067
Sleepdur -0.11 0.035
Snoring 0.13 0.042
LDSC Dozing 0.12 0.096
Getting up -0.05 0.051
Insomnia 0.22 0.077
Morningness -0.08 0.045
Napping 0.17 0.086
Sleepdur -0.12 0.051
Snoring 0.10 0.058

rg, 95% CI p value h2 (SE)
-0.03 t0 0.23 1.49E-01 0.01 (0.001)
-0.09 to 0.05 6.61E-01 0.07 (0.003)
0.10t0 0.30 9.70E-05 0.04 (0.002)
-0.07 to 0.07 9.67E-01 0.11 (0.003)
0.03 t0 0.29 1.61E-02 0.02 (0.001)
-0.18 to -0.04 1.18E-03 0.07 (0.002)
0.05 to 0.21 2.45E-03 0.06 (0.002)
-0.07 to 0.31 2.26E-01 0.01 (0.001)
-0.15 to 0.05 3.15E-01 0.07 (0.003)
0.07 t0 0.37 5.00E-03 0.05 (0.002)
-0.12 to 0.06 5.64E-01 0.11 (0.004)
0.00 to 0.34 4.52E-02 0.02 (0.002)
-0.22 to -0.02 2.15E-02 0.07 (0.003)
-0.01 to 0.21 7.80E-02 0.06 (0.003)

Note: Summary statistics for each trait were merged with Hapmap3 SNPs excluding the HLA region to estimate rg. p value <0.05/7. Dozing, daytime dozing; Getting up, ease of getting up

in the morning; Sleepdur, sleep duration.

index SNP: rs3121427, mapped gene: MARK2P9, P, = 1.02 x
107®) shared between AD and sleep duration and three novel loci
(4932.1, index SNP: rs11100203, mapped gene: C40rf45, Pppea =
2.56 x 107%; 6p22.3, index SNP: rs62402786, mapped gene: PRL,
Poea = 7.99 x 107% and 1p31.3, index SNP: rs7514002, mapped
gene: PAT], Ppera = 8.92 X 107°) shared between AD and snoring.
MARK2P9 (microtubule affinity regulating kinase 2 pseudogene
9) is a pseudogene, and its function is unknown. However, this
gene is adjacent to the IDE gene, which encodes a zinc
metallopeptidase, an enzyme whose preferential affinity for
insulin results in the inhibition of beta-amyloid degradation by
insulin. The defective function of the IDE gene is therefore
associated with AD and type 2 diabetes (Qiu and Folstein,
2006; Tang, 2016). C4orf45 (chromosome 4 open reading
frame 45), an uncharacterized protein-coding gene, has been
shown to be associated with self-reported educational attainment
and cognitive function (Lee et al., 2018). PRL (prolactin) encodes
the anterior pituitary hormone prolactin and is involved in the
regulation of many signaling pathways, including amyloid fibril
formation, prolactin signaling, growth hormone receptor
signaling, cytokine signaling in the immune system, and
protein metabolism pathways (Bole-Feysot et al.,, 1998; Jacob
et al., 2016). Prolactin, a pleiotropic hormone, has many
functions in the brain, such as maternal behavior,
neurogenesis, and neuronal plasticity, among others (Molina-
Salinas et al.,, 2021). Recently, it has been reported to have a
significant role in neuroprotection against excitotoxicity (Molina-
Salinas et al., 2021). PATJ encodes a protein with multiple PDZ
domains and plays a role in cell junction organization, tight
junction, and the hippo signaling pathway. The missense variant
in PAT]J has a stronger association with daytime napping than any
previously studied sleep-related phenotype (Lane et al., 2017).
Research has found co-localization of the daytime napping loci
with daytime sleepiness, snoring, BMI, and chronotype at PAT],
suggesting an obesity-hypersomnolence pathway (Panossian and
Veasey, 2012).

A specific region at 19q13.32 is the strongest shared signal
between AD and insomnia (index.SNP: rs6857, Py, = 0), sleep
duration (index.SNP: rs12972970, P, = 0), and snoring
(index.SNP: 15429358, Py, = 0). These three loci map to the
AOPE and APOCI genes, which are well known to be major
genetic risk factors for AD (Tycko et al., 2004; Lucatelli et al.,
2011; Liu et al., 2013). In addition, ten loci shared between AD
and SRPs were also mapped to the 19q13.32 region. Excluding
this strongest signal region, there are some additional loci of
interest.

