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Short read 16 S rRNA amplicon sequencing is a common technique used in microbiome
research. However, inaccuracies in estimated bacterial community composition can occur
due to amplification bias of the targeted hypervariable region. A potential solution is to
sequence and assess multiple hypervariable regions in tandem, yet there is currently no
consensus as to the appropriate method for analyzing this data. Additionally, there are
many sequence analysis resources for data produced from the Illumina platform, but fewer
open-source options available for data from the Ion Torrent platform. Herein, we present an
analysis pipeline using open-source analysis platforms that integrates data from multiple
hypervariable regions and is compatible with data produced from the Ion Torrent platform.
We used the ThermoFisher Ion 16 S Metagenomics Kit and a mock community of twenty
bacterial strains to assess taxonomic classification of six amplicons from separate
hypervariable regions (V2, V3, V4, V6-7, V8, V9) using our analysis pipeline. We report
that different amplicons have different specificities for taxonomic classification, which also
has implications for global level analyses such as alpha and beta diversity. Finally, we utilize
a generalized linear modeling approach to statistically integrate the results from multiple
hypervariable regions and apply this methodology to data from a representative clinical
cohort. We conclude that examining sequencing results across multiple hypervariable
regions provides more taxonomic information than sequencing across a single region. The
data across multiple hypervariable regions can be combined using generalized linear
models to enhance the statistical evaluation of overall differences in community structure
and relatedness among sample groups.
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INTRODUCTION

Next generation sequencing of microbial DNA has become an
important tool used for determining relationships between
human-associated microbial populations and various diseases.
Most studies in this realm rely on either shotgun metagenomic
sequencing or 16 S ribosomal RNA (rRNA) amplicon sequencing.
Shotgun metagenomic sequencing involves sequencing random
fragments of sample DNA which contains a mixture of bacterial
DNA, as well as host and other microbial and environmental
DNA (Quince et al., 2017). This method allows for taxonomic
profiling, metabolic function profiling, and antibiotic resistance
gene profiling; however, it is generally more expensive than
amplicon sequencing, and requires a larger amount of input
DNA and the availability of reference genome sequences.
Bacterial 16 S rRNA amplicon sequencing employs PCR
amplification of specific hypervariable regions within the gene,
followed by deep sequencing (Sanschagrin and Yergeau, 2014).
This method is generally a quicker, cheaper alternative to shotgun
metagenomics; however, it only identifies bacteria and the typical
strategy only sequences a specific fragment of the bacterial 16 S
rRNA gene (Ranjan et al., 2016). While functional information
can be inferred from taxonomic classification using tools such as
UniRef and KEGG Orthology, the genetic elements contributing
to these functions themselves are not sequenced. The 16 S rRNA
gene is comprised of 9 hypervariable regions (V1-V9), and most
primers used for next generation sequencing only target one to
two hypervariable regions at a time. Multiple studies have shown
that different regions vary in their taxonomic utility due to a
combination of primer bias, differential hypervariable region
sequence length, and hypervariable region sequence
uniqueness across bacterial taxa (Claesson et al., 2010; Pinto
and Raskin, 2012; Cai et al., 2013; Tremblay et al., 2015; Barb
et al., 2016). An ideal solution would be to sequence the entire
16 S rRNA gene, however this technique is more costly and access
to this technology is limited compared to traditional 16 S rRNA
sequencing. Therefore, a potential alternative would be to
perform 16 S rRNA amplicon sequencing on multiple regions
and incorporate information from as many hypervariable regions
as possible into downstream data analysis.

The Ion 16 S™ Metagenomics Kit (Life Technologies) utilizes
six sets of primers spanning seven different hypervariable regions:
V2, V3, V4, V6-7, V8, and V9. This is an attractive approach
because it yields more sequence information across the 16 S
rRNA gene overall. However, there is currently little consensus
as to how to properly analyze information from multiple
hypervariable regions and obtain overall results. Current
analysis pipelines for Ion Torrent data include the Ion
Reporter Software offered by ThermoFisher, and an alternative
method using open access tools developed by Barb et al. (Barb
et al., 2016). The utility of Ion Reporter Software is limited; for
example, users are unable to incorporate study-specific metadata
into analyses, and exported processed data is devoid of previous
analysis information, preventing downstream analysis with open-
source tools. Barb et al. offer methods for taxonomic
identification; however, they do not address the question of
how to appropriately integrate data from multiple

hypervariable regions in downstream analyses. Recently, Fuks
et al. (Fuks et al., 2018) and Debelius et al. (Debelius et al., 2021)
developed methods to computationally combine data from
multiple hypervariable regions to provide a joint estimate of
the microbial community composition. To date, however,
there is no generally agreed upon approach for combining
sequences from multiple hypervariable regions for downstream
analyses, especially for less commonly used 16 S rRNA gene
sequencing platforms such as Ion Torrent.

