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Background: The existence of maternal malignancy may cause false-positive results or
failed tests of NIPT. Though recent studies have shown multiple chromosomal
aneuploidies (MCA) are associated with malignancy, there is still no effective solution to
identify maternal cancer patients from pregnant women with MCA results using NIPT. We
aimed to develop a new method to effectively detect maternal cancer in pregnant women
with MCA results using NIPT and a random forest classifier to identify the tissue origin of
common maternal cancer types.

Methods: For examination, 496 participants with MCA results via NIPT were enrolled from
January 2016 to June 2019 at BGI. Cancer and non-cancer participants were confirmed
through the clinical follow-up. The cohort comprising 42 maternal cancer cases and
294 non-cancer cases enrolled from January 2016 to December 2017 was utilized to
develop a method named mean of the top five chromosome z scores (MTOP5Zscores).
The remaining 160 participants enrolled from January 2018 to June 2019 were used to
validate the performance of MTOP5Zscores. We established a random forest model to
classify three common cancer types using normalized Pearson correlation coefficient
(NPCQC) values, z scores of 22 chromosomes, and seven plasma tumor markers (PTMs) as
predictor variables.
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Identifying Maternal Malignancy Using NIPT

Results: 62 maternal cancer cases were confirmed with breast cancer, liver cancer, and
lymphoma, the most common cancer types. MTOP5Zscores showed a sensitivity of 85%
(95% confidence interval (Cl), 62.11-96.79%) and specificity of 80% (95% Cl,
72.41-88.28%) in the detection of maternal cancer among pregnant women with MCA
results. The sensitivity of the classifier was 93.33, 66.67, and 50%, while specificity was
66.67, 90, and 97.06%, and positive predictive value (PPV) was 60.87, 72.73, and 80% for
the prediction of breast cancer, liver cancer, and lymphoma, respectively.

Conclusion: This study presents a solution to identify maternal cancer patients from
pregnant women with MCA results using NIPT, indicating it as a value-added application of
NIPT in the detection of maternal malignancies in addition to screening for fetal
aneuploidies with no extra cost.

Keywords: cell-free DNA, maternal malignancy, non-invasive prediction, random forest, classifier

INTRODUCTION

Noninvasive prenatal testing (NIPT) first became commercially
available to screen for fetal trisomy-21 in 2011 and went global
with a rapid speed (Agarwal et al., 2013). The high sensitivity and
specificity for NIPT to detect fetal trisomy-21, -18, and -13 are
now well recognized and widely applied in clinical practice (Chen
et al,, 2011; Benn et al., 2013), but as more tests are performed
globally, the issues related to false positives and inconclusive test
results are coming to the foreground. The discordant results
between cell-free DNA and fetal karyotype could be attributed to
various factors, such as confined placental mosaics (Lau et al.,
2013), co-twin demise (Curnow et al, 2015), maternal
chromosomal mosaics (Bianchi et al, 2015b), and maternal
malignancy (Bianchi et al,, 2015a; Amant et al., 2015; Hartwig
et al., 2017).

Maternal malignancy is relatively rare in pregnancy, with an
incidence rate of 1 in 1,000 pregnancies (Pavlidis, 2002).
Thereinto, breast cancer, melanoma, cervical cancer, and
Hodgkin’s disease are the most common cancer types during
pregnancy (Albright and Wenstrom, 2016). Incidental discovery
of maternal cancer has been repeatedly reported within failed
NIPTs due to multiple chromosomal aneuploidies (MCA)
(Osborne et al., 2013; Bianchi et al., 2015a; Amant et al., 2015;
Dharajiya et al., 2018). In 2013, Osborne et al. reported the first
case of maternal malignancy with discordant NIPT results.
A pregnant woman had aneuploidies of chromosome 13 and
18 found via an NIPT and was subsequently diagnosed with
metastatic disease of small-cell carcinoma of vaginal origin
(Osborne et al.,, 2013). In 2015, Bianchi discovered 10
maternal cancer cases from 125,426 pregnancies based on
aneuploidies involving chromosomes 13, 18, 21, X, or Y via
NIPT. Eight cancer cases showed nonspecific copy-number
gains and losses across multiple chromosomes (Bianchi
et al., 2015a). In 2017, Dharajiya reported 18 malignant
maternal malignancies in 43 non-reportable NIPT cases
with altered genomic profiles (Dharajiya et al., 2018).
These studies suggest that aneuploidies involving multiple
chromosomes are associated with the development of
maternal cancer.