Index SNP rs2249152 (19p13.3, Pypera = 9.53 X 107, mapped
gene: KDM4B) was shared between AD and insomnia. KDM4B
(lysine demethylase 4B) is a protein-coding gene and is engaged
in chromatin organization, chromatin-modifying enzymes, and
DNA double strand break response. Studies have shown that the
KDMH4B overexpression leads to inflammation and intellectual
disability (Taniguchi and Moore, 2014; Zhang et al., 2021). Index
SNPs rs12292911 (11p11.2, Pera = 1.51 X 107, mapped gene:
PSMC3), rs2310752 (1p31.3, Pprera = 3.68 X 107, mapped gene:
PDE4B), 15359539 (3q25.31, Ppera = 3.18 x 107, mapped gene:
PLCHI), and rs56249331 (1p35.2, Pieta = 8.48 x 107°, mapped
gene: PUMI) were shared between AD and sleep duration.
PSMC3 (proteasome 26S subunit, ATPase 3) encodes one of
the ATPase subunits, a member of the triple-A family of ATPases
that has chaperone-like activity and is associated with AD
(Novikova et al, 2021). PDE4B encodes a protein that
specifically hydrolyzes cAMP; the altered activity of this
protein has been associated with schizophrenia and bipolar
disorder (Millar et al., 2007; Fatemi et al., 2008). It has also
recently been found to modulate cognition, as reduction in the
PDE4B activity improves memory and long-term plasticity in
mouse models, possibly supporting further therapeutic
applications (Richter et al, 2013). Findings suggest that brief
sleep deprivation disrupts the hippocampal function by
increasing the PDE4 activity that interferes with cAMP
signaling (Vecsey et al., 2009). Therefore, drugs that enhance
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genetic correlation between AD and SRPs by ten tissues. Colors represent the estimated annotation-specific genetic correlation between AD and SRPs (Insomnia,
Sleepdur, and Snoring) using GNOVA; aquamarine for positive genetic correlation and violet red for negative genetic correlation at the corresponding annotation. The
significant effects are labeled with rg and “*” (p < 0.05/30). (C) Annotation-specific genetic correlation between AD and SRPs by 20 functional categories. Colors
represent the estimated annotation-specific genetic correlation between AD and SRPs (Insomnia, Sleepdur, and Snoring) using GNOVA; aguamarine for positive genetic
correlation and violet red for negative genetic correlation at the corresponding annotation. The significant effects are labeled with rg and “*” (p < 0.05/60). (D) Annotation-
specific genetic correlation between AD and SRPs by 66 epigenetic cell types. Colors represent the estimated annotation-specific genetic correlation between AD and
SRPs (Insomnia, Sleepdur, and Snoring) using GNOVA, aquamarine for positive genetic correlation and violet red for negative genetic correlation at the corresponding
annotation. The significant effects are labeled with rg and “*” (p < 0.05/198).

cAMP signaling may provide a new therapeutic approach to  the PUF family and may be involved in translational regulation of
counteract the cognitive effects of sleep deprivation (Vecsey etal.,  embryogenesis and cell development and differentiation. A study
2009). PLCH1 encodes phospholipase C-# enzymes which have ~ has demonstrated the importance of PUMI for human
recently been implicated in the modulation and amplification of =~ neurological development and function and has described its
Ca®* signals and are known to be expressed in neuronal regions of ~ role in neurodegenerative and neurodevelopmental disorders
the brain associated with cognition and memory (Popovics and ~ (Gennarino et al, 2018). In addition, we observed other
Stewart, 2012). PUM1I (pumilio homolog 1) encodes a member of =~ common loci shared between AD and insomnia, sleep
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TABLE 2 | Cross-trait meta-analysis results between Alzheimer’s disease and sleep-related phenotypes (Pmeta < 1.67 x 107 and single-trait p < 1 x 1079).