Herein, we developed an analysis pipeline that analyzes data
from each hypervariable region separately, allowing for
systematic comparison of taxonomic classification by
hypervariable region. We demonstrate our results from
analyzing a mock community of bacterial DNA where we
determine how each hypervariable region differs in its utility
to provide information on taxonomic classifications, alpha
diversity, and beta diversity. We report that certain taxa are
only identified by particular hypervariable regions, corroborating
prior studies (Claesson et al., 2010; Pinto and Raskin, 2012; Cai
et al., 2013; Tremblay et al., 2015; Barb et al., 2016) and
supporting our hypothesis that there is a benefit to
incorporating multiple primer sets into sequencing strategies.
Furthermore, we discuss different options for downstream
analysis and statistics, and demonstrate that using a
generalized linear model (GLM) to statistically combine results
from multiple hypervariable regions increases sensitivity of
taxonomic classification. Finally, we demonstrate the utility of
our approach in the analysis of clinical samples in an illustrative
clinical cohort.

MATERIALS AND METHODS

Mock Community
The 20 Strain Even Mix Genomic Material was obtained from
American Type Culture Collection (ATCC, Cat. No. MSA-1002,
Manassas, VA). The strain composition of the mock community
is given in Table 1. The mock community was sequenced a total
of five times from four library preparations and over three
sequencing runs.

Clinical Sample Collection
All specimens were studied under an Institutional Review Board
(IRB) approved protocol with written informed consent. A total
of three (3) adult males self-collected two (2) rectal swab samples
each with sterile flocked swabs (Cat. No. 552C, Copan
Diagnostics, Murrieta, CA). One rectal swab from each
individual was randomly selected for DNA extraction
immediately after sample collection (RS1). The other swab
(RS2) was frozen at –80°C for 6 days before DNA extraction.

DNA Extraction
The DNA extraction protocol was adapted from our previously
published protocol (Shrestha et al., 2018). Briefly, rectal swab
fecal material was resuspended in 500 µl of 1X phosphate buffered
saline (PBS) (Cat. No. 21-031-CV, Corning, Manassas, VA).
Samples were then digested in a cocktail of lysozyme (10 mg/
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ml, Cat. No. L7773, Sigma-Aldrich, St. Louis, MO) and
mutanolysin (25 KU/ml, Cat. No. M4782, Sigma-Aldrich, St.
Louis, MO) for 1 h at 37°C. The contents of the tubes were then
transferred into FastPrep Lysing Matrix B tubes (Cat. No.
6911050, MP Biomedicals, Santa Ana, CA). Next, 20% SDS
(Cat. No. 05030, Sigma-Aldrich, St. Louis, MO) and phenol:
chloroform:isoamyl alcohol (25:24:1, Cat. No. 108-95-2,
ThermoFisher Scientific, Waltham, MA) were added and
samples were homogenized by bead beating in an MP
FastPrep-24 at 6 m/s for a total of 60 s. DNA was precipitated
and resuspended in a final volume of 50 μl of DNA-free water
(Cat. No. P-020-0003, Molzym, Bremen, Germany).

Library Preparation
Concentration of DNA from the mock microbial community
(Table 1) and rectal swabs was measured using a Qubit dsDNA
HS (high sensitivity) kit (Cat. No. Q32851, Life Technologies,
Carlsbad, CA). Libraries were prepared using the Ion 16 S™
Metagenomics Kit (Cat. No. A26216, ThermoFisher Scientific,
Waltham, MA). Briefly, 10 ng of DNA was mixed with 15 µl of
Environmental Master Mix. 3 µl of each 16 S Primer Set (10X)
was added to each tube, one sample set with primers for V2-4-8
(Pool 1) and the other with primers for V3-6,7-9 (Pool 2).
Samples were placed in a thermocycler with the following
thermal conditions: 95°C for 10 min; then 25 cycles of 95°C for
30 s, 58°C for 30s, 72°C for 30 s; and finally 72°C for 7 min.
Amplification products were purified using AMPure XP beads
(Cat. No. A63881, Beckman Coulter, Pasadena, CA) and eluted
in nuclease free water. Concentrations of amplification
products from Pool 1 and Pool 2 were measured using a
Bioanalyzer High Sensitivity DNA Kit (Cat. No. 5067-4626,
Agilent Technologies, Santa Clara, CA), and the two pools
were combined for a total of 100 ng of DNA (50 ng from each
pool).

Next, 20 µl of 5X End Repair Buffer and 1 µl of End Repair
Enzyme were added to each sample, and then incubated for
20 min at room temperature. Pooled amplicons were then
purified again using AMPure XP beads and eluted in Low TE
buffer. Ligation and nick repair were performed using ×10 Ligase
Buffer, Ion P1 Adaptor, Ion Xpress Barcodes, dNTP Mix, DNA
Ligase, Nick Repair Polymerase, nuclease-free water, and sample
DNA with the following thermal conditions: 25°C for 15 min,
72°C for 5 min. Adapter-ligated and nick-repaired DNA was then
purified using AMPure XP beads and eluted in Low TE buffer.

The library was then amplified using the Ion Plus Fragment
Library Kit (Cat. No. 4471252, ThermoFisher Scientific) with the
following thermal conditions: 95°C for 5 min; then 7 cycles of
95°C for 15 s, 58°C for 15 s, 70°C for 1 min; and then finally 70°C
for 1 min. The amplified library was then purified using AMPure
XP beads and eluted in Low TE buffer. Library concentrations
were measured using a Bioanalyzer and the High Sensitivity DNA
Kit. Libraries were then diluted down to 26 pM and pooled,
yielding a 26 pM solution.