Our previous study has proposed a method named cancer
detection pipeline which performs genomic profiling for copy-
number variations (CNVs) of plasma DNA to identify incidental
maternal malignancies (Ji et al., 2019). Nevertheless, there are
multiple limitations in the previous study, such as the complexity
of the bioinformatics algorithm, lack of independent validation,
and ineffectiveness of tumor origin identification for suspicious
cases. Here, we present a retrospective study involving 496
participants with MCA results from NIPT. The purpose of
this study was to refine the performance of NIPT in the
identification of incidental maternal malignancies by
developing bioinformatics algorithms and a tissue origin
classifier for common maternal cancer types.

METHODS

Sequencing and Bioinformatics Analysis
Five milliliters of maternal peripheral blood were collected in a
Streck Cell-Free DNA BCT * blood collection tube (Streck, La
Vista, Nebraska, United States) and were processed within 4 days
of collection. Details of the NIPT method, also called the
noninvasive fetal trisomy test (NIFTY), have been published
previously (Lau et al.,, 2012). In brief, plasma was separated by
sequential centrifugations of the blood sample at 1600 g at 4°C for
10 min. Cell-free DNA was extracted from plasma and subjected
to library construction. The quantity and quality of the library
were examined by real-time polymerase chain reaction and size
distribution analysis. Only the qualified libraries were sequenced,
and the data generated were analyzed using bioinformatics
algorithms to detect fetal chromosomal aneuploidy and large
deletions and duplications as previously described (Lau et al,
2012; Article, 2013). MCA was defined as at least two
chromosomes having absolute z-scores >3.0.

Participants

We retrospectively enrolled participants with MCA records
between January 2016 and June 2019 at BGI-Shenzhen and
BGI-Wuhan. Participants were retrospectively interviewed by
physicians every 6 months through telephone and online
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questionnaires (Supplementary Method 1). Clinical information
regarding patients’ medical information was obtained from
patients or their clinicians with a  questionnaire
(Supplementary Method 2). Non-cancer participants with
positive MCA results were regarded as participants but no
cancer was identified at the last time of follow-up.

Development of the Maternal Cancer

Predictor

The mean of the top five chromosome z scores (MTOP5Zscores)
represented the mean of the top five chromosomes with the
largest absolute z scores except for chromosomes Y and 19. In our
cohort, the frequencies of chr19 deletion and chr19 amplification
were 53.92 and 21.89%, respectively, in non-cancer participants
(Supplementary Figure S1). Therefore, chr19 was excluded in
the calculation of MTOP5Zscores. MTOP5Zscores were
retrospectively computed for 496 participants. The participants
enrolled from January 2016 to December 2017 were utilized as a
training set to develop the MTOP5Zscore method and determine
the optimal cutoff value; the training set comprised 42 maternal
cancers cases and 294 non-cancer cases. The participants enrolled
from January 2018 to June 2019 were used to independently
validate the performance of MTOP5Zscores. The validation set
comprised 20 maternal cancer cases and 140 non-cancer
participants. The R package of pROC was used to compute
sensitivities and  specificities, build operating
characteristic (ROC) curves, and calculate the area under the
curve (AUC) values for MTOP5Zscores (Robin et al., 2011).

receiver

Calculation and Normalization of Read

Coverage for Genes

The raw data in the fastq format of maternal liver cancer, breast
cancer, and lymphoma cases were mapped to a human reference
genome (hgl9) by using the Burrow-Wheeler Aligner (BWA)
tool (Li and Durbin, 2009). Reads with mapping quality score
below 30 and polymerase chain reaction (PCR) duplicates were
removed by using the Picard tool. The bam file was used to
predict copy-number variations by using HMMcopy with
100kb resolution (Lai and Ha, 2016). For all the mapped
reads, we recorded their start position. Reverse-mapped reads
had their start position adjusted for their length by adding their
length minus one base pair (bp) to their first position on the
genome. In order to enhance the nucleosome signal, the read
start position was extended 167bp; then, the central 61bp
(53-113) of 167-bp cfDNA fragments were used to calculate
the read depth. Read depth of each site was normalized by
dividing read depth by median log2 scaled copy-number
variation ratio with 100 kb resolution. For each transcript in
the RefSeq database, accumulative read depths were calculated
in 1,000 flanking regions around the transcriptional start site
(TSS) and then normalized using the read depths per kilobase
per million mapped reads (RDPKM). For the genes that have
more than one transcript, the mean RDPKM value was
calculated. The genes with average RDPKM <100 were
eliminated from this study.