Model Index.SNP

AD_Insomnia  rs11234556
rs150567157
rs186110295
rs2249152
rs606757
rs6857

rs9268428

AD_Sleepdur  rs1081105
rs11672748
rs12292911
rs12972970

rs1633096

rs1979377
rs2310752
rs3121427
rs359539

rs4727449

rs56249331

rs858502

AD_Snoring rs1004173
rs11100203

rs11642303

rs147188206
rs204911
rs28469095

rs3098882

CHR

1

—

19

19

19

19

19

19

19

IR

19

19

10

16

19

19

19

8

Genome
position

11914.2
19q13.32
19013.32
19p13.3
19q13.32
1913.32

6p21.32

19913.32
19913.32
11p11.2
19q13.32

6p22.1

19913.32
1p31.3
10023.33
3025.31

79211

1p35.2

79211

6p12.3
4g32.1

16p11.2

19913.32
19913.32
19913.32

8013.3

A1

A2

P1

3.92E-
17
6.51E-
21
4.45E-
11
9.43E-
05
4.16E-
12

1.24E-
09

1.16E-
232
7.25E-
24
1.26E-
06

2.02E-
03

4.56E-
10
1.37E-
04
7.19E-
05
1.16E-
07
3.29E-
08

1.02E-
03

2.36E-
09

5.64E-
09

4.13E-
06

7.71E-
06

2.62E-
14
6.58E-
10
1.07E-
38
7.02E-
03

P2

3.75E-
03
9.43E-
03
5.56E-
03
2.55E-
06
7.34E-
03
4.48E-
03
1.41E-
03

4.73E-
03
3.24E-
03
6.27E-
05
9.38E-
03
3.49E-
09

4.59E-
03
5.35E-
o7
4.76E-
06
1.04E-
03
2.59E-
03

1.38E-
o7

4.43E-
03

5.92E-
03

2.93E-
05

2.04E-
09

2.89E-
03
6.66E-
03
3.14E-
03
2.27E-
09

P meta
value

8.706E-
17
1.11E-20

1.583E-
11
9.582E-
09
1.193E-
11
0

3.194E-
11

8.459E-
241
1.013E-
23
1.511E-
09
0

3.32E-09

9.751E-
11
3.68E-09

1.024E-
08

3.182E-
09

3.187E-
09

8.476E-
09

3.684E-
10

8.448E-
10

2.563E-
09

5.513E-
13

8.251E-
15
1.757E-
10
4.176E-
39
7917E-
09

Genes within the clumping region

[PICALM]
[PPP1R37)

[BCL3)]

[KDM4B]

[IMARKA4]

[APOC1, APOE, PVRL2, and TOMMA40]

[BTNL2, HCG23, HLA-DRA, HLA-DRB1, HLA-DRBS5,
and HLA-DRBE6]

[APOCT1, APOE, PVRL2, and TOMMA40]

[APOC2, APOC4, APOC4-APOC2, CLPTM1, and
RELB]

[MADD, MYBPC3, PSMC3, RAPSN, SLC39A13, and
SPI

I[APOC1, APOE, PVRL2, and TOMMA0]

[HCG4, HCG4B, HCG8, HCGY, HLA-A, HLA-F-AST,
HLA-G, HLA-H, HLA-J, IFITM4P, LOC554223,
PPP1R11, RNF39, ZNRD1, and ZNRD1-AST]
[BCL3 and MIR8085]

[PDE4B]
[IMARK2P9]
[PLCH1]

[AP4M1, C70rf43, C7orf61, CNPY4, COPS6,
GAL3ST4, GATS, GPC2, LAMTOR4, MBLACT,
MCM7, MEPCE, MIR25, MIR93, MIR106B,
MIR4658, MIR6840, NYAP1, PILRA, PILRB,
PMS2P1, PPP1R35, PVRIG, PVRIG2P, SPDYE3,
STAG3, STAG3L5P, STAG3L5P-PVRIG2P-PILRB,
TAF6, TSC22D4, ZCWPW1, ZNF3, and ZSCAN21]
[PUM1, SNORD85, SNORD103A, and SNORD103B]

[GATS, PVRIG, and STAGS]

[CD2AP]

[C4orf45]

[BCKDK, BCL7C, CTF1, FBXL19, FBXL19-AST,
HSD3B7, KAT8, LOC101928736, MIR762,
MIR4519, ORAI3, PRSS8, PRSS36, PRSS53,
SETD1A, STX1B, STX4, VKORC1, ZNF646, and
ZNF668]

[CLASRP]

[CLPTM1]

[GEMIN7, NKPD1, and PPP1R37]

[RP11-326E22.1]

Variant
annotation

intergenic
intron
upstream
intron

intron
3_prime_UTR

intergenic

upstream
intron
upstream
intron

downstream

intron
intron
intergenic
intron

intron

intergenic

intron

upstream
intron

intergenic

intron
intron
missense

intergenic

(Continued on following page)
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TABLE 2 | (Continued) Cross-trait meta-analysis results between Alzheimer’s disease and sleep-related phenotypes (Pmeta < 1.67 x 107 and single-trait p < 1 x 107%).