Sequencing
Libraries were prepared for sequencing using oil amplification to
template the libraries onto beads and loaded onto chips using the
Ion Chef Instrument and the Ion 520™ & Ion 530™ Kit–Chef
(ThermoFisher Scientific). Chips were then loaded onto the Ion
GeneStudio S5 System along with Ion S5 Sequencing Kit reagents
(Cat. No. A35850, ThermoFisher Scientific, Waltham, MA) and
sequenced at the Sidney Kimmel Comprehensive Cancer Center
Experimental and Computational Genomics Core facility.
Samples in this study were sequenced across three separate
sequencing runs on Ion 520 and Ion 530 chips using 400bp
sequencing kits. Sequences were demultiplexed by sample using
the S5 device software, and then separated per hypervariable
region by ThermoFisher prior to downstream analysis.

TABLE 1 | Contents of mock community.

Species 16S copiesa Genus Family

Acinetobacter baumannii 6 Acinetobacter Moraxellaceae
Actinomyces odontolyticus 2 Actinomyces Actinomycetaceae
Bacillus cereus 12 Bacillus Bacillaceae
Bacteroides vulgatus 7 Bacteroides Bacteroidaceae
Bifidobacterium adolescentis 5 Bifidobacterium Bifidobacteriaceae
Clostridium beijerinckii 14 Clostridium Clostridiaceae
Cutibacterium acnes 4 Cutibacterium Propionibacteriaceae
Deinococcus radiodurans 7 Deinococcus Deinococcaceae
Enterococcus faecalis 4 Enterococcus Enterococcaceae
Escherichia coli 7 Escherichia Enterobacteriaceae
Helicobacter pylori 2 Helicobacter Helicobacteraceae
Lactobacillus gasseri 6 Lactobacillus Lactobacillaceae
Neisseria meningitidis 4 Neisseria Neisseriaceae
Porphyromonas gingivalis 4 Porphorymonas Porphyromonadaceae
Pseudomonas aeruginosa 4 Pseudomonas Pseudomonadaceae
Rhodobacter sphaeroides 3 Rhodobacter Rhodobacteraceae
Staphylococcus aureus 6 Staphylococcus Staphylococcaceae
Staphylococcus epidermidis 5 Staphylococcus Staphylococcaceae
Streptococcus agalactiae 7 Streptococcus Streptococcaceae
Streptococcus mutans 5 Streptococcus Streptococcaceae

aNumber of copies of 16S rRNA genes contained in the bacterial genome of the indicated species.
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Data Processing
Primer sequences are not made available to Ion 16 S™
Metagenomics Kit users. Therefore, FASTQ files had to be
separated by primer set by the ThermoFisher Bioinformatics
team, resulting in six separate FASTQ files per sample (V2,
V3, V4, V6-7, V8, and V9), with primer sequences removed
and all reads oriented in the forward direction.

Manifest files were then created for each hypervariable region and
each sequencing run. FASTQ files were imported into QIIME2
format via qiime tools import in SingleEndFastqManifestPhred33V2
format (Bolyen et al., 2019). QIIME2 v 2020.6 was used to perform
denoising, Operational Taxonomic Unit (OTU) clustering,
taxonomic classification, phylogenetic tree construction, and
alpha and beta diversity.

DADA2 was used to denoise data, using the denoise-pyro plugin
and parameters of 0 bp for trimming and truncation (Callahan et al.,
2016). A separate DADA2 run was performed for each hypervariable
region and each sequencing run. Denoising statistics were then
summarized and exported to P03-summarize-qc and P13-
summarize-qc directories in the analysis folder of the it-workflow
repository for the ATCC mock community samples and the clinical
samples, respectively. From these summaries, we determined that all
samples in all hypervariable regions had a minimum of 10,000 reads
which passed the filter in the DADA2 step. Good’s coverage was
performed at a depth of 10,000 reads for each hypervariable region
and at least 99% coverage was achieved for all regions (Good, 1953).
Thus, we decided that 10,000 readswas an acceptable sampling depth.
DADA2 feature tables and representative sequence files were then
merged across sequencing runs so that there was only one feature
table and representative sequence file per hypervariable region.

Open-reference OTU clustering was then performed using
QIIME2 plugin vsearch cluster-features-open-reference
(Bokulich et al., 2018). A threshold of 99% identity was used,
and sequences were clustered against reference sequences from
the curated sfanos_db_v4.0 database as described below.

Alpha and Beta Diversity Analysis
Aphylogenetic treewas constructed for each hypervariable region using
the “representative sequences” file generated from open-referenceOTU

