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Lung cancer is the leading cause of the cancer deaths. Therefore, predicting the survival
status of lung cancer patients is of great value. However, the existing methods mainly
depend on statistical machine learning (ML) algorithms. Moreover, they are not appropriate
for high-dimensionality genomics data, and deep learning (DL), with strong high-
dimensional data learning capability, can be used to predict lung cancer survival using
genomics data. The Cancer Genome Atlas (TCGA) is a great database that contains many
kinds of genomics data for 33 cancer types. With this enormous amount of data,
researchers can analyze key factors related to cancer therapy. This paper proposes a
novel method to predict lung cancer long-term survival using gene expression data from
TCGA. Firstly, we select the most relevant genes to the target problem by the supervised
feature selection method called mutual information selector. Secondly, we propose a
method to convert gene expression data into two kinds of images with KEGG BRITE and
KEGG Pathway data incorporated, so that we could make good use of the convolutional
neural network (CNN) model to learn high-level features. Afterwards, we design a CNN-
based DL model and added two kinds of clinical data to improve the performance, so that
we finally got a multimodal DL model. The generalized experiments results indicated that
our method performed much better than the ML models and unimodal DL models.
Furthermore, we conduct survival analysis and observe that our model could better divide
the samples into high-risk and low-risk groups.

Keywords: cancer precisionmedicine, cancer survival prediction, CNN, deep learning, multimodal, survival analysis,
optimal threshold selection

1 INTRODUCTION

As lung cancer is still a major contributor to cancer deaths, predicting lung cancer survival plays an
important role in lung cancer precision medicine. Precision medicine is a novel kind of therapy
which sprang up in the development of high-throughput sequencing technology and computer-aided
treatment. It is able to give diseases a more detailed description by genomics and other technologies
so that clinicians can get more precise targeted subgroups for therapies (Ashley, 2016), and survival
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prediction is one of the key components in precision medicine.
Recent years have witnessed the burgeoning of sequencing data
generation in the context of next-generation sequencing
technology. RNA-Seq (Wang et al., 2009) was developed for
profiling the transcriptome using deep-sequencing
technologies, which can describe the transcripts far more
precisely. A large amount of gene expression data was
generated since its development.

As a result of the explosively increasing gene expression data,
cancer analysis and prediction using gene expression data such as
cancer survival prediction and cancer subtype prediction have
become hot spots in biomedical research. Many machine-
learning-based analysis methods had been proposed, such as
survival trees (Gordon and Olshen, 1985), Bayesian methods
(Fard et al., 2016), and artificial neural networks (ANNs) (Faraggi
and Simon, 1995), so that pathological cancer analysis can be
done at a molecular level and in a big-data background. With the
fact that patients having the same disease still may give different
responses to a specific therapy (Sharma and Rani, 2021),
analyzing and dividing patients with the same disease
according to their molecular-level features have the potential
to improve diagnosis accuracy. In this paper, what we do can also
be seen as to divide samples into different groups by the predicted
survival status according to their gene expression data. There are
many classical machine learning (ML) methods that have been
widely used to make cancer prediction and analysis. For example,
the Cox proportional hazard model is an algorithm which models
the relationship between survival distribution and covariates with
a proportional hazard assumption in a linear-like manner (Fox
and Weisberg, 2002). Support vector machine (SVM) is a
supervised ML algorithm that can be nicely summed up as (1)
the separating hyperplane, (2) the maximum margin, (3) the soft
margin, and (4) the kernel function (Noble, 2006). SVM has been
used extensively by bioinformatics practitioners due to its
powerful classification capability, such as gene selection for
cancer classification (Guyon et al., 2002) and cancer survival
prediction (Jiang et al., 2018). Besides the regression problem
such as survival regression analysis and the classification problem
such as cancer classification we have noted above, the
unsupervised learning problems for complex objects with
heterogeneous features are also ubiquitous and important in
real-world applications (Ma and Zhang, 2019). For instance,
some researchers leveraged the clustering method, an
unsupervised ML algorithm, to predict survival and surgical
outcomes with gene expression data and got reliable results
(Wang et al., 2017).

Although ML algorithms are endowed with a natural ability to
learn patterns automatically from data, they have some
shortcomings. One of the greatest Achilles’ heels of classic ML
methods is the strong dependence on how the data are
represented. The classification performance of a machine
model is closely related with the quality and relevance of the
features. And deep learning (DL), as a part of the ML family,
emerged to address this issue through automatically learning
feature representations in the training process, thereby forming
an end-to-end learning pipeline (Eraslan et al., 2019). And the
unique compatibility with GPUs greatly facilitates the

development of DL because of GPUs’ much higher computing
performance than CPUs at similar prices. For the past few years,
many bioinformaticians get into the combination between
bioinformatics and DL. For instance, DeepBind was proposed
in 2015, which leveraged the convolutional neural network
(CNN) to predict the sequence specificities of DNA- and
RNA-binding proteins using sequencing data. The results
showed that it outperformed other state-of-the-art methods
(Alipanahi et al., 2015). From that time, the usages of DL
methods in bioinformatics have increased rapidly. Many novel
DL models are applied in bioinformatics research and got great
performance, such as the CNN we have noted above, LSTM
(Lamurias et al., 2019), deep autoencoder (Chicco et al., 2014),
and knowledge graph (Sousa et al., 2020).