Model Index.SNP CHR Genome A1 A2 P1 P2
position

rs429358 19 1901332 C T 0 7.73E-

03

rs439401 19 1991332 T C 7.70E- 2.21E-

167 03

rs61597598 2 2024.1 A G 6.00E- 4.52E-

03 14

rs62402786 6 6p22.3 G C 289E- 1.67E-

07 03

rs7514002 1 1p31.3 A G 8.02E- 1.43E-

04 o7

P meta Genes within the clumping region Variant
value annotation
0 [APOC1 and APOE] missense
1.862E-  [APOCT] upstream
172
8.298E-  [AC093375.1] intron
14
7.991E-  [PRL] intron
09
8.921E-  [PATY] intron
09

Note: P1 is the Alzheimer’s disease single-trait p value, P2 is the sleep-related phenotype (insomnia, sleep duration, and snoring) single-trait p value, and Pmeta is the cross-trait meta-
analysis p value. A1, effect allele; A2, non-effect allele; Chr, chromosome; AD, Alzheimer’s disease; genes in blue are the nearest genes to this locus.

duration, or snoring. These results were in line with previous
studies (Dashti et al., 2019; Kunkle et al., 2019; Philip R. Jansen
et al., 2019; Campos et al., 2020).

Tissue-Specific Enrichment Analysis

We identified two, six, and two independent tissues that
demonstrated significantly enriched expressions of cross-
trait-associated genes shared between AD and insomnia, sleep
duration, and snoring, respectively (Figure 3). The main strongly
enriched tissues were part of the endocrine system, digestive
system, integumentary system, and musculoskeletal system
(including liver, testis, breast, skin, appendix, skeletal muscle,
and heart muscle tissues).

Functional Enrichment Analysis

Our results showed that genes shared between AD and insomnia
in the KEGG pathways were significantly enriched in
immunological disorders such as asthma (adjusted p = 1.45 x
107°), inflammatory bowel disease (adjusted p = 1.74 x 107°),
allograft rejection (adjusted p = 2.37 x 107), and type I diabetes
(adjusted p = 2.47 x 10™°), indicating the role in pathways related
to immune regulation (Figure 4). Additionally, in GO terms, the
genes shared between AD and sleep duration were enriched in
very-low-density lipoprotein particle clearance (adjusted p = 4.66
x 107'), triglyceride-rich lipoprotein particle clearance (adjusted
p = 1.53 x 1077), chylomicron remnant clearance (adjusted p =
153 x 1077), and positive regulation of T-cell-mediated
cytotoxicity (adjusted p = 1.91 x 107°), implicating that
processes involving immunity and lipid metabolism may
account for shared causes. Evidence of ClueGO log and
enrichment results are provided in Supplementary Tables
$10-S11 (Supplementary Results).

Potential Drug Target Genes and

Protein—Protein Interaction Analysis

Disease-related genes are natural candidates for drug
development in complex diseases (Zhao et al., 2015; Lee et al,,
2016). We further compared shared genes between AD and
insomnia identified from CPASSOC with known target genes

of AD and insomnia meditation using the TTD. Overall, eight
FDA-approved drugs were found for AD and corresponded to 11
target genes. For insomnia, 28 FDA-approved drugs were found
to correspond to 36 target genes (Supplementary Table S12).
None of them were included in the shared genes we identified. We
queried the STRING database for the interactions between the 47
drug target genes and the 15 shared genes (Figure 5). We
observed three shared genes had medium confidence (>0.40)
in interaction with nine drug target genes: APOE (shared gene)
interacting with ACHE, BCHE, ESRI, IL1B, MPO, DRD2, and
CHRNA4 (drug targets), MARK4 (shared gene) interacting with
GRIK4 (drug target), and HLA-DRA (shared gene) interacting
with CA2 (drug target). These gene interactions provide some
insights into potential target genes for identifying drug targets
from multi-omics datasets.