Identifying Maternal Malignancy Using NIPT

Calculation of Normalized Pearson’s

Correlation Coefficient

Several studies demonstrate that gene expression levels have a
negative correlation with the accumulative read depths across the
TSS region (Ulz et al., 2016; Guo et al., 2020). In our study, we
took the gene expression values of breast invasive carcinoma
(BRCA) (Cancer and Atlas, 2012), diffuse large B-cell lymphoma
(DLBC,  https://tcga-data.nci.nih.gov/tcga/),  and  liver
hepatocellular carcinoma (LIHC) (Ally et al, 2017) from The
Cancer Genome Atlas (TCGA) database as a reference. We
calculated the mean fragments per kilobase of gene per million
mapped reads (FPKM) values of each gene in 429 LTHC samples,
885 BRCA samples, and 48 DLBC samples, and the genes with
log2 (mean FPKM) < 0.1 were removed from the study. For each
maternal cancer sample, RDPKM values in the TSS region, and
Pearson’s correlations between RDPKM and the mean FPKM
values of LIHC, BRCA, and DLBC were calculated separately with
the mean of 14,589 genes. The coefficient of the Pearson’s
correlation was divided by the sum of the three coefficients of
BRAC, DLBC, and LIHC for each maternal cancer sample.

Normalized Pearson’s correlation coe f ficient (NPCC)R;
R

2R;
i € (BRAC,DLBC, LIHC),

where R; is the coefficient of Pearson’s correlation between the
RDPKM and the mean FPKM value of cancer type i.

Analysis of Plasma Tumor Markers

PTMs test has been widely implemented in clinical settings to
increase diagnostic accuracy in several cancer indications as well
as to monitor disease progression (Borrebaeck, 2017). Plasma
tumor markers (PTMs) were retrospectively tested in 56 maternal
cancer cases and 451 non-cancer cases using the remaining
plasma after NIPTs. A  microarray enzyme-linked
immunoassay test was performed to detect the concentration
of plasma tumor markers, following the manufacturer’s
instruction (Beijing BGI-GBI Biotech Co., Ltd., Beijing,
China). The tumor markers include CA15-3 (carbohydrate
antigen 15-3), AFP (alpha-fetoprotein), CEA
(carcinoembryonic antigen), CA19-9 (carbohydrate antigen
19-9), CA125 (carbohydrate antigen 125), CA72-4 (cancer
antigen 72-4), and CYFRA21-1 (human cytokeratin fragment
antigen 21-1). The respective cutoff values recommended by the
assay manufacturer were 28 U/ml, 500 ng/ml, 5 ng/ml, 37 U/ml,
36 U/ml, 3.3 ng/ml, 1.2 ng/ml for CA15-3, AFP, CEA, CA19-9,
CA125, CYFRA21-1, and SCC, respectively.

Development of Tumor Tissue Origin
Classifier

The tumor tissue origin classifier was built by the R package
randomForest with ntree = 500 and default mtry values (Breiman,
2001). The three NPCC values, z scores of 22 chromosomes and
seven PTMs were set as predictor variables and cancer types
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comprising breast cancer, liver cancer, lymphoma, and gastric
cancer as response variables. Leave-one-out cross-validation was
performed to evaluate the accuracy and robustness of the tumor
tissue origin classifier. For each iteration, the random forest
classifier used one sample as the test set and the remaining
samples as the training set and generated the probability for
each cancer type and predicted the cancer type of the test sample.
The ROC curves of the classifier were plotted, and the AUC values
were computed by the python package sklearn using probabilities
predicted by the random forest classifier.