Survival prediction is to build an association between
covariates and the time of an event, and the covariates
could be clinical information (for example, sex, cancer
types, tumor stages, and ages), genomics data, and medical
images; the time of event could be the time to death (overall
survival, OS), the progression-free survival time (PFS), the
disease-free survival (DFS), and the disease-specific survival
(DSS). The canonical survival prediction methods are mainly
some statistical ML algorithms such as Cox proportional
hazard regression we have noted above, Kaplan–Meier
estimator (Bland and Altman, 1998), and random survival
forests (Ishwaran et al., 2008). Survival prediction plays an
important role in bioinformatics research, and some
researchers try to leverage the strong learning ability of DL
for predicting survival patterns, such as DeepSurv (Katzman
et al., 2018) and Cox-nnet (Ching et al., 2018). While DL
methods have been widely used in recent years, they
sometimes have difficulty in cancer survival prediction with
genomics data due to the curse of dimensionality (Altman and
Krzywinski, 2018), which means that, in cancer survival
analysis and prediction problems, we usually have a small
number of samples, namely, the patients; however, each
sample has fairly high-dimensional features (for example,
genes). Furthermore, the gene expression data are
heterogeneous and noisy; many genes may be irrelevant
with the target problem. All of the above factors usually
cause the DL algorithms to become disoriented and more
inclined to overfitting.

To address this “High Dimensionality, Few Samples” issue
in cancer survival prediction, we design a DL method for
cancer survival prediction. Firstly, we propose a method to
convert patients’ gene expression data into two kinds of gene
expression images, the first kind with KEGG BRITE (Kanehisa
and Goto, 2000) gene functional information incorporated and
the second kind with KEGG Pathway information
incorporated, to overcome the curse of dimensionality.
Then we propose a multimodal DL model with the two
kinds of gene expression images and clinical data as inputs,
to perform lung cancer long-term (60 months OS) survival
prediction. Experiments on lung cancer data showed that our
method achieved much better results on AUC (average AUC
up to 71.48% on TCGA (Chang et al., 2013) lung cancer data
set and 72.51% on GEO (Barrett et al., 2012) data set GSE37745
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from 50 times experiments) than those of unimodal DL models
and ML models. And survival analysis was conducted to
further prove the prediction capability of our model.

2 RELATED WORKS

2.1 DL Applications in Survival Prediction
The canonical statistical ML algorithms usually use the clinical
information we have mentioned above as covariates to make
prediction. To get the most from high-throughput genomics data
and medical image data, many deep-learning-based methods
were proposed for survival prediction. We will review the
literature about DL applications in survival prediction in the
following, and the more refined branch of this, that is, using CNN
with gene expression data, will be reviewed in the next subsection.
Travers et al. proposed Cox-nnet (Ching et al., 2018), which is an
ANN using high-throughput omics data as input; the hidden
node features learned by neural network layers were seen as the
dimension-reduced omics features, and a Cox regression layer
was added to perform the final prognosis prediction. Compared
with Cox regression, Cox-nnet could reveal more relevant
biological information. Katzman et al. proposed DeepSurv
(Katzman et al., 2018) to perform survival analysis; the
architecture of DeepSurv consisted of some neural network
layers and a linear output layer; the clinical data were used as
input. What the DeepSurv predicted was the hazard ratio of a
specific time, so that DeepSurv is a DL survival prediction model
which is subjected to the Cox proportional hazard assumption.
Results showed that DeepSurv outperformed the Cox regression
model. Arya and Saha (2021) proposed a multimodal DL method
for breast cancer survival prediction, and the data they used
included genomics data, histopathology images, and clinical data.
Their model was a gated attentive DL model with the random
forest classifier stacked. Using this proposed method, they got a
significant enhancement in sensitivity scores in the survival
prediction of breast cancer patients. Panagiotis et al. proposed
to mine the MGMT methylation status through MR images; they
used a pretrained ResNet-50, which is a 50-layer residual network
for transfer learning and outperformed the ResNet-18 and
ResNet-34 (Korfiatis et al., 2017). Sairam et al. proposed to
make pan-renal cell carcinoma classification and survival
prediction from histopathology images using CNN and
achieved good results in classification accuracy (Tabibu et al.,
2019).

2.2 Using CNN With Gene Expression Data
CNN (Lawrence et al., 1997) is a kind of DL algorithm. In
particular, CNNs using 2-D convolution kernels can be seen
as a sort of tailor-made models for learning image
representations; they can perform multiple computer vision
tasks, such as image classification, face recognition, video
recognition, image segmentation, and medical image
processing. A canonical CNN usually has an input layer for
loading the images. Behind the input layer, there are some
hidden layers for image representation learning. At the end,
an output layer will be added for making prediction. The

hidden layers are mainly composed of (1) convolution layers
which convolve the input, (2) pooling layers which reduce the
dimensions of the data delivered by convolution layers, and (3)
fully connected layers for learning the representations to be used
for the final prediction. In the past decade, CNNs have made
remarkable achievements, a cornucopia of great models based on
CNN have been proposed, such as LeNet (LeCun et al., 1989),
AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and
ResNet (He et al., 2016).