Causal Inference

We then used bi-directional MR analysis to test the causality
between AD and SRPs. Forward MR showed non-significant
instrumental effects of AD on three SRPs (Table 3), while
reversed MR showed there was robust evidence suggesting that
per-SD increase in genetic liability to insomnia was associated with
a higher risk of AD (ORpyw = 1.02, Piyw = 6.7 X 107, Table 3).
However, after adjusting for sleep duration and MDD, MVMR
showed no significant direct effect of genetic liability to insomnia
on AD (ORyymrivw = 1.03; p = 0.052, Table 4), implying a
potential mediating role of sleep duration and MDD in the
association of insomnia with AD. Direct effects are slightly
different from total effects but have directional consistency. In
our analyses, all heterogeneity p-values were non-significant
(Pheterogeneity > 0.01), indicating at worst only subtle
heterogeneity among retained instruments (Supplementary
Table S13). Sensitivity analysis for the main MR analysis using
weighted median, simple median, MR-RAPS, MR-Egger, and MR-
PRESSO suggested there was no systematic bias due to pleiotropy
(all Pyr_ggger > 0.05) (Supplementary Table $13). MR-Steiger
results showed that all the causal estimates were oriented in the
intended direction (all Pyjg.seiger < 0.05). Taken together, the
instrumental analysis suggested a potential causal role of the
increased risk of insomnia on a higher risk of AD.
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FIGURE 3 | Tissue enrichment for the consensus set. (A) Tissue enrichment analysis results of shared genes between AD and insomnia; (B) Tissue enrichment
analysis results of shared genes between AD and sleep duration. (C) Tissue enrichment analysis results of shared genes between AD and snoring. The vertical axis
illustrates the logarithm of fold change after the Benjamini-Hochberg correction. The horizontal axis illustrates 35 independent tissue types.
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FIGURE 4 | Functional enrichment for the consensus set. Functional enrichment analysis results using the ClueGO method in Cytoscape (Bindea et al., 2009). (A)
Functional enrichment analysis results of AD and insomnia in KEGG pathways. (B) Functional enrichment analysis results for AD and sleep duration in GO terms. Each
dot represented a gene, a GO term, or a KEGG pathway. Dots of the same color were considered to be from the same functional group by ClueGO annotation. Gene
names were highlighted in red. Each edge indicated the gene was a component gene of the linked GO term or KEGG pathway.

Single-Trait TWAS and Shared Genetics KATS8 might be associated with AD progression (Chen et al.,
Between AD and SRPs From the TWAS 2020).

We next went down to the gene level to examine the shared

TWAS genes between AD and related SRPs. In total, 2108 gene-

tissue pairs were found across 48 GTEx tissues to be significantly ~ DISCUSSION

associated with AD after BH correction, in addition to 551, 2227,

and 3313 gene-tissue pairs with insomnia, sleep duration, and ~ Our study has five main findings. First and foremost, we

snoring, respectively (Supplementary Figure $4). provided evidence that AD shared a genetic basis with
We identified nine, eight, and 77 TWAS-significant genes  insomnia, snoring, and sleep duration. Second, cross-trait
shared between AD and insomnia, sleep duration, and snoring, =~ meta-analysis identified independent shared loci between AD

respectively (Supplementary Tables S14-S16), most of which ~ and insomnia, snoring, or sleep duration, and functional
were observed in tissues from the immune system, cardiovascular ~ analysis highlighted that those shared loci were mainly
system, endocrine system, digestive system, and nervous system  enriched in the liver tissue and lipid metabolic system, as
(Figure 6). Restricting this list to shared genes with independent ~ well as the immune inflammatory system, and were involved
signals, we identified 30 genes that were TWAS-significant for =~ in immunological disorders, very-low-density lipoprotein
both AD and at least one of the SRP traits from tissues including ~ particle clearance, triglyceride-rich lipoprotein particle
the liver, brain, thyroid, skin, heart, and muscle (Supplementary  clearance, chylomicron remnant clearance, and positive
Tables S14-S16). Intriguingly and highly consistent with the  regulation of T-cell-mediated cytotoxicity pathways. Third,
results from CPASSOC, some loci were shared among AD and  PPI analysis identified three potential drug target genes that
related SRPs. For example, the PTPMT1I gene, located at 11p11.2,  interact with known FDA-approved drug target genes. Fourth,
was co-independently TWAS-significant for AD, insomnia, and ~ TWAS identified genes that were shared between AD and sleep
sleep duration and was simultaneously a prominent shared locus ~ phenotypes in tissue from the immune system, cardiovascular
among AD and sleep duration. PTPMT1 is a lipid phosphatase  system, endocrine system, digestive system, and nervous system.
that dephosphorylates mitochondrial proteins, which in turn  Fifth, bi-directional MR suggested that a higher risk of insomnia
regulates mitochondrial membrane integrity. Its expression is  was causally related to a higher risk of AD. Our findings advance
highly correlated in human brains, and this correlation is lost in ~ our understanding of the genetic contribution of AD and sleep
AD brains (Efthymiou and Goate, 2017). PTPMT1 was previously ~ patterns, provide insights into the potential regulatory role of
thought to have a role in the rhythmicity of the sleep cycle  shared inheritance whose function warrants follow-up, and
(Nohara et al,, 2020). Notably, we found KAT8 (16p11.2) was co-  elucidate the etiology and mechanisms underlying the co-
significant for AD and snoring and was also the most enriched =~ morbidity of AD and sleep disorders.