clustering via the QIIME phylogeny align-to-tree-mafft-fasttree plugin
(Faith et al., 1987; Price et al., 2010; Katoh and Standley, 2013).
Community diversity was analyzed using the core-metrics-
phylogenetic plugin. Briefly, the feature table produced by open-
reference OTU clustering and the phylogenetic trees constructed in
the previous step were input into the core-metrics-phylogenetic plugin,
which performed alpha and beta diversity analyses at a sampling depth
of 10,000 reads. Alpha diversity summaries were obtained and exported
for Faith’s phylogenetic diversity, Shannon diversity (Shannon, 2001),
evenness, and observed OTUs. Distance matrices were exported for
Jaccard (Jaccard, 1908), Bray-Curtis (Sorensen, 1948), weighted
UniFrac (Lozupone et al., 2007), and unweighted UniFrac
(Lozupone and Knight, 2005) distances. Data was imported into
Rstudio for visualization of alpha diversity metrics and principal
coordinates analysis (PCoA). Taxonomic classification results from
each hypervariable region were aggregated into summary tables at
higher taxonomic levels (phylum through species) for downstream
comparative analysis. Beta-diversity distance matrices (using the
measures bray-curtis, jaccard, unweighted-unifrac, and weighted-
unifrac) were based on OTU profiles and were generated for each
hypervariable region separately to account for region-specific OTUs.
Additionally, amulti-region beta-diversity analysis incorporated species
level assignments across all hypervariable regions, followed by distance
matrix calculation (Canberra, Bray-Curtis, Jaccard, Euclidean, Gower,
and Kulczynski) using the vegdist command in the vegan R package.

Database Curation
It is well known that curating existing taxonomic databases can lead to
improved performance (Ritari et al., 2015; Clemmons et al., 2019;Myer
et al., 2020). Therefore, uncultured and unclassified sequences were
removed from the SILVA (v.123) database to eliminate sequences that
have no practical value in taxonomic assignment. This refined database
(sfanos-db-4.0) contains approximately 15,000 named species.

In Silico Taxonomic Validation of Curated
Database
Prior to using sfanos-db-4.0 for taxonomic classification, we
verified its utility by performing in silico taxonomic

FIGURE 1 | Schematic diagram of workflow. The four major steps in our workflow include 1) sample handling, from sample collection to sequencing 2) pre-
processing of sequencing data and taxonomic reference database 3) performing microbiome bioinformatics using QIIME2 and 4) statistical analysis of results using R.
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classification using sequences from a published human gut
microbiome culture collection (Forster et al., 2019). First, we
separated the sequences in the culture collection by hypervariable
region to mimic our own data. To do this, we ran the sequences
from the culture collection through NCBI BLAST against the
ATCCmock community sequences that had already been split by
hypervariable region. This method allowed us to break down the
culture collection sequences into their different hypervariable
regions and simulate more complex clinical data. A 1% noise rate
was included in the simulated sequences to mimic typical
evolutionary variation in species as well as sequencing error.
We then ran taxonomic classification of the sequences from the
culture collection using our curated database, with a threshold of
97% sequence identity. A confidence score was assigned to each
classification by VSEARCH. Results were categorized into true
positives (TP), false positives (FP), and false negatives (FN) based
on whether they were found in the culture collection or not
(Supplementary File S1). Sequence assignment counts were
converted to percent by adding up the total number of
sequences that were assigned as TP, FP, or FN for each V
region, dividing by the total number of sequences for that
region, and multiplying by 100.

Taxonomic Classification
Taxonomic classification was performed using classify-
consensus-vsearch using the curated sfanos_db_v4.0 reference
reads and reference taxonomy with 99% identity. The output. qza
file was then exported in order to obtain the taxonomy. tsv file.

This file and the feature-table. biom file were used in a Perl script
designed to summarize the taxonomic information into feature-
table-with-taxonomy.txt. Heatmaps were created in R using the
pheatmap package and taxa-normalize-pct-per-region.txt file.

Contaminant Filtering
Contaminant sequences were filtered out from the ATCC sample
data. Any taxa that were detected in only one of the five technical
replicates, detected at less than 0.1% abundance, or both, was
considered a contaminant. Filtering was performed on the feature
table that was created after open reference OTU clustering using
QIIME taxa filter-table. Contaminants are listed in
Supplementary Table S1.

Generalized Linear Modeling
We used the generalized linear model function in Base R to
evaluate statistical differences in alpha diversity and individual
taxonomic abundance between fresh versus frozen samples in the
clinical cohort. The GLM per feature took the following structure:
log10(feature) ~ fresh/frozen status + specimen ID + hypervariable
region. Regions V8 and V9 were excluded from GLM analysis,
and Region V2 was used as the null factor level. The fresh/frozen
status of samples was compared, with fresh as baseline factor level
set as zero and frozen set as one. The input of “feature” was either
an alpha diversity value (Shannon, evenness, observed OTUs or
Faith’s phylogenetic diversity), or taxonomic abundance of a
feature at a specific taxonomic level. Input feature values were
log transformed in order to increase stability of values from

FIGURE 2 | Alpha diversity analyses of mock community technical replicates by hypervariable region. Evenness (A), Faith’s phylogenetic diversity (B), Observed
Operational Taxonomic Units (OTUs) (C), Shannon diversity (D). Statistical analysis and p values can be found in Supplementary File S2.
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person to person when performing statistics. The GLM p-value
was obtained by comparing the GLM factor level coefficient to the
null hypothesis of zero, which was done via a Wald Test.

Data and Code Availability
All sequence files are available in the NCBI Sequence Read
Archive (SRA) under Bioproject ID PRJNA738491 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA738491). All codes are
available on the public GitHub repository it-workflow (http://
github.com/Sfanos-Lab-Microbiome-Projects/it-workflow/).