Training the CNNmodel with gene expression data may seem
not workable subconsciously, because unlike the pixels in image
data, which are in order, the gene expression data are much
noisier and without order. To tackle this defect, some researchers
committed to rearrange the gene expression data and use them
for prediction based on CNN. Lyu et al. proposed the first model
to convert gene expression data to image and make cancer-type
classification with CNN (Lyu and Haque, 2018); they rearranged
the normalized RNA-Seq counts into a matrix according to their
relative position according to their chromosome numbers; their
model achieved an accuracy score of up to 0.9559. Ma et al.
proposed a model called OmicsMapNet; in this work, they
transformed gene expression data into image by constructing a
treemap graph using their functional annotation in KEGG BRITE
dataset. And a CNN model was used to do prediction (Ma and
Zhang, 2018). Guillermo et al. also proposed a method to
rearrange gene expression data image by the treemap and
KEGG BRITE dataset (López-García et al., 2020), but their
method has a distinction from OmicsMapNet; that is, the area
size of each functional branch in the treemap is determined by the
gene expression levels in this branch, which makes the image
more representative in terms of gene expression values. They used
CNN to predict the 230 days of lung cancer progression-free
survival (LUAD and LUSC), and transfer learning was added to
increase the performance. Results showed that their method
outperformed the ML algorithms and multilayer perceptron
(MLP). Sharma et al. (2019) proposed Deep-Insight, a novel
method in which the feature vector such as gene expression values
is first fitted by clustering methods such as kPCA and tSNE and
then the scatter diagram produced by clustering would be
contracted to the smallest rectangle consisting of all the data
points to get the final image. Their method performed well on the
classification task using CNN. Bazgir et al. (2020) proposed a
method to transform features to image based on their
neighborhood dependencies, and CNN was used for drug
resistance prediction. Oh et al. (2021) proposed PathCNN,
which used multi-omics data and pathway data to predict 2-
year OS for glioblastoma (GBM). They first convert the multi-
omics data into images with 146 pathways. Then they leveraged
CNN for 2-year OS prediction and got an average AUC of up to
75.5% for GBM.

3 MATERIALS AND METHODS

In this section, we first give descriptions of the data sets we chose,
then we introduce the process of feature selection; afterwards, we
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introduce our proposed method to convert the selected genes to
gene expression images with KEGG BRITE and KEGG Pathway
data incorporated, respectively (Figures 1A and 1C); finally, we
present our multimodal DL model for 60 month lung cancer OS
prediction (Figure 1B). The overview of the workflow is shown in
Figure 1. The implementation of our method is available at
https://github.com/PPDPQ/Lung-cancer-long-term-survival-
prediction.

3.1 Data Descriptions
In this paper, we used the TCGA Pan-Cancer dataset (Chang
et al., 2013; Tomczak et al., 2015) downloaded from the UCSC
Xena data browser; from the data set, 1,122 lung cancer (LUAD
and LUSC) samples were selected; then their gene expression data
and clinical data were separated from the Pan-Cancer dataset,
and 471 samples were selected for our research for they have all
the data we need. To check the generalization performance of our
model, we used a data set from the GEO database (Barrett et al.,
2012) with accession number GSE37745, which have 196

samples. Of these, 195 samples were selected. In the 471
TCGA samples and the 195 GSE37745 samples we used in
this paper, there are no duplicates between patients and
samples. The KEGG BRITE gene function hierarchical data
were download from http://rest.kegg.jp/get/br:br08902, and we
chose the Genes and Proteins subsection for usage. There were
three other datasets used for mapping genes to gene functions: (1)
a table for mapping KEGG gene IDs to KEGG BRITE IDs was
downloaded from http://rest.kegg.jp/link/hsa/brite; (2) a table for
mapping KEGG gene IDs to HUGO gene names was downloaded
from http://rest.kegg.jp/list/hsa; and (3) a table for mapping
HUGO gene names to ENSEMBL gene IDs was downloaded
from http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/
hgnc_complete_set.txt. For KEGG Pathway data, we used the
R package KEGGREST (Tenenbaum et al., 2019), org.Hs.eg.db
(Carlson et al., 2019), and tidyverse (Wickham et al., 2019) to get
the KEGG Pathway data and made mappings between pathways
and genes. The general statistic for the data sets included are
shown in Table 1.

FIGURE 1 | Overall process of the lung cancer long-term survival prediction: (A) the process of generating the gene expression image with KEGG BRITE data, (B)
the DL model we propose for the prediction task, (C) the process of generating the gene expression image with KEGG Pathway data, (D) the detailed architecture of the
convolution module we design for learning representations from the gene expression image.
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3.2 Feature Selection
After separating the lung cancer data from the Pan-Cancer dataset, we
performed feature selection on the lung cancer gene expression data
based on mutual information (MI). There are 60,498 gene expression
values (log 2(TPM + 0.001)-transformed values) for each TCGA lung
cancer sample (ENSEMBL (Zerbino et al., 2018) provides different IDs
for one gene that maps to different chromosomes) and 20,356 genes’
expression values for each sample in GSE37745. First of all, we filtered
the genes that appear in both the TCGA samples and the GSE37745
samples, andwe got 18,975 genes. Thenwe performed feature selection
on theTCGAsamples.Wefirst removed the geneswith variance below
the assigned threshold; in this research, we set this threshold as 10. And
3,053 genes were obtained for further selection. Then we split the data
into a train set (80% of the samples) and a test set (20% of the samples),
and we calculated the MI scores between genes and the labels on the
train set; the labels we used were in keeping with our target problem,
namely, whether the sample survived after 60months. TheMI between
two variables X and Y can be calculated as follows:

I X;Y( ) � ∫
X
∫
Y
p x, y( )log p x, y( )

p x( )p y( ) dxdy (1)

where p(x, y) is the joint probability density of variable X and Y and
p(x) and p(y) aremarginal densities.We can observe thatX andY are
completely unrelated when p(x, y) is equal to p(x)p(y), and the MI
score will be zero. The X here is the gene expression values, and Y is
the targets which are 0 or 1, which indicates whether the sample
survived after 60 months. Then we chose the top K genes according
to their MI scores, we tested the prediction performance of different
sizes of Ks, and finally, we selected K = 1,000 for further data
conversion. In fact, a size of 1,000 is roughly the same magnitude
as the number of lung cancer samples, which means the model will
not be prone to overfitting in terms of feature dimensionality.

3.3 Converting Gene Expression Data Into
Images
With the 1,000 selected genes, we proposed a multi-index-
sorting-based method to convert gene expression data into
images, and the biological knowledge was incorporated.