and significant gene in 48 tissues. KAT8 (lysine acetyltransferase Circadian rhythm disturbances have been suggested as
8) encodes a member of the MYST histone acetylase protein ~ biomarkers for clinical stage AD (Liguori et al, 2020). The
family. A study indicated that aberrant expression patterns of  findings of our genetic analyses were highly consistent,
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FIGURE 5 | Protein—protein interaction subnetworks identified by the Markov cluster algorithm. The protein-coding genes shared between AD and insomnia and
the FDA-approved AD and insomnia drug target genes were used to construct a functional similarity network of genes (see the Methods section). Nodes are colored to
show association. The thickness of lines connecting nodes indicates the strength of the association between nodes.

generally supporting the observational positive associations
between AD with insomnia (Sadeghmousavi et al., 2020) and
snoring (Kuo et al., 2020) and the negative associations with sleep
duration (Lutsey et al., 2018). We also observed that AD was
positively associated with napping (r; = 0.16, p = 1.61 x 107%), but
this significance disappeared after Bonferroni correction.
However, recent longitudinal studies have shown that men
with longer napping duration had greater cognitive decline
and a higher risk of cognitive impairment after adjustment for
all covariates (Leng et al., 2019). Mechanisms for this association
between AD and napping were unknown; it might be partially
explained by daytime napping which is a result of the erosion of
the area of the brain responsible for wakefulness by toxic tau
proteins, the accumulation of which ultimately leads to AD;
however, such a putative causal mechanism needs further
experimental validation (Leng et al., 2019).

Meanwhile, 31 independent SNPs from CPASSOC and 30
genes from independent TWAS signals of both AD and three
SRPs suggested potential functions relevant to AD. The loci
identified in both the CPASSOC and TWAS analysis revealed
potential shared biological mechanisms in AD progress and SRP
regulation involving immunological disorders, very-low-density
lipoprotein particle clearance, triglyceride-rich lipoprotein
particle clearance, chylomicron remnant clearance, and
positive regulation of T-cell-mediated cytotoxicity pathways.
Consequently, we highlighted the potentially interesting
functions of the novel associations for PRL (6p22.3) between
AD and snoring, as well as the focused PTPMT1(11p11.2) and
KAT8(16p11.2) regions shared between AD and insomnia or
sleep duration.

Shared genes associated with AD and SRPs were enriched
for expressions in most liver and brain tissues, indicating that
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TABLE 3 | Causal inference between Alzheimer's disease and sleep-related phenotypes using two-sample MR.

Outcome Direction Method
Insomnia Forward Simple median
Forward Weighted median
Forward MR-Egger
Forward Inverse-variance weighted
Forward MR-RAPS
Forward MR-PRESSO
Reverse Simple median
Reverse Weighted median
Reverse MR-Egger
Reverse Inverse-variance weighted
Reverse MR-RAPS
Reverse MR-PRESSO
Sleepdur Forward Simple median
Forward Weighted median
Forward MR-Egger
Forward Inverse-variance weighted
Forward MR-RAPS
Forward MR-PRESSO
Reverse Simple median
Reverse Weighted median
Reverse MR-Egger
Reverse Inverse-variance weighted
Reverse MR-RAPS
Reverse MR-PRESSO
Snoring Forward Simple median
Forward Weighted median
Forward MR-Egger
Forward Inverse-variance weighted
Forward MR-RAPS
Forward MR-PRESSO
Reverse Simple median
Reverse Weighted median
Reverse MR-Egger
Reverse Inverse-variance weighted
Reverse MR-RAPS
Reverse MR-PRESSO

N_snp Causal_Effect_Size® SE p_value
24 -0.048 0.076 5.24E-01
24 -0.022 0.073 7.59E-01
24 -0.122 0.091 1.91E-01
24 -0.029 0.058 6.20E-01
24 -0.036 0.055 5.10E-01
24 -0.029 0.058 6.25E-01
201 0.023 0.006 1.18E-04
201 0.017 0.006 7.54E-03
201 -0.02 0.018 2.65E-01
201 0.021 0.005 6.70E-06
201 0.021 0.005 1.20E-05
201 0.021 0.005 1.14E-05
24 -0.035 0.039 3.69E-01
24 -0.067 0.033 4.08E-02
24 -0.088 0.038 2.78E-02
24 -0.049 0.024 3.67E-02
24 -0.05 0.024 3.83E-02
24 -0.049 0.018 1.04E-02
43 -0.031 0.034 3.66E-01
43 -0.021 0.083 5.24E-01
43 -0.115 0.066 8.78E-02
43 -0.049 0.023 3.58E-02
43 -0.052 0.024 2.88E-02
43 -0.049 0.023 4.18E-02
24 0.101 0.084 2.28E-01
24 -0.029 0.073 6.86E-01
24 -0.156 0.115 1.89E-01
24 -0.049 0.073 5.01E-01
24 -0.089 0.065 1.70E-01
24 -0.049 0.073 5.08E-01
32 0.032 0.018 8.30E-02
32 0.031 0.018 7.59E-02
32 -0.068 0.093 4.71E-01
32 0.029 0.014 4.60E-02
32 0.029 0.014 4.40E-02
32 0.029 0.014 5.48E-02