RESULTS

Mock Community
In order to test our analysis pipeline (Figure 1) we prepared
libraries and sequenced DNA from a mock microbial community
(Table 1). A total of five independent replicates from four library

preparations of the mock community were sequenced over three
sequencing runs. We filtered out low-level contaminants
(Supplementary Table S1) prior to performing community
alpha and beta diversity and taxonomic abundance analyses
(see Methods).

We analyzed four different alpha diversity metrics: two
measures of evenness (evenness and Shannon diversity), and
two measures of richness (Faith’s phylogenetic diversity and
observed-OTUs) (Figure 2). V9 had significantly decreased
alpha diversity compared to all regions across all metrics
(Supplementary File S2). V8 also had significantly decreased
Shannon diversity, evenness, and Faith’s phylogenetic diversity
compared to other regions excluding V9, with two exceptions
being that Evenness was not significantly decreased in V8
compared to that of V6-7 and Faith’s PD is not significantly
decreased in V8 compared to V4 (Supplementary File S2).

To compare beta diversity between hypervariable regions and
circumvent the issue that OTUs would be region-specific, we used

FIGURE 3 | Principal coordinates analysis of mock community samples. PCoA plots are based on distance matrices for (A) Bray-Curtis, (B) Euclidean, (C)Gower,
(D) Jaccard, (E) Kulczynski, and (F) Canberra.
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FIGURE 4 | Species-level taxonomic barplots of ATCC 20 Strain Mix sequencing results by 16S rRNA hypervariable region. Bolded taxa are those present in the 20
strain mix. Enterobacteriaceae unassigned1, Bifidobacterium unassigned2, Staphylococcus unassigned3, Enterococcus unassigned4, Clostridium sensu stricto 1
unassigned5, Enterobacter unassigned6.

TABLE 2 | Observed species rRNA gene abundance denoted as percent of total.

Species Expected V2 V3 V4 V6-7 V8 V9

Acinetobacter baumannii 5.26 6.23 6.06 6.82 0.11 10.90 46.15
Actinomyces odontolyticus 1.75 1.75 0.27 1.51 0.97 1.54 0.00
Bacillus cereus 10.52 5.20 10.29 6.97 6.99 1.21 0.00
Bacteroides vulgatus 6.14 13.11 8.19 12.48 18.57 0.00 0.00
Bifidobacterium adolescentis 4.39 5.37 0.00 4.22 0.00 5.85 0.00
Clostridium beijerinckii 12.28 0.00 0.00 0.00 19.94 0.12 0.00
Deinococcus radiodurans 6.14 9.88 0.00 1.47 3.29 6.31 0.00
Enterococcus faecalis 3.51 1.97 3.41 0.00 1.53 3.88 0.00
Escherichia coli 6.14 5.64 6.52 4.77 8.29 0.00 53.73
Helicobacter pylori 1.75 5.70 2.24 2.90 2.68 0.51 0.00
Lactobacillus gasseri 5.26 4.45 7.21 0.00 0.00 0.00 0.00
Neisseria meningitidis 3.51 5.14 4.13 6.05 0.00 9.07 0.00
Porphyromonas gingivalis 3.51 2.85 5.83 7.77 8.83 0.00 0.00
Propionibacterium acnes 3.51 1.35 0.27 0.17 1.97 6.04 0.00
Pseudomonas aeruginosa 3.51 5.20 5.58 2.79 2.00 7.62 0.00
Rhodobacter sphaeroides 2.63 3.75 4.10 3.83 2.87 12.88 0.00
Staphylococcus aureus 5.26 3.19 5.44 5.71 3.00 2.08 0.00
Staphylococcus epidermidis 4.39 3.44 5.40 0.00 2.49 0.23 0.00
Streptococcus agalactiae 6.14 1.89 6.31 5.46 3.06 0.00 0.00
Streptococcus mutans 4.39 0.87 5.47 4.81 2.09 8.03 0.00
Total Species Identified 20 19 17 16 17 15 2
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taxonomic results from each hypervariable region to create
aggregated distance matrices. We assessed six different beta
diversity metrics: Canberra, Bray-Curtis, Jaccard, Euclidean,
Gower, and Kulczynski. Figure 3 shows PCoA plots based on
six different beta diversity metrics: Bray-Curtis (Figure 3A),
Euclidean (Figure 3B), Gower (Figure 3C), Jaccard
(Figure 3D), Kulczynski (Figure 3E), and Canberra
(Figure 3F). In the plot based on the Canberra distance
matrix (Figure 3F), the V2, V3, V4, and V6-7 hypervariable
regions clustered together, whereas V8 and V9 were distantly
separated. This pattern was also observed by the other beta
diversity metrics, with V6-7 sometimes also segregating
slightly from V2, V3, and V4 which were largely clustered
together.

In addition to biodiversity measurements and beta diversity
metrics, the percent abundance of the identified organisms after
taxonomic classification was evaluated and is given in
Supplementary File S3. The majority of species were
identified by taxonomic classification of the sequences
covering each hypervariable region, with the exception of V9

that only positively identified Escherichia coli and Acinetobacter
baumannii. Clostridium beijerinckii was the most difficult
organism to speciate and was only correctly classified in V6-7
amplicons. The results with hypervariable regions V2, V3, and V4
only identified Clostridium beijerinckii at the genus level, V8 mis-
classified it as Clostridium butyricum, and V9 did not identify any
Clostridial organisms (Supplementary File S3). Aside from C.
beijerinckii, species misclassification varied by hypervariable
region.