3.3.1 Gene Expression Image Using KEGG BRITE
The overview of the process to convert gene expression data into
images using KEGG BRITE data is shown in Figure 1A. Firstly,
we mapped the KEGG BRITE IDs to KEGG gene IDs, the KEGG
gene IDs were mapped to HUGO gene names, and finally, the
HUGO gene names were mapped to ENSEMBL gene IDs. After
the above work was done, we successfully bridged the gaps
between the gene expression data and the KEGG BRITE data,
and we got the hierarchical data with genes and proteins as the
root and gene expression values as leaves. We used these
hierarchical data to do multi-index sorting; in each subclass in
the leaf level, the genes were arranged according to their average
expression level across all the lung cancer samples. The obtained
rearranged genes were filled into a square matrix, and Min-Max
was leveraged to transform gene expression values into a range
from 0 to 1 for feeding into the convolution layer. The Min-Max
process is defined by

Xscaled � X −Xmin

XminXmax
(2)

where X denotes the expression values of a gene overall samples
and Xmin and Xmax denote the minimum and maximum
expression values of this gene, respectively.

3.3.2 Gene Expression Image Using the KEGG
Pathway
The overview of the process to convert gene expression data into
images using the KEGG Pathway data is shown in Figure 1C. We
implemented this process using R; first, we used KEGGREST for
KEGG information; we got the human KEGG pathways and their
Entrez gene IDs, and then we mapped the Entrez IDs to HUGO
gene names and ENSEMBL gene IDs using the R package
org.Hs.eg.db. With the generated data of mappings between
genes and pathways, the same multi-index sorting, genes-to-
image rearrangement, and Min-Max normalization as above
were carried out.

3.4 Multimodal DL Model
To make good use of the generated gene expression images to
predict lung cancer long-term survival, we proposed a

TABLE 1 | The general statistic for the datasets analyzed. Stages I to IV are the tumor stages defined by the AJCC staging system (Edge and Compton, 2010).

TCGA lung cancer data set GSE37745 data set

Number of samples included 471 195
Median age 68 65
Median age survived after 5 years 68 63
Median age dead after 5 years 68 66
Number of samples with stage I or stage IA 88 40
Number of samples with stage IB 129 89
Number of samples with stage II or stage IIA 48 6
Number of samples with stage IIB 84 29
Number of samples with stage III or stage IIIA 84 21
Number of samples with stage IIIB 17 6
Number of samples with stage IV 21 4
Percentage of over 5 year OS 26.1% 41.5%
Percentage of failed 5 year OS 73.9% 58.5%
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multimodal DL model that makes good use of the multimodal
data to achieve a good result.

3.4.1 Model Construction
The model contained four input layers; among them, two were
gene expression images, namely, the KEGG BRITE image and the
KEGG Pathway image, and the other two inputs were clinical
data: one is the age at initial pathological diagnosis and another is
the AJCC pathological tumor stage. Because of the non-numeric
characteristic of the AJCC pathological tumor stage, we encoded
the stages by adding five per stage from Stage I to Stage IV to
leverage the data.

With the two gene expression images being fed into the model,
two convolution modules with similar structures were
constructed to learn representations of the two images; the
detailed structure of the convolution module of our model is
shown in Figure 1D, where each convolution module contained
two Conv blocks, i.e., (1) a convolution layer for learning
representations from the input features sparsely, (2) a max-
pooling layer for representation dimensionality reduction, and
(3) a batch normalization layer for preventing overfitting. After
the stacked two Conv blocks, a fully connected layer was added to
integrate the learned representations of all the filters.

The generated representations of the two images were then
concatenated and flattened, and the two clinical data were also
concatenated in. Then a set of fully connected layers were added
to learn the integrated representations of these four kinds of
features. In the end, a sigmoid layer was used for the final
prediction. Thus, our lung cancer long-term prediction task
can be seen as a classification task in which the model used
four kinds of input data to predict whether a sample survived after
60 months. The following are the introductions of the four inputs:

Gene-expression-image-BRITE: The gene expression image
constructed from gene expression data and KEGG BRITE
hierarchical gene function data.

Gene-expression-image-Pathway: The gene expression image
constructed from gene expression data and KEGG Pathway data.

Age-at-initial-pathological-diagnosis: The sample’s age
when the sample was diagnosed with lung cancer. This is one
of the two kinds of clinical data.

AJCC-pathological-tumor-stage: A stage value given by the
AJCC staging system (Edge and Compton, 2010) which describes
the amount and spread of cancer in a patient’s body. This is
another of the two kinds of clinical data. We encoded the stages
by adding five per stage from Stage I to Stage IV to leverage the
data, which means we encoded Stage I as 5 and Stage IB as 10, and
other stages were encoded by that analogy.

3.4.2 Model Hyperparameter SearchingWith Bayesian
Optimization and Grid Search
In order to get the best model of the proposed model architecture,
we leveraged Bayesian optimization to search the best
hyperparameters. Bayesian optimization (Snoek et al., 2012) is
a method that uses Bayes theorem to regularize the search for
finding the minimum or maximum value of the objective
function. This paper took advantage of Bayesian optimization
to search for the best set of hyperparameters with the maximum

AUC score. From the view of train, test, and validation sets, in
this paper, we only used one train–test split for
hyperparameter searching. Then we used another 50
different train–test splits for computing the generalized
performance scores. To avoid data leakage, in each
experiment of the 50 experiments, we created a model with
only the hyperparameters; all the trained hyperparameters
were initialized and trained on its own train set, which
means, for each model, we set the hyperparameters only
once using one train–test split, and then we used this set of
hyperparameters for another 50 train–test splits. We used this
strategy to display the generalization power of our model. All
the DL-based models ensured their hyperparameters from
100 times Bayesian optimization searching trials, and all the
ML models ensured the hyperparameters from Grid Search.
The hyperparameters we searched are listed in Table 2. All the
DL models in the paper are with the same depth and similar
structure, the only difference being that they have different
numbers of inputs. For the ML models, we leveraged Grid
Search, which can take all the hyperparameter combinations in
the searching space into consideration. The searching spaces
and searching results for all the DL and ML models are
provided as a table in the Supplementary Material.