Sleepdur, sleep duration; MR, Mendelian randomization; Direction, forward means the causal effect size of Alzheimer’s disease on sleep-related phenotypes, and reverse means the causal
effect size of sleep-related phenotypes on Alzheimer’s disease; N_snp, number of instrumental variables; The threshold of significance was set at the Bonferroni-adjusted level of p-value <

0.016 (0.05/3). Abbreviations as in Table1.

aThe causal effect size was the beta coefficient from linear or logistic regression models for the corresponding outcome.

TABLE 4 | Multivariable Mendelian randomization of insomnia and Alzheimer’s disease adjusted for sleep duration and major depression.

Exposure Outcome BETA SE P

Insomnia AD 0.025 0.013 0.052
Sleepdur -0.030 0.025 0.239
MDD 0.017 0.009 0.078

F-stat Q-stat for instrument p-value for instrument
validity validity
4.4 344 5.72E-05
4.6
4.6

Note: Sleepdur: sleep duration; MDD: major depression; SE = standard error; Q-stat: Cochran’s Q statistic; F-stat: conditional F-statistic.

these disorders might be caused by malfunctions of the
endocrine system and nervous system. For example, PRL
can influence the sleep structure, and PRL-deficient mice
display less rapid eye movement (REM) sleep than wild-
type mice (Machado et al., 2017). Molina-Salinas et al. have
shown that PRL can inhibit glutamate excitotoxicity through
the AKT and STATS5 pathways, thereby protecting neuronal
cells and decreasing the progression of Alzheimer’s disease

(Molina-Salinas et al., 2021). Evidence has suggested that the
somatostatin expression is downregulated in early aging brains
in snoring samples, leading to a progressive decrease in PRL
and neprilysin activity and resulting in amyloid b (Ab) peptide
accumulation in AD patients (Cao et al., 2021). Additionally,
PTPMTI is localized to mitochondria via an N-terminal
signaling sequence and is found anchored to the stromal
surface of the inner membrane. The study shows that
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activation of protein tyrosine phosphatase (PTP) hastened the
progression of AD (Stewart and Chen, 2020). W. Lutz et al.
identified PTPMTI as a common signal in AD and a major
depressive disorder, which showed a consistent moderate
expression in brain tissues (Lutz et al., 2020). A highly
promising candidate gene is KATS, as the dominant SNP at
16p11.2 is located within the third intron of KATS, and
multiple important variants within this locus affect the
expression or methylation levels of KAT8 in multiple brain
regions, including the hippocampus (Li et al., 2020). The
chromatin modifier KATS is regulated by KANSLI, a gene
associated with AD deficient in Apoe4. A study on Parkinson’s
disease reported that KATS8 is a potentially causal gene based
on GWAS and differential gene expression, implying that
KAT8 may have a common role in the neurodegeneration
of AD and Parkinson’s disease (Dumitriu et al., 2016).
Although previously reported information on gene function
may be of great value, it is best to consider all implicated genes
as putative causal factors to guide potential functional follow-
up experiments.