We next compared observed versus expected percent
abundance by hypervariable region. There are 114 copies of
the 16 S rRNA gene in the bacterial genomes comprising the
mock community. Therefore, the expected abundance of a
given species’ rRNA gene is the number of copies in its
genome (Table 1), divided by 114. Taxonomic bar plots
demonstrate the percent abundance of each taxon by
hypervariable region compared to expected (Figure 4). V2
most closely approximated the overall distribution of species
compared to expected and correctly assigned the most species
from the mock community (19/20). V3 (17/20), V6-7 (17/20),

FIGURE 5 | Species-level clustered heatmap of ATCC 20 Strain Even Mix. Bolded taxa are those present in the 20 strain mix. Bifidobacterium unassigned1,
Enterobacteriaceae unassigned2, Staphylococcus unassigned3, Enterococcus unassigned4, Lactobacillus unassigned5, Enterobacter unassigned6, Clostridium sensu
stricto 1 unassigned7, Unassigned at every taxonomic level8.
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FIGURE 6 | Alpha diversity analyses of six clinical samples by type (fresh or frozen) and hypervariable region. Each patient provided two swabs, one of which was
frozen prior to DNA extraction. (A) Evenness (p = 0.015), (B) Faith’s phylogenetic diversity (p = 0.072), (C)Observed Operational Taxonomic Units (OTUs) (p = 0.067), (D)
Shannon diversity (p = 0.096).
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and V4 (16/20) followed closely behind, whereas V8 assigned
15/20, and V9 was only able to identify two species (2/20)
(Table 2).

Lastly, we performed a clustered heatmap analysis at the
species level. The resulting heatmap demonstrated that
technical replicates of the mock community sequences cluster
by hypervariable region (Figure 5). The heatmap visually
emphasizes the difference in taxonomic identification in V8
and particularly V9 compared to the other regions. It also
highlights misclassifications and which regions were only able
to classify taxa to the genus level. Interestingly, the heatmap
highlights a few misclassifications or false negatives that occurred
in only a subset of the replicates. For example, Staphylococcus
aureus was classified as Staphyloccoccus unassigned in replicates
four and five. The OTU tables for these samples indicate that the
sequence was truncated prematurely in replicates four and five,
indicating the differences in classification here arise from library
preparation or sequencing errors rather than downstream data
analysis.

Taxonomic Classification of Human Gut
Microbiome Culture Collection
Since there appeared to be differing abilities of classification of
bacterial species by hypervariable region in our ATCC data set,
we next determined if this was the case for a larger pool of
bacteria. We plotted out the taxonomic classification results from
our in silico database validation to visualize whether sensitivity
and specificity was region specific (Supplementary Figure S1).
The sensitivity and mis-classification rates varied with respect to
particular species and hypervariable regions. For example,
Bifidobacterium longum is 100% misassigned when using
sequences from V4, but no other region. This region likewise
has 0% sensitivity for B. longum. Alternatively, Bifidobacterium
bifidum has high specificity across all hypervariable regions,

implying that sensitivity and specificity of taxonomic
classification may be increased by using data from multiple
hypervariable regions.

Clinical Samples
We next sequenced and analyzed a set of six patient samples in
order to demonstrate the use of a generalized linear model (GLM)
in an illustrative clinical sample set, incorporating information
from multiple hypervariable regions. Hypervariable regions V2,
V3, V4, and V6-7 were included in the GLM, while data from the
V8 and V9 regions were excluded due to their demonstrated poor
performance in identifying species in the mock community
(Figures 2–5). Samples consisted of duplicate rectal swabs
from three participants. DNA was extracted immediately after
collection from one rectal swab sample chosen at random from
each patient (fresh) and the other sample was frozen at -80°C
prior to DNA isolation (frozen). Libraries were prepared in
tandem, and all samples were sequenced on the same
sequencing run. Sequencing results were processed as outlined
above (Figure 1).

We performed the same four alpha diversity metrics for the
clinical cohort as for the mock community samples (evenness,
Shannon diversity, observed OTUs, and Faith’s phylogenetic
diversity). There were no significant differences in alpha
diversity between fresh and frozen samples by Shannon
diversity, Faith’s phylogenetic diversity or observed OTUs
when using a GLM (Figure 6). Evenness was slightly increased
in frozen samples across all hypervariable regions (adjusted GLM
p = 0.015).

We aggregated taxonomic results and used them to create
Bray-Curtis, Jaccard, Canberra, Euclidean, Gower, and

FIGURE 7 | Principal coordinates analysis of clinical cohort using
Canberra distance matrix. Samples and regions from the same person are
circled, excluding V9. Results cluster by individual and by V9 region (not
circled), but not by fresh versus frozen status.