4 EXPERIMENTS AND RESULTS

In this section, we present a number of experiments to show the
performance of our multimodal DL model. Firstly, we tested the
effectiveness of the two proposed methods, which convert gene
expression data into gene expression images, on lung cancer long-
term survival prediction. Secondly, we proved that inputting the
two kinds of images into one DL model simultaneously can
improve prediction performance. Thirdly, we tested the
effectiveness of the two kinds of clinical data respectively.
Finally, we compared our model with five ML models to show
our model’s remarkable performance, and we conducted
independent validation on the GSE37745 data set. The results
are shown in Table 3.

TABLE 2 | The hyperparameter searching space of the DL models for searching
with Bayesian optimization.

Hyperparameters for searching

Hyperparameter Options for searching

Conv-BRITE-filters-1 32, 40, 48, 56, 64
Conv-BRITE-filters-2 80, 96, 112, 128
Dense-BRITE-units 128, 144, 192, 256
Dropout-rate-BRITE 0.1, 0.2, 0.3
Conv-pathway-filters-1 32, 40, 48, 56, 64
Conv-pathway-filters-2 80, 96, 112, 128
Dense-pathway-units 128, 144, 192, 256
Dropout-rate-pathway 0.1, 0.2, 0.3
Dense-1-units 64, 128, 144, 192, 256
Dropout-rate-1 0.3, 0.4, 0.5
Dense-2-units 32, 64, 128
Dropout-rate-2 0.3, 0.4, 0.5
Learning-rate 0.001, 0.002, 0.003
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4.1 Experiments Settings
In this subsection, we introduced the experiments implemented
in this paper.

4.1.1 Lung Cancer Long-Term Survival Prediction
Experiments on the TCGA Lung Cancer Dataset
To prove the prediction power of the DLmodel, we used six different
DL models which have similar structures. But their inputs are
different. We used these six DL models to prove the effectiveness
of the two kinds of gene expression images and the two kinds of
clinical data.We used fiveMLmodels to prove that theDLmodels are
better. The models used in this paper were introduced as follows:

DL-Four-Inputs: A DL model with two kinds of gene
expression images and two kinds of clinical data as inputs;
this model was used to show the best performance of our method;

DL-Three-Inputs-Age: A DL model with two kinds of gene
expression images and the age at initial pathological diagnosis as inputs;
this model was used to show the effectiveness of the clinical data age;

DL-Three-Inputs-Stage: A DL model with two kinds of gene
expression images and the AJCC pathological tumor stage as
inputs; this model was used to show the effectiveness of the
clinical data tumor stage;

DL-Two-Inputs: A DL model with two kinds of gene
expression images as inputs; this model aimed to indicate that
using the two kinds of gene expression images as inputs
simultaneously will make the DL model achieve better results;

DL-One-Input-BRITE: A DL model with only the KEGG
BRITE gene expression image as input; this model was used to
show that the KEGG BRITE gene expression image with the DL
model was better than all the ML models so that it could validate
the effectiveness of our DL algorithm and this gene expression
image formation method;

DL-One-Input-Pathway: A DL model with only the KEGG
Pathway gene expression image as input; this model was used to
show that the KEGG Pathway gene expression image with the DL
model was better than all the ML models so that it could validate the
effectiveness of our DL algorithm and this gene expression image
formation method;

KNN: An ML model using the K-nearest-neighbor algorithm
(Laaksonen and Oja, 1996);

SVM: An ML model using the support vector machine algorithm
(Noble, 2006);

Random-Forest: An ML model using the random forest
algorithm (Biau and Scornet, 2016);

Logistic-Regression: An ML model using the logistic
regression algorithm (Wright, 1995);

MLP: An ML model using the multilayer perceptron, which is
a kind of a feedforward ANN (Pal and Mitra, 1992).

4.1.2 Survival Analysis on the TCGA Lung Cancer
Data Set
To more directly perceive the prediction performance of our best
DLmodel without clinical data, namely, the two-input DLmodel,
we conducted Kaplan–Meier survival analysis on the two-input
model and the five MLmodels. Firstly, for all the models, we fixed
the data shuffling random state to the same value (random seed
was set as 126 in this paper) to ensure that all the models made
prediction on the same test data set. Then we let the trained
models make a prediction on the test set. Finally, we separated the
samples in the test set into two groups for eachmodel, which were
the high-risk group with samples having predicted values that are
larger than the optimal threshold selected with Youden’s J
statistic and the low-risk group with samples having predicted
values that are smaller than the optimal threshold. We compared
the analysis results, leveraging the log-rank test (Bland and
Altman, 2004); the analysis of the six models can be seen in
Figure 6. We also implemented the Cox-PH analysis (Fox and
Weisberg, 2002). To get rid of the influence of the other factors
such as age, we only selected the DL model without any clinical
input, namely, the two-input DL model so that the only
remaining factor was the 1,000 genes we selected. Then we
created a binary variable: if the sample was predicted dead, the
variable’s value was 1; otherwise, the value was 0. Finally, we
conducted a univariate Cox-PH analysis using this binary
variable. The hazard ratio of each model was then calculated;
we show them in Table 4.

TABLE 3 | Results of the five average metrics scores from 50 different train–test-split experiments (mean ± SD) on the TCGA lung cancer data set. The accuracy, precision,
recall, and f1-score were calculated with the optimal threshold selected using Youden’s J statistic.

Models Average scores of 50 experiments on TCGA datasets

AUC Accuracy Precision Recall F1-score

DL-four-inputs 71.48 ± 4% 69.85 ± 6% 69.17 ± 11% 87.93 ± 4% 76.66 ± 6%
DL-three-inputs-age 65.68 ± 4% 64.42 ± 8% 62.34 ± 15% 86.39 ± 4% 71.00 ± 10%
DL-three-inputs-stage 70.69 ± 4% 68.95 ± 7% 68.29 ± 14% 87.54 ± 4% 75.64 ± 8%
DL-two-inputs 65.16 ± 4% 62.82 ± 9% 59.31 ± 17% 87.22 ± 5% 68.72 ± 11%
DL-one-input-BRITE 63.58 ± 4% 62.74 ± 9% 61.03 ± 17% 85.13 ± 4% 69.32 ± 11%
DL-one-input-pathway 64.69 ± 4% 63.31 ± 8% 60.97 ± 17% 86.32 ± 5% 69.62 ± 11%
KNN 53.63 ± 5% 57.22 ± 11% 52.51 ± 23% 85.47 ± 6% 61.54 ± 16%
SVM 54.77 ± 5% 56.11 ± 11% 52.69 ± 23% 84.17 ± 7% 60.58 ± 18%
Random-forest 57.41 ± 6% 57.33 ± 12% 53.40 ± 24% 85.09 ± 7% 61.68 ± 18%
Logistic-regression 50.81 ± 5% 55.41 ± 15% 53.91 ± 29% 82.50 ± 8% 58.67 ± 25%
MLP 55.06 ± 5% 54.61 ± 11% 49.14 ± 21% 83.91 ± 5% 58.75 ± 17%

The bold values are the highest among all the models.
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4.1.3 Generalization Performance Validation on the
Independent Data Set
It is important to show the generalization ability of the model.
So we conducted an independent test on the data from a
different platform. We chose a data set from the GEO database
with accession number GSE37745. And 195 samples were
included in our test experiments. The gene expression data on
the TCGA database are obtained by RNA-Seq, while the gene
expression data on the GEO database are obtained through
Chip-Seq (Park, 2009). The different sequencing technologies
make the gene expression data on these two databases
different. Hence, if our proposed method is successful on
the GEO database, we can prove that our method is
generalized. We implemented all the experiments in the
same way we had done on the TCGA lung cancer data set.
And the results can be seen in Table 5.

4.2 Sample Selection and Split
For lung cancer long-term survival prediction, we chose the
samples according to their OS time and OS event in their
clinical data, where if a sample had an OS time longer than
60 months, we labeled the sample as 0, and if a sample had an
OS time shorter than 60 months and the OS event was equal to
1, we labeled the sample as 1; we removed samples which did
not come under any of the above circumstances. Then the
samples which did not have the two kinds of clinical data were

removed. The removed samples had no event occurring, but
their OS time was less than 60 months. So we could not use
these samples for training because we could not label them.
Finally, we got 471 samples from the TCGA lung cancer data
set and 195 samples from the GEO data set with accession
number GSE37745. In the TCGA lung cancer data set, 26% of
the samples survived after 60 months, and 74% did not. In the
GEO GSE37745 data set, 42% of the samples survived after
60 months, and 58% did not. Then, we split the samples into
50 different train sets and their corresponding test sets in
which 80% of the samples were chosen for training and 20% of
the samples for testing. To get generalized results, we made 50
different train–test splits of the samples by changing the
shuffling random rate, also known as random seed, of the
data before applying the split. With the 50 different splits,
every model was trained for 50 times, and 50 scores per metric
were obtained, and the average scores were used as the
generalized results.

4.3 Evaluation Metrics and Optimal
Threshold Selection
4.3.1 Evaluation Metrics
Since lung cancer long-term survival prediction can be viewed
as a binary classification problem, we chose area under the
ROC curve (AUC) to evaluate the classification performance
of models. AUC represents the probability of a random
predicted positive value located in the right of a random
predicted negative value. And there are a series of
classification thresholds being included compared with
accuracy’s and f1-score’s only one classification threshold.
So AUC can better display the classification performance of a
binary classification model compared with accuracy and f1-
score. Besides AUC, we also computed the accuracy,
precision, recall, and f1-score of each model using a
curated optimal threshold (the optimal threshold selection
method will be introduced in the next subsection); their values
are calculated as follows:

TABLE 4 | Hazard ratio of each model calculated from the univariate proportional
hazard analysis model.

Models HR (95% CI) p-value

DL-Two-Inputs 4.00 <0.01
KNN 2.22 <0.20
SVM 4.00 <0.20
Random-Forest 2.31 <0.10
Logistic-Regression 3.60 <0.01
MLP 2.77 <0.07

The bold values are the highest among all the models.

TABLE 5 | Results of the five average metrics scores from 50 different train–test-split experiments (mean ± SD) on the GEO GSE37745 data set. The accuracy, precision,
recall, and f1-score were calculated with the optimal threshold selected using Youden’s J statistic.