Our MR analysis does not support a causal effect of sleep
duration on AD risk. Notably, growing evidence suggests a
J-shaped association between sleep duration and AD,
suggesting that the causal effect in the long-sleeper group was
larger than in the short-sleeper group (Henry et al., 2019; Leng
et al., 2021). Apparent inconsistencies between our findings and
previous MR studies may be partly due to different definitions,
diagnostic criteria, and forms of characterization of AD (such as
cognitive impairment, memory loss, reaction time, and so on)
(Henry et al.,, 2019), different types of data (individual-level data
or summary-level data) (Henry et al, 2019), different MR
methods (linear MR or non-linear MR) (Henry et al.,, 2019),
or different statistical analysis methods (genetic risk score) (Leng
et al, 2021). In addition, MR provided strong evidence that
insomnia is associated with a higher risk of AD. The
pathogenic processes through which insomnia increases the
likelihood of developing AD may entail abnormal AP
deposition or an imbalance in the neurotransmitter regulating
system. Neurons in the physiological state release AP, and AP
levels in the brain fluctuate from day to day: secretion increases
during wakefulness and decreases during sleep; a decrease in low-
quality sleep or slow-wave sleep increases the cortical neuronal
activity and also increases the release of AP compared to high-
quality sleep (Ju et al, 2014). Studies have found that having
adequate sleep is beneficial in eliminating A4, levels in the
cerebrospinal fluid, while insomnia causes impaired clearance
(Ooms et al., 2014). Furthermore, certain excitatory or inhibitory
neurotransmitters have been shown in studies to be involved in
the regulation of sleep and wakefulness, promoting
neuroplasticity and memory formation, and these transmitters
play an important role in individual learning and memory
consolidation (Leiser et al., 2015; Atucha et al., 2017; Niwa
et al., 2018), while insomnia will affect the balance of the
transmitters and affect the brain’s memory function in the
long run. However, we found no causal relationship between
AD and insomnia, whereas a recent MR study conducted by
Huang et al. found that a higher risk of AD was associated with a
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lower risk of insomnia (OR: 0.99, Py = 7 x 10713) (Huang et al.,
2020). Given the consistency in population, sample size, and
statistical methods between the study by Huang et al. and the
present study, we consider that the difference in results is due to
the fact that Huang et al. adopted F-statistic > 10 to filter
exposure-related SNPs to reduce the weak instrumental bias of
using genotype data (Huang et al., 2020). Finally, there was little
evidence to support a causal effect of sleep duration and snoring
on AD risk; this finding is consistent with recent research studies
(Huang et al., 2020; Anderson et al., 2021). Our findings add to
previous evidence that insomnia pathologically leads to elevated
Ap levels in the cerebrospinal fluid and induces aggregation of A
peptides and tau proteins (Di Meco et al., 2014; Chen et al., 2018).
There are also suggestive results reinforcing the evidence that AD
pathology leads to increased wakefulness and high sleep
fragmentation in transgenic mouse models (Roh et al., 2012)
and results in neuronal loss of the suprachiasmatic nucleus
(SCN), the master circadian clock of mammals, and the locus
coeruleus, which are essential for maintaining normal
wakefulness (Wang et al., 2015). Mechanisms underlying the
causality between SRPs and AD remain to be elucidated.

Our study has notable strengths. Specifically, we used data from
the largest GWAS available for each trait or disorder, and we
explored a wide range of SPRs. Second, we leveraged
SUPERGNOVA and GNOVA to assess the local genetic
correlation and annotation-specific genetic correlation between
AD and seven SRPs, respectively. SUPERGNOVA has stronger
statistical performance than HESS, and GNOVA provides more
accurate genetic covariance estimates and powerful statistical
inference than LDSC. Third, the identification of potential target
genes through PPI analysis provides a new perspective on the shared
structure. Fourth, we conducted cross-trait meta-analysis using
CPASSOC, which is robust to heterogeneous effects and overlaps
samples between two phenotypes. Nevertheless, there are several
potential limitations to our study. First, although TWAS increased
the power to detect significant expression trait associations, the
relatively smaller sample size for metabolic traits and GTEx reference
panels in certain tissues may be inadequate to detect signals with
small to moderate effects. Second, despite the large sample sizes of
the consortium-based meta-analysis studies, there were differences
in the sample size and number of SNPs among different studies.
Therefore, the enrichment of SNPs with potential common effects
may be lower for traits with relatively few loci and samples in the
source studies. Third, some of the observed associations may not be
due to independent effects of the same locus on AD and SRPs but
rather due to correlations of traits in the causal pathway or through
other unmeasured traits. Fourth, our study was limited to European
ancestry, and the shared genetics in other ethnic groups are
uncertain. Therefore, future research in other ethnic groups is
encouraged. More work is needed to identify individual cell types
and more detailed molecular mechanisms with the goal of
developing potential therapeutic strategies.

In conclusion, our study provides strong evidence of genetic
correlations and causality between AD and sleep patterns and
identifies genetic loci associated with both AD and SRP risk, thus
providing therapeutic opportunities to improve sleep quality and
lower the risk of AD. Our results further advance our
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understanding of AD and provide insight into the shared etiology
of comorbid AD and sleep disorders.
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