FIGURE 8 | Using a GLM shows enrichment of taxonomic classification
sensitivity. GLM p-values for specific taxa are plotted on the y-axis, and the
mean p-value across all hypervariable regions for the same taxa are plotted on
the x-axis. p-values are log-transformed and multiplied by -1 so that
more significant p-values are higher in value. The dashed line indicates where
the p-values resulting from the GLM and from individual regions are equal.
Enrichment above the dashed line indicates the GLM approach is more
sensitive compared to analyzing individual regions.
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Kulczynski distance matrices in order to perform combined beta
diversity analysis across all hypervariable regions. As
demonstrated by the Canberra PCoA plot in Figure 7, most
variation in beta diversity was due to different individuals and V9
sequences. PERMANOVA analysis of results from each
individual hypervariable region demonstrated that total
composition does not differ by fresh versus frozen status after
adjusting for individual person and region-to-region variation
(Supplementary File S4).

We next show that using a GLM that incorporates information
from multiple variable regions increases the ability to detect
significant differences between groups. This is demonstrated in
Figure 8, where we plot the average p-value for each specific taxon

across all hypervariable regions against the p-value obtained for the
same taxon when using a GLM. Due to small sample size, we opted
to use unadjusted p-values. There is an enrichment of significant
p-values when using the GLM as seen by the shift upwards above
the dashed line, indicating an increase in sensitivity compared to
analyzing individual hypervariable regions.

Using our GLM, we systematically compared abundance of
taxa between fresh and frozen samples at multiple levels (phylum,
class, order, family, genus, species). As an example, we chose to
examine levels of Firmicutes, Bacteroidetes, and Faecalibacterium
due to previous reports of differential abundance in fresh verses
frozen samples (Bahl et al., 2012; Fouhy et al., 2015). Our results
showed no significant differences between these taxa (Figure 9)

FIGURE 9 | Percent abundance of Bacteroidetes, Firmicutes, and Faecalibacterium by sample type (fresh vs frozen) and hypervariable region. p-value was
calculated with a log-transformed GLM and is false discovery rate-adjusted. (A) Bacteriodetes, p = 0.65, (B) Firmicutes, p = 0.93, (C) Faecalibacterium, p = 0.99.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 79961511

Jones et al. Integration of Multiple Hypervariable Regions

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


or Firmicutes to Bacteroidetes ratios (Figure 10). While no
concrete conclusions can be made from this data due to small
sample size, we demonstrate the utility of the GLM using clinical
samples.

DISCUSSION

16 S rRNA sequencing is cost effective, requires relatively low
DNA input, and has a number of highly curated reference
databases and open-source analysis platforms, making it a
common tool for microbiome researchers. PCR amplification
using primers that target conserved regions of the 16 S rRNA gene
and amplify across hypervariable regions allows amplification of
DNA across a widespread taxonomic spectrum and provides
unique sequences that can be used for taxonomic classification at
higher levels (e.g., family, genus, and species level). Next
generation sequencing strategies are often limited to
sequencing across only one or at most two of the nine
hypervariable regions. The Ion 16 S™ Metagenomics Kit
provides the opportunity to prepare libraries containing
sequences from seven of the nine hypervariable regions (V2,
V3, V4, V6-7, V8, and V9). However, the Ion Reporter analysis
pipeline available to Ion 16 S™Metagenomics Kit users does not
allow users to incorporate their own study metadata into analyses
and does not allow users to export usable data for downstream
analyses, necessitating the development of open-resource analysis
tools for data produced from the Ion 16 S™ Metagenomics Kit.

Herein, we report results from sequencing a mock microbial
community using the Ion 16 S™ Metagenomics Kit and
comparing results from different hypervariable regions. Using
a cohort of clinical samples, we demonstrate that taxonomic
classification is enhanced by using a generalized linear
multivariate model (GLM) that incorporates sequencing data
from multiple hypervariable regions.

We first prepared and sequenced five technical replicates of
DNA from a twenty strain mock microbial community, and
then assessed alpha diversity (evenness, Shannon diversity,

observed OTUs, and Faith’s phylogenetic diversity) among
different hypervariable regions. Even with our limited mock
community dataset, we observed hypervariable region-based
differences in alpha diversity. Most notably, taxa identified
with V9 primers had significantly decreased alpha diversity
compared to all other regions across all metrics. V8 results
likewise had significantly decreased Shannon Diversity and
Faith’s PD, suggesting that V8 and V9 are falsely
underrepresenting the diversity of the samples.

We performed six different beta diversity metrics (Bray-
Curtis, Jaccard, Canberra, Euclidean, Gower, and Kulczynski)
to evaluate differences between hypervariable regions.
Distance matrices used in beta diversity analyses are
generated from OTU tables, however the OTUs identified
were not consistent among hypervariable regions. Therefore,
in order to compare results between hypervariable regions, we
assembled distance matrices using taxonomic results. PCoA
analyses demonstrated clustering primarily by hypervariable
regions V2, V3, V4, and V6-7. Hypervariable regions V8 and
V9 clustered separately from the other regions, again
demonstrating the poor performance of amplicon
sequencing of these regions in assessing the constituents of
the mock community sample.

Consistent with previous reports (Claesson et al., 2010; Cai
et al., 2013; Tremblay et al., 2015; Barb et al., 2016), we found that
the taxonomic classification results from the mock community
samples varied by hypervariable region. Primers targeting the V2,
V3, and V6-7 regions identified nearly all the species present in
the mock community (19/20, 17/20, and 17/20 respectively), V4
identified 16/20 species, V8 identified 15/20 species, and V9
identified only two (2/20) (Figure 3; Table 2). Generally,
those regions which identified more species present in the
mock community also had more evenly distributed observed
taxa (i.e., there were no extreme over- or underestimated taxa
which skewed the remaining percent abundances, such as in the
case of V9).