Models Average scores of 50 experiments on GEO datasets

AUC Accuracy Precision Recall F1-score

DL-four-inputs 72.51 ± 6% 73.85 ± 6% 77.39 ± 14% 79.26 ± 7% 77.18 ± 7%
DL-three-inputs-age 70.77 ± 5% 71.03 ± 5% 68.96 ± 17% 81.26 ± 7% 72.60 ± 9%
DL-three-inputs-stage 72.36 ± 6% 72.46 ± 6% 71.04 ± 16% 81.32 ± 7% 74.39 ± 8%
DL-two-inputs 69.74 ± 6% 69.74 ± 6% 65.30 ± 17% 82.33 ± 9% 70.58 ± 10%
DL-one-input-BRITE 68.88 ± 5% 70.56 ± 5% 70.52 ± 14% 79.10 ± 8% 73.16 ± 7%
DL-one-input-pathway 67.37 ± 5% 68.05 ± 5% 62.70 ± 15% 80.91 ± 9% 68.89 ± 8%
KNN 55.76 ± 8% 63.85 ± 9% 56.35 ± 26% 82.35 ± 13% 60.84 ± 20%
SVM 54.32 ± 8% 61.33 ± 6% 63.13 ± 23% 72.04 ± 10% 63.28 ± 15%
Random-forest 55.59 ± 8% 60.72 ± 7% 52.78 ± 23% 77.37 ± 11% 58.21 ± 17%
Logistic-regression 54.08 ± 8% 58.51 ± 7% 49.83 ± 24% 75.82 ± 11% 55.07 ± 17%
MLP 54.69 ± 8% 59.03 ± 7% 49.04 ± 24% 75.89 ± 9% 55.56 ± 15%

The bold values are the highest among all the models.
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Accuracy � TP + TN

TP + FP + TN + FN
(3)

Precision � TP

TP + FP
(4)

Recall � TP

TP + FN
(5)

F1Score � 2PrecisionRecall
Precision + Recall

(6)

where TP, FP, TN, and FN are illustrated in Table 6. The
following are the explanations of the other four metrics:

Accuracy: Accuracy represents the number of correctly
classified samples over the total samples. In this paper, it is
the number of correctly predicted long-term survival samples
and the correctly predicted dead samples over the total samples.

Precision: It represents the number of the correctly predicted
dead samples (TP) over all the predicted dead samples (TP + FP).

Recall: It represents the number of the correctly predicted
dead samples (TP) over all the real dead samples (TP + FN).

F1-Score: F1-score is a metric which takes into account both
precision and recall.

4.3.2 Optimal Threshold Selection Based on Youden’s
J Statistic
Because of the imbalance of our data (74% positive vs. 26%
negative for the TCGA cohort and 58% positive vs. 42%
negative for the GSE37745 cohort), it is often difficult for
the metrics scores calculated with the default threshold to
represent the model’s classification performance. Hence,
selecting the optimal threshold is a good way to get good
results. And Youden’s J statistic (Ruopp et al., 2008) was used
in our experiments to tune the classification threshold.
Youden’s J statistic is calculated from sensitivity and
specificity; the whole calculation process is shown as follows:

Sensitivity � TP

TP + FN
� TruePositiveRate TPR( ) (7)

Specificity � TN

FP + TN
� 1 − FalsePositiveRate FPR( ) (8)

J � Sensitivity + Specificity − 1 � TPR − FPR (9)
and the series of (TPR, FPR) tuples with their corresponding
thresholds can be gained from the ROC curve. We choose the
threshold with the largest value of Youden’s J statistic for
further calculating the final classification metrics scores.

4.4 Results Analysis
In this subsection, we analyzed the results from 50 experiments
per model. For a better learning effect on an imbalanced
classification task, all the DL and ML models used SMOTE
(Chawla et al., 2002) to oversample the minority samples
except for the KNN model (an error occurred when using
SMOTE on it, so we used random oversampling instead).
Then we performed a Kaplan–Meier survival analysis (Goel
et al., 2010) on our best DL model and the five ML models to
make the classification performance of our model more intuitive.

4.4.1 Model Validity Analysis
We firstly tested the validity of the two kinds of gene expression
images. We used two CNNmodels each with same architecture as
the four-input model to test the prediction performance of the
two kinds of gene expression images. To evaluate the effectiveness
of the gene expression images well, the five ML models used the
same selected 1,000 gene expression values which we used for
generating images as input. The average AUCs were 63.58% for
the model with KEGG BRITE images and 64.69% for the model
with KEGG Pathway images. Both the AUCs of the two kinds of
images were far better than those of the five ML models, showing
that it was meaningful to convert gene expression data into
images.

Then we tested the performance when the two kinds of images
were inputted in one model simultaneously, and we got an AUC
of 65.15%, which was better than both of the model using only
one gene expression image as input. This result enlightened us
that we could add more inputs to improve the performance.

Next, we tested the effectiveness of adding clinical data into the
DL model. We proposed two models with three inputs: one used
two kinds of images and age at the initial pathological diagnosis as
inputs, and the other used two kinds of images and the numerical
AJCC pathological tumor stage as inputs. Their AUCs were
65.68% and 70.69%, respectively; both of them outperformed
the model with only the two kinds of expression images as inputs,
so that we could conclude that the two kinds of clinical data were
both helpful in improving prediction performance.

Naturally, in the end, we harvested the best AUC (71.48%)
when we fed all four kinds of data into one model, which was a
remarkable result given that the samples were imbalanced. And
the four-input model achieved the best scores in accuracy,
precision, recall, and f1-score calculated from the threshold
with the largest value of Youden’s J statistic, which was a
fantastic accomplishment.

In Figure 2, a radar plot showed the combination of the five
evaluation metrics for the six DL-based models. It was readily
observable that our best DLmodel, namely, the four-input model,
achieved the best all-around performance among all the DL
models.

And in Figure 3, another radar plot showed the synthetic
performance of the five metrics for the two-input DL model and
five ML models. We drew this radar plot aiming at making a
performance comparison between the DL and ML models when
no clinical data are included. And our two-input DL model
performed better than all the ML models while not using any
of the clinical data as input.

TABLE 6 | The interpretation of TP, FP, TN, and FN. TP is the number of correctly
predicted dead samples, TN is the number of correctly predicted survived
samples, FP is the number of wrongly predicted dead samples, and FN is the
number of wrongly predicted survived samples.

Prediction

Ground Truth — P N
P TP FN
N FP TN
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In Figure 4, a box plot showed the distribution of AUCs from
50 experiments; we could observe that the four-input model was
more robust for it got the best median value, first-quartile value,
and third-quartile value among all the models. Among the ML
models, we can observe that random forest performed the best.

We also conducted statistics on the 50 optimal thresholds for
each model, and a box plot showing the distribution of the
thresholds is presented in Figure 5. In this box plot, we can
find that all the DL models have threshold distribution mainly
between 0.4 and 0.6, so that the median values are closer to 0.5.
With the fact that the TCGA lung cancer data set is very
imbalanced, getting such threshold distributions indicated that
the DL models overcame the problem of overfitting. As for ML

models, we can find that their first-quartile values are closer to 1,
which means that the ML models faced severe overfitting.

4.4.2 Results of Survival Analysis on the TCGA Lung
Cancer Data Set
Figure 6 shows that the two-input model could divide the
samples better than the other five ML models, and the two-
input model got the smallest p-value among the models. As for
the Cox-PH univariate analysis, in Table 4, we can observe that
the DL model and SVM model both got a hazard ratio of 4.00,
which means that the DL model and SVMmodel can separate the
samples into two more distinct risk groups. But in Figure 6, we
can see that the classification threshold of SVM was up to 0.9951
while the DL model’s threshold was 0.5159, which means that the
DL model was far from overfitting, but the SVM was overfitting
severely. All of these indicated that our DL model can better get
two risk groups with more significant separation.

FIGURE 2 | Radar plot for comparison of the DL models on the TCGA
lung cancer data set.

FIGURE 3 | Radar plot for comparison of the two-input DL model with
the ML models on the TCGA lung cancer data set.

FIGURE 4 |Box plot of the distribution of 50 AUCs for eachmodel on the
TCGA lung cancer data set.

FIGURE 5 | Box plot of the distribution of 50 thresholds for each model
on the TCGA lung cancer data set.
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4.4.3 Results of Generalization Performance Validation
on the Independent Data Set
As can be seen with the results in Table 5, surprisingly, almost
all the metric scores were higher than those of results on the
TCGA lung cancer data set; even the total number of samples
were much less than that of the TCGA samples. For example,
the four-inputs DL model achieved 72.51% on AUC, larger
than that of TCGA, which was 71.48%. The gap between DL
models and ML models was more evident. We can see that the
smallest AUC score was 67.37% of DL models, which was
much larger than the best value of the ML models (55.76%
with KNN). And the conclusion on the TCGA lung cancer
data set is still effective on this independent data set. For
instance, the four-inputs DL model was still the best among all
the models, and the two-inputs DL model was still the best
model without clinical data. All of above prove that our
proposed method has the potential for generalization.

5 DISCUSSION

In this paper, we introduced a method to predict lung cancer
long-termOS using gene expression data and clinical data. Due to
the extremely high feature dimensionality of gene expression
data, it was difficult to directly use them in a DL or ML model for
prediction. So we firstly used a supervised MI-based feature
selection method to select the most relevant genes to the
prediction target. Then we proposed a novel data
transformation method to convert gene expression data into
images with KEGG BRITE and KEGG Pathway data
incorporated in. Using the gene expression images, we could
take advantage of the CNN model to extract high-level
representations from the gene expression data. The experiment
results illustrated the effectiveness of using the CNN-based DL
model with gene expression images to predict lung cancer long-
term survival. When we combined two kinds of gene expression

FIGURE 6 | The Kaplan–Meier curves of the predicted high-risk and low-risk samples for our best DL model (without clinical data) and the five ML models on the
TCGA lung cancer data set. The p-values were computed using log-rank test.
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images as inputs into one DL model, we surprisingly found that
the performance improved compared with the single-input DL
model. This may be because with more input images, more
biological knowledge was included, and the model got more
trainable parameters while avoiding going deeper. To further
improve the prediction performance, we added two kinds of
clinical data into the model and achieved apparent performance
improvement. Since the prediction task in this paper was
essentially a binary classification problem, we chose AUC to
better display the classification results. In order to make the
results more intuitive, we also introduced accuracy, precision,
recall, and f1-score into the paper. But we did a little special thing:
we leveraged Youden’s J statistic to select the optimal
classification threshold, so that we could get more accurate
metric scores with the influence of imbalanced sample
distribution being reduced. Besides the classification metrics
scores, we conducted a Kaplan–Meier survival analysis to
validate the effectiveness of our method, and the
Kaplan–Meier curves of our model seemed more apparent for
splitting the test set samples into two distinct risk groups, and the
p-value calculated from the log-rank test was much smaller than
the ML models. We did not intend to replace the methods in this
field and just wanted to offer a novel solution to cope with high-
dimensional gene expression data and to do cancer survival
prediction.

Although our proposed method got remarkable results in
average AUC, it still needed to be improved. We are planning
to let the model be more interpretable; in the future, we will
devote ourselves to finding the key genes or key pathways by
tracing back to the weights of DL model layers or the gradients in
back propagation. In conclusion, in this paper, we proposed a
novel method to predict lung cancer long-term survival using a
CNN-based DL model with well-designed gene expression
images. Our method performed well, and it has great potential
applications in cancer precision medicine.
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