Statistical Analyses

Data were presented as the mean + SD (standard deviation).
MTOP5Zscores were compared between cancer and non-cancer
groups using the Wilcoxon sum rank test in R. The
Kruskal-Wallis test was used to compare the differences in
MTOPS5Zscores in cancer patients at different stages. The
Kaplan-Meier method was used to plot diagnostic curves, and
the log-rank test was utilized to compare the difference in non-
cancer rates between different groups. p < 0.05 was predefined to
indicate a statistically significant difference.

RESULTS

Overview of Maternal Cancer Cases

Identified in 496 Participants

A total of 496 participants with MCA results between January
2016 and June 2019 at BGI labs were enrolled. The average age and
gestational weeks of 496 participants were 31.8 years (SD, 5.51 years)
and 17.1 weeks (SD, 3.38 weeks), respectively. All patients were
interviewed, and the median follow-up time was 437 days
(interquartile range 333-516). While the majority of interviewed
participants remained asymptomatic, a total of 62 maternal cancer
cases was clinically confirmed (Supplementary Tables S1, S2). At the
time of NIPT, the mean age of 62 cancer patients was 33.48 years (SD,
5.72 years), and the mean gestational week was 17.95 (SD, 3.68 weeks).
A wide spectrum of cancer types was detected from the 62 cases, with
breast cancer (15 cases), liver cancer (13 cases), and lymphoma (9

cases), the most common cancer types (Figure 1A and
Supplementary Tables S1, S2). With regard to cancer staging, 9,
10, and 23 patients were diagnosed at stages II, III, and IV respectively,
whereas the cancer staging of the other 20 cases was unknown
(Figure 1B and Supplementary Tables S1, S2). Among the 57
cancer cases of whom the time of final clinical diagnosis was
available, the time from NIPT to the diagnosis of cancer ranged
from 0 to 366 days, with a median duration of 78 days (interquartile
range 35-167 days, Supplementary Tables S1, S2).

The Patterns of Chromosomal
Abnormalities Varied Greatly Between

Cancer Types

Chromosome amplification and deletion are the most
common structural chromosome abnormalities, which
occur in 88% of cancer samples. In order to investigate the
chromosomal abnormalities of the 62 maternal cancer cases,
we computed the fraction of cancer cases with absolute z
scores >3 for breast cancer, liver cancer, lymphoma, gastric
cancer, and other cancer types. Chrl, chr8, chr20, chr7, and
chr2l were the top five most frequently amplified
chromosomes, while chrl4, chr22, chr4, chr5, and chrl0
were the top five most frequently deleted chromosomes in
breast cancer (chromosome abnormality frequencies >50%
for all cases). Chr20, chrl, chr2, chr6, and chr7 were the top
five most frequently amplified chromosomes, with
frequencies of 69.2, 61.5, 61.5, 61.5, and 61.5%,
respectively. While chr4, chrl8, chrl3, chrl6, and chrl5
were the top five most common deletions in liver cancer,
with frequencies of 92.3, 69.2, 61.5, 61.5, and 53.8%,
respectively. The frequent chromosomal amplifications
occurred at chr2, chrl9, chrl2, chr5, and chr9, while the
common chromosomal deletions occurred at chr4, chrl3,
chrX, chr6, and chrl0 in lymphoma (chromosome
abnormality frequencies >44.4% for all cases). Commonly
amplified chromosomes were chr7, chr8, chrl9, chrl, and
chr20, while commonly deleted chromosomes were chr4,
chrX, chr5, «chrl5, and chr2l in gastric cancer
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(chromosome abnormality frequencies >42.9% for all cases,
Figure 2).

The Plasma Tumor Marker Test Shows Poor
Performance in the Identification of

Maternal Cancers

We performed the PTM test on 56 maternal cancer cases and
451 non-cancer participants and investigated whether PTMs
might be used for identifying maternal cancer patients. First,
we compared the PTM expression levels between cancer and
normal participants and found that the PTM expression levels
were significantly increased in maternal cancer as compared
to non-cancer participants except for CA72-4 (p < 0.05 for all
cases, Wilcoxon sum rank test, Supplementary Figure S2).
Then, we aimed to analyze whether PTMs alone could
effectively predict maternal cancer. Participants were
considered at high risk for maternal cancer when the
concentration of at least one PTM exceeded the
prespecified cutoff value. The PTM test showed a
sensitivity of 66.07% (95% confidence interval [CI],
52.19-78.19%) and specificity of 93.13% (95% CI,
90.39-95.28%) in identifying maternal cancers, suggesting

the PTM test itself is not a good screening method
(Supplementary Table S3).

MTOP5Zscores are Established as a
Feasible Method in Detection of Maternal

Cancer

A total of 496 participants with MCA results via NIPT were
successfully interviewed in this study, and 62 maternal cancers
were confirmed, giving a positive predictive value (PPV) of 12.5%
for MCA. It demonstrates that MCA results alone showed
unsatisfactory performance for cancer identification; therefore,
we developed a new method named the mean of the top five
chromosome z scores (MTOP5Zscores) to identify maternal
cancer cases in pregnant women with MCA results. To
determine whether MTOP5Zscores of maternal cancer patients
deviate from non-cancer participants, we compared the
differences of MTOP5Zscores between 62 cancer patients and
434 non-cancer participants who showed positive MCA results
during NIPT, but no cancer was identified after follow-ups. The
mean maternal age was 33.48 (SD, 5.72) years in 62 cancer cases
and 31.6(SD, 5.45) years in the non-cancer group. The mean
gestational age was 17.95 (SD, 3.68) weeks in the cancer group
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TABLE 1 | The performances of MTOP5Zscores in the identification of maternal
cancer in the training and validation sets.

Training set Validation set
Cancer Non-cancer Cancer Non-cancer
Predicted cancer 36 58 17 28
Predicted non-cancer 6 236 3 112
Sensitivity 85.71% (71.46-94.57%) 85% (62.11-96.79%)
Specificity 80.27% (75.26-84.67 %) 80% (72.41-88.28%)
PPV 38.3% (32.33-44.64%) 37.78% (29.36-47%)
NPV 97.52% (94.93-98.81%) 97.39% (92.91-99.07 %)

Note, PPV, positive predictive value; NPV, negative predictive value. Numbers in the
parentheses are 95% confidence intervals.

and 17.01(SD, 3.33) weeks in the non-cancer group. The age and
gestational weeks of the cancer group were statistically higher
than the non-cancer group (p < 0.05 for all cases, Wilcoxon rank
sum test, Supplementary Table S4). As shown in Figure 3A,
cancer patients showed significantly higher MTOP5Zscores than
non-cancer participants (p < 0.0001, Wilcoxon sum rank test,

Figure 3A). These results suggest that genomic stability in
maternal cancer patients was severely disrupted.

To develop the MTOP5Zscore model, we assigned 42 cancer
patients and 294 non-cancer participants enrolled between
January 2016 and December 2017 to the training set, while 20
cancer patients and 140 non-cancer participants enrolled between
January 2018 and June 2019 to the validation set. Next, we built
ROC curves for MTOP5Zscores in the training and validation
sets. The AUCs were 90.56 and 88.14% for MTOP5Zscores,
respectively (Figure 3B). The optimal cutoff value of
MTOP5Zscores was selected as 5.94 with a sensitivity of
85.71% (95% CI, 71.46-94.57%) and a specificity of 80.27%
(95% CI 75.26-84.67%) (Table 1). Therefore, a patient was
considered as MTOP5Zscore-positive if the patient had
MTOP5Zscores >5.94 in the NIPT. Overall, 94 participants
were reported as MTOP5Zscore-positive, 36 of whom were
diagnosed with maternal cancer until the last day of the
follow-up. Six cancer patients were MTOP5Zscore-negative
but confirmed with maternal cancer (Table 1). In order to
further assess the performance of MTOP5Zscores in the
identification of maternal cancer, we used 20 cancer patients
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TABLE 2 | The performance of the tumor tissue origin classifier for breast cancer, gastric cancer, liver cancer, and lymphoma.

Predicted breast cancer
Predicted Gastric
Predicted liver cancer
Predicted lymphoma
Sensitivity (95% Cl)
Specificity (95% Cl)

Breast cancer

14

0

1

0
66.03-99.65%
46.02-82.76%

93.33%
66.67%

Gastric cancer

- O o,

)
0% (0-43.91%)
91.43% (75.81-97.76%)

Liver cancer Lymphoma
2 2
2 1
8 1
0 4

66.67% (35.44-88.72%)
90% (72.32-97.38%)
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and 140 non-cancer participants in the validation set for
validation analysis. MTOP5Zscores identified 17 out of 20
maternal cancer cases, giving an overall sensitivity of 85%
(95% CI 62.11%-96.79%). Twenty-eight false-positive calls
were confirmed after the follow-up (specificity 80%) (95% CI
72.41%-86.28%) (Table 1).

Lastly, the MTOP5Zscores were compared among the cancer
patients with different stages, and no significant difference of
MTOP5Zscores was observed across cancer stages (chi-squared = 1.3,
p-value = 0.52, Kruskal-Wallis rank sum test, Figure 3C). Based on
the follow-up data from January 2016 to June 2019, the
MTOP5Zscore-positive group showed the lowest non-cancer rates
in comparison with the MTOP5Zscores-negative group and MCA-
positive group (p-value <0.05 for all cases, log-rank test, Figure 3D).
The results suggest that participants with MTOP5Zscore-positive
results have the highest risk of developing cancer, and a medical
workup is highly recommended.

Tumor Tissue Origin Classification

According to the statistics on cancer types in our study, the most
frequent maternal cancer types are breast cancer, liver cancer,
lymphoma, and gastric cancer. Therefore, we established a
random forest model to classify the common cancer types
using the NPCC values, z scores of 22 chromosomes, and

seven PTMs as predictor variables (Supplementary Tables S5,
$6). The sensitivity of the classifier was 93.33, 66.67, and 50%,
while specificity was 66.67, 90, and 97.06% for the prediction of
breast cancer, liver cancer, and lymphoma, respectively. The
classifier predicted breast cancer, liver cancer, and lymphoma
with positive predictive values (PPV) of 60.87, 72.73, and 80%,
respectively (Table 2). The leave-one-out cross-validation result
showed that the AUC values were 0.9, 0.9, and 0.92 for breast
cancer, liver cancer, and lymphoma, respectively (Figure 4A),
while the classifier performed poorly in predicting gastric cancer
(AUC 0.36, Supplementary Figure S4). Moreover, we analyzed
the feature importance in the random forest classifier and found
that AFP, z scores of chrl, CA-125, z scores of chr4, and the
NPCC value of LIHC were the top five most important features in
the classifier (Figure 4B). These results indicate that the random
forest classifier could effectively predict the tumor origin of
maternal breast cancer, liver cancer, and lymphoma.

DISCUSSION

Over the past decade, the number of NIPT has been exploding
throughout the world. With the rapid expansion of NIPT, failed
and unexpected abnormal NIPT's are also ubiquitously observed
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in line with previous studies (Osborne et al., 2013; Bianchi et al.,
2015a; Amant et al., 2015; Janssens et al., 2016; Dharajiya et al.,
2018). A total of 62 cases of various maternal cancers were found
in 496 participants with MCA identified via NIPTs in this study,
suggesting that MCA is associated with maternal cancer via
NIPT. Given MCA has a PPV of 12.5% (62/496), MCA alone
is still unsatisfactory to be an indicator of cancer risk due to high
false-positive results. Therefore, new methods are imminently
needed to boost the effectiveness of maternal cancer identification
besides MCA.

So far, more than 110 cases of maternal cancer have been
found in failed or abnormal NIPTs. One major concern regarding
incidental cancer cases identified by NIPT is whether NIPT could
identify maternal cancer at earlier stages. Nine maternal cancer
cases were diagnosed at stage II in this study, and 3 cases of
maternal cancer at stage II were reported in Bianchi’s study
(Bianchi et al.,, 2015a), suggesting NIPT may be competent to
identify early-stage cancer patients. We previously developed a
bioinformatics algorithm called the cancer detection pipeline
(CDP) to identify maternal malignancies using genome
profiling of copy-number variations. The performance can be
further improved by incorporating CDP with plasma tumor
markers (Ji et al., 2019). However, the pipeline involves
complex bioinformatics analytical procedures, including
mapping of raw sequencing data, CNV detection by using
HMMcopy software, and calculation of the FCNV (Fraction of
significant copy-number variation) score, which restrains its
utility in clinical settings. This study established a method
named MTOP5Zscores to identify maternal malignancies
among pregnant women with MCA results. MTOP5Zscores
calculated the mean of the top five chromosomes with the
largest absolute z scores except for chromosome Y and 19
instead of selected chromosomal gains or losses (Cohen et al.,
2016) or more aneuploidies involving chromosomes 13, 18, 21, X,
or Y (Bianchi et al, 2015a) as seen in other studies. So
MTOP5Zscores can capture the change in the genomic
landscape in a more comprehensive manner. As compared to
the CDP method, MTOP5Zscores directly uses z scores from
NIPTs and effectively identifies incidental maternal malignancies
among pregnant women who had MCA in NIPTs. No additional
costs of sequencing or experiments were involved in the analysis.
The method is simple and easily appliable for NIPT service
providers and  health-care  professionals. = Therefore,
MTOP5Zscores further expanded the use of NIPT in the
detection of occult maternal cancers during pregnancy beyond
screening for fetal trisomy-21,-13, and -18 without extra cost.

Despite the encouraging utility of MTOP5Zscores, it has an
obvious drawback that MTOP5Zscores could not tell the primary
tumor based on abnormal z scores. To address this problem, we
established a random forest model to classify the three common
cancer types using the NPCC values, z scores of 22 chromosomes,
and seven PTMs as predictor variables. The leave-one-out cross-
validation result showed the classifier is robust and accurate for
classifying breast cancer, liver cancer, and lymphoma. Moreover,
AFP, z scores of chrl, CA-125, z scores of chr4, and the NPCC
value of LIHC were the top five most important features in the
classifier. AFP is a well-established tumor marker for liver cancer
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(Zhao et al., 2013). Elevated CA-125 and CEA are frequently
observed in breast cancer samples (Fang et al., 2017; Gaughran
et al., 2020). Previous studies have reported that breast cancer,
liver cancer, and lymphoma samples showed distinct copy-
number variation profiles (Cancer and Atlas, 2012; Ally et al,
2017). Our study also validated that chromosomal abnormalities
varied considerably across cancer types. For instance, deletion of
chr16 frequently occurs in liver cancer, and chr22 deletion is
common in breast cancer. Therefore, these features are critical to
the predictive capability of the random forest classifier.

In our study, the MTOP5Zscores method showed high
sensitivity and specificity in the identification of maternal
malignancies, which outperformed PTMs and our previous
CDP model. The random forest classifier could predict the
tumor origin of maternal breast cancer, liver cancer, and
lymphoma with high accuracy. Although this study paves a
way for pre-symptomatic detection of maternal cancer and
provides evidence-based recommendations for the obstetricians
to make optimal decisions when MCAs were reported, this study
still has a few limitations. First, MTOP5Zscores effectively
identified cancer patients among pregnant women with MCA
results found with NIPTs. However, MTOP5Zscores is not a
method to screen for maternal cancer in all pregnant women who
undergo NIPTs. Second, the number of samples is relatively small
in the validation dataset, and further validation of the accuracy of
MTOP5Zscores in a larger size of cancer samples is needed in
further studies. Third, the random forest classifier still couldn’t
specify the exact origin of circulating tumor DNAs for most
cancer types in the study; therefore, other diagnostic approaches
such as whole-body magnetic resonance imaging may be needed
for MTOP5Zscore-positive pregnant women in clinical settings
(Amant et al., 2015; Peccatori et al., 2017). The MTOP5Zscore
method may need to be used in combination with DNA
methylation signatures to better identify the primary tumor.
One of the major ethical issues with suspected maternal
cancer identified by MCA results by NIPT is how to
accurately interpret the abnormal results and cautiously
transmit the information of cancer risk to the providers and
the patients. In this study, MTOP5Zscore-positive participants
had a PPV of 37.78% and the lowest non-cancer rate, suggesting a
medical workup may be needed for this category of pregnant
women, and they should be well informed of their cancer risks.
MTOP5Zscore-negative participants had a negative predictive
value (NPV) as high as 95.89%. Therefore, a postnatal NIPT is
suggested to reassure the care providers and the patients.

CONCLUSION

In summary, the MTOP5Zscore method shows strong clinical
utility to detect pre-symptomatic maternal cancer using z scores
generated via NIPT. In addition, the random forest classifier
could effectively predict the tumor origin of maternal breast
cancer, liver cancer, and lymphoma. The study reported here
lays the foundation for future application of NIPT to identify
maternal cancer in addition to screening for fetal aneuploidies in
clinical practice.
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