Errors and biases that contribute to artifacts in PCR-based
microbiome studies include sequence artifacts (formation of
chimeras or heteroduplexes, or polymerase errors), PCR bias
(differing amplification efficiencies of different templates), or
biases in the analysis pipeline (poorly discriminatory
sequences) (Acinas et al., 2005). Of all OTUs assigned to the
V9 region, only two OTUs made up 99.78% of total V9 reads.
Therefore, we deduce that the lack of diversity in the region is
likely most related to PCR bias. Since V9 lacks sensitivity for
many species, we opted to leave this region out of the
generalized linear model we used on the clinical samples. V8
also tended to be less sensitive compared to V2, V3, V4, and
V6-7, and contributed to variation in the data according to
PCoA plots. Therefore, V8 was excluded from further analyses
as well. Notably, primer sequences for this kit are not available,
and having access to primer sequences in this instance would
aid in delving further into why V8 and V9 provided so little
information. For others attempting to incorporate a GLM into
their analysis, we would recommend against using data from
V8 and V9. One must also take into account whether specific
regions have increased or decreased sensitivity for specific taxa

FIGURE 10 | Comparison of Firmicutes to Bacteroidetes (F/B) ratio in
fresh versus frozen samples by hypervariable region. No significant difference
was observed between fresh and frozen samples for the hypervariable regions
(V2 p-value = 0.87, V3 p-value = 0.87, V4 p-value = 0.51, V6-7 p-value
= 0.97).
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of interest when considering which regions to include in
your GLM.

Researchers can circumvent the issue of choosing only one
hypervariable region to analyze by sequencing multiple
hypervariable regions in tandem. Since the sensitivity of each
hypervariable region for identifying bacterial taxa varies,
combining the results from multiple hypervariable regions for
analyses may be misleading. Fuks et al. developed Short MUltiple
Regions Framework (SMURF), which combines sequences from
multiple PCR amplicons in order to provide one overall set of
taxonomic profiling results (Fuks et al., 2018). However, this
method is computationally intensive and requires proprietary
software. Therefore, to utilize information from multiple
hypervariable regions at once and to strengthen confidence in
the taxonomic abundance results, we incorporated a generalized
linear model (GLM) into alpha diversity and taxonomic
abundance analyses.

We demonstrated use of the GLM via analysis of a clinical
cohort, where each participant donated two rectal swab samples,
one of which was processed fresh and the other one frozen prior
to DNA extraction. Alpha diversity analysis revealed increased
evenness in frozen samples compared to fresh samples. This trend
was visualized in results from each individual hypervariable
region and was strengthened in the GLM. There was no
difference in Shannon’s diversity, observed OTUs, and Faith’s
phylogenetic diversity between fresh and frozen samples which
suggests that freezing samples may not affect the ability to detect
taxa, but it might alter the detectable abundance of certain taxa.
Beta diversity analysis demonstrated clustering of samples by
person irrespective of fresh versus frozen status or hypervariable
region, with the exception of V9. PERMANOVA analysis
confirmed that most of the variation in composition was due
to individuals as opposed to storage type. An important limitation
of our beta diversity analysis is that in order to compare results
from all hypervariable regions in the same analysis, we had to use
taxonomic classification as opposed to OTUs. This limits our beta
diversity analysis to using only those reads that were assigned
taxonomy.

By utilizing a GLM with sequences from our clinical samples,
sensitivity to changes between groups was enriched compared to
using only one hypervariable region. p-values for specific
differences in taxa between fresh and frozen samples became
significant when utilizing sequences from multiple hypervariable
regions, while one region was not powerful enough to detect these
differences as observed in Figure 8.

Finally, based on the findings above, we compared taxonomic
abundance at multiple levels between fresh and frozen samples
using a GLM. We found no taxa at any level had significantly
different abundance. This is unsurprising based on our small
sample size, the fact that alpha and beta diversity were
minimally different between sample type, and the fact that
other studies show limited differences between fresh verses
frozen samples (Bahl et al., 2012; Fouhy et al., 2015).
However, Faecalibacterium results highlight the important
point that not all regions are able to identify a taxon of
interest: V6-7 fails to map any reads to this taxon despite its
presence in the sample. Thus, even though the true composition

of a clinical sample may be unknown, examining redundant data
from multiple hypervariable regions may help elucidate the true
microbial makeup of the sample, with the caveat that none of the
hypervariable regions included vary too significantly from the
others to prevent skewing the data.

In conclusion, we propose a method to overcome the issues
of analyzing multiple amplicons covering multiple
hypervariable regions at once. While this protocol is tailored
towards analyzing data generated from the Ion Torrent
platform, the approach of sequencing multiple hypervariable
regions and analyzing data in parallel could be applied towards
Illumina sequencing data, as well. As more tools to analyze more
of the 16 S rRNA gene at once become available, it is critical for
the microbiome bioinformatics community to come to a
consensus as to the proper way to analyze this type of data
in order to maintain data quality, and to be able to compare
results across different publications.
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