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Non-small-cell lung cancer (NSCLC) is divided into three major histological types, namely, lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell lung carcinoma
(LCLC). We previously identified that 4.1N/EPB47L7 acts as a tumor suppressor and is
reduced in NSCLC patients. In the current study, we explored the underlying epigenetic
mechanisms of 4.1N/EPB41L1 reduction in NSCLC. The 4.1N/EPB41L1 gene promoter
region was highly methylated in LUAD and LUSC patients. LUAD patients with higher
methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500, ¢g13399773 or TSS200,
€g20993403) had a shorter overall survival time (Log-rank p = 0.02 HR = 1.509 or Log-rank p =
0.016 HR = 1.509), whereas LUSC patients with higher methylation level in the 4.1N/EPB41L1
gene promoter (TSS1500 ¢g13399773, TSS1500 cg07030373 or TSS200 ¢g20993403) had
a longer overall survival time (Log-rank p = 0.045 HR = 0.5709, Log-rank p = 0.018 HR = 0.68
or Log-rank p = 0.014 HR = 0.639, respectively). High methylation of the 4. 1N/EPB41L1 gene
promoter appeared to be a relatively early event in LUAD and LUSC. DNA methyltransferase
inhibitor 5-Aza-2'-deoxycytidine restored the 4.1N/EPB41L1 expression at both the mRNA
and protein levels. MiR-454-3p was abnormally highly expressed in NSCLC and directly
targeted 4.1N/EPB41L7 mRNA. MiR-454-3p expression was significantly correlated with
41AN/EPB41L1 expression in NSCLC patients (r = —-0.63, p < 0.0001). Therefore, we
concluded that promoter hypermethylation of the 4.1N/EPB47L1 gene and abnormally high
expressed miR-454-3p work at different regulation levels but in concert to restrict 4.1N/
EPB41L1 expression in NSCLC. Taken together, this work contributes to elucidate the
underlying epigenetic disruptions of 4.1N/EPB41L1 deficiency in NSCLC.

Keywords: 4.1N/EPB41L1, lung adenocarcinoma (LUAD), methylation, miR-454-3P, non-small-cell lung cancer
(NSCLC), lung squamous cell carcinoma (LUSC)

Abbreviations: 3'UTRs, 3'-untranslated regions; 5-Aza-CdR, 5-Aza-2'-deoxycytidine; HR, hazard ratio; LCLC, large-cell lung
carcinoma; LR, log-likelihood ratio; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-
small-cell lung cancer; SD, standard deviation; TBS-seq, targeted bisulfite sequencing; TSS, transcription start site.
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INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the
most lethal cause of cancer mortality worldwide (Bray et al,
2018). Non-small-cell lung cancer (NSCLC), consisting of lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), and large-cell lung carcinoma (LCLC) (Rodriguez-
Canales et al., 2016), represents major types of lung cancers
(80-85%) (D’Addario et al., 2010). Owing to a lack of obvious
early symptoms and early-stage diagnosis, most patients with
NSCLC are diagnosed in the advanced clinical stage—that is—III
or IV (Norouzi and Hardy, 2021). Despite recent advances in
NSCLC treatment, less than 15% of the patients eventually
survived (Quintanal-Villalonga and Molina-Pinelo, 2019;
Norouzi and Hardy, 2021).

Gene promoter methylation and miRNA dysregulation are
typical markers of cancer epigenetics (Nebbioso et al., 2018).
Gene promoter methylation most commonly occurs at the CpG
islands and regulates the gene expression at the transcriptional
level (Yang et al., 2014; Zhou et al., 2017; Arechederra et al., 2018).
5-10% of CpG islands in the promoter of genes have been
identified as cancer-specifically methylated, which should not
be methylated in normal cells (Heller et al., 2013; Olbromski et al.,
2020). The methylations of certain genes are of clinical relevance
for patients with NSCLC (Heller et al., 2013). MiRNAs are
endogenous small non-coding RNAs, which directly bind to
the 3'-untranslated regions (3'UTRs) of target mRNAs to
regulate the gene expression at the posttranscriptional level.
NSCLC patients have widespread dysregulation of miRNA
expression (Du et al, 2018; Uddin and Chakraborty, 2018). It
has been well-documented that 4.1 family members 4.IN/
EPB41L1 and its homologs (4.1B/EPB41L3, 4.1G/EPB41L2, and
4.1R/EPB41) are lost in various cancers (Yang et al., 2021).
However, epigenetic silencing of 4.1 family members in
cancers is still largely unknown. Loss of 4.1B/EPB41L3 is the
only case that has been linked to high promoter methylation in
cancers (Kikuchi et al., 2005; Zhang et al., 2012). No miRNAs
have been found to regulate 4.1 family members.

Our previous studies suggested that 4.1N/EPB4IL1 is
abnormally low expressed and exerts anticancer effects in
NSCLC (Wang et al, 2016; Yang et al, 2016; Yang et al,
2021). In the current study, for the first time, we focus on
identifying the underlying epigenetic disruptions of 4.1N/
EPB41L1 deficiency in NSCLC. We report that promoter
hypermethylation and aberrant miR-454-3p expression
regulate 4.1N/EPB41L1 expression at transcriptional and
posttranscriptional levels, respectively, but work in concert to
restrict its expression in NSCLC.

MATERIALS AND METHODS

Antibodies
Rabbit anti-4.IN antibody was purchased from ATLAS
(Bromma, Sweden). Rabbit anti-GAPDH antibody was
purchased from Santa Cruz (Santa Cruz Biotechnology,
United States).
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Cell Culture
MRCS5, 95C, and 95D cells were grown in DMEM medium

(Gibco, United States) and supplemented with 10% fetal
bovine serum (Gibco, United States). H460 and A549 cells
were grown in RPMI 1640 medium (Gibco, United States) and
supplemented with 10% fetal bovine serum. All the cells were
grown at 37°C in a humidified atmosphere containing 5% CO..

NSCLC Tissue Samples

Tumor tissues and tumor-adjacent tissues were obtained from the
Second Xiangya Hospital of Central South University (Changsha,
China). The tissue samples were subjected to qPCR experiments
after approval by the Ethics Committee of the Second Xiangya
Hospital. Informed consent was obtained from all participating
subjects.

Methylation-Based Analysis

The MethSurv tool (https://biit.cs.ut.ee/methsurv/) (Modhukur
et al,, 2018) was used to perform the assessment of methylation-
based analysis for the 4.1N/EPB41L1 gene in LUAD and LUSC.
The raw data for LUAD and LUSC could be downloaded from the
website (https://biit.cs.ut.ee/methsurv/).

Cell Transfection and Western Blot
MiR-454-3p and the control mimics were purchased from
RiboBio (Guangzhou, China) and transfected according to our
previously published protocol (Li et al., 2016). Western blot was
also performed according to our previous protocol (Yang et al.,
2016).

Targeted Bisulfite Sequencing

The cells were sent to Biomarker Acegene Corporation,
Shenzhen, China for targeted bisulfite sequencing (TBS-seq)
analysis. 4.IN/EPB41L1 promoter methylation was assessed
according to the previously published method (Gao et al,
2014a; Gao et al., 2014b; Gao et al., 2015; Pan et al., 2018).
Methylation levels are defined as the fraction of read counts of ‘C’
in the total read counts of both ‘C’ and ‘T” for each covered C site.
On the basis of such read fraction, methylated cytosine was called
using a binomial distribution as in the method described by Lister
etal. (2009), whereby a probability mass function is calculated for
each methylation context (CpG). Two-tailed Fisher’s exact test
was used to identify cytosines that are differentially methylated
between two samples or groups. Only those CGs covered by at
least 200 reads in at least one sample were considered for testing.

5-Aza-2'-deoxycytidine(5-Aza-CdR)
treatment

5-Aza-CdR (Merck, Germany) was diluted in PBS. The cells were
seeded in a 6-well plate and treated with 0, 1, or 10 uM 5-Aza-
CdR for 48 h. 5-Aza-CdR was replaced every 24 h.

RNA Extraction and gPCR

Total RNA was isolated using the RNeasy kit (QIAGEN,
United States). cDNA was synthesized using the RevertAid H
Minus First-Strand ¢cDNA Synthesis Kit (Thermo Scientific,
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United States). Stem-loop RT primers (RiboBio, China) were
used in reverse transcription for miR-454-3p. qPCR was
performed using the One-Step qRT-PCR SYBR® Green Kit
(Vazyme Biotech, China). The sequences of primers targeting
4.1N/EPB41L1 and miR-454-3p were used as described earlier
(Wang et al.,, 2010) and designed by Vazyme Biotech (Nanjing,
China). U6 small nuclear RNA was used as an internal control for
miR-454-3p analysis.

Dual-Luciferase Reporter Gene Assay

The 3'UTR target sites of 4.1N/EPB41L1 mRNA were amplified
by PCR with genomic DNA from MRCS5 cells. The PCR product
was cloned in the psiCHECK2 vector (Promega, United States) to
construct the wild-type plasmid (psiCHECK2-4.IN-wt). The
corresponding mutant psiCHECK2-4.1N-mut was constructed
by in vitro site-directed mutagenesis (Mut ExpressMultiS Fast
Mutagenesis Kit, Vazyme Biotech, China). Bidirectional
sequencing was applied to confirm the correct sequence of the
two constructs. For the dual-luciferase reporter gene assay, A549
and H460 cells were cultured in a 24-well plate for 24 h and
transfected with psiCHECK2-4.1N-wt or psiCHECK2-4.1N-mut
plasmids and miR-454-3p mimics or miR-negative-control using
the RiboFECT™CP transfection kit (Ribo Biotechnology, China)
and Lipofectamine 2000 (Invitrogen, United States). 48 hours
after the transfection, the Dual-Luciferase Reporter Assay System
(Promega, Madison, WI, United States) was used to measure the
luciferase activity according to the manufacturer’s protocol.

Statistics

All the experiments were performed in triplicate, and statistical
analyses were conducted using GraphPad Prism 5.0. The data
were presented as the mean + standard deviation (SD). Student’s
t-tests were used to calculate the results. A p-value < 0.05 was
considered significant statistically. DNA methylation values were
represented as beta values (range from 0 to 1). Any beta value
equal to or greater than 0.6 was considered fully methylated. Any
beta value equal to or less than 0.2 was considered to be fully
unmethylated. Beta values between 0.2 and 0.6 were considered to
be partially methylated. Differential methylation for individual
CpG loci was assessed by comparing the beta values. The patients
were classified into high-methylation and low-methylation levels
based on maxstat (Modhukur et al, 2018). Cox proportional
hazards models were used to perform the survival analysis based
on methylation levels of the CpG sites. The methylation levels and
overall survival time were used as explanatory variables and
response variables, respectively, to perform overall survival
analysis.

RESULTS

Hypermethylation of the 4.1N/EPB41L1
Gene in NSCLC

Aberrant hypermethylations in the promoter region of genes are
considered a major reason for gene silencing in cancer (Lamy
et al., 2001). The CpG island methylation prediction using the
CpGPNP program (http://forensicdna.kr/cpgpnp/) showed four

4. 1N/EPB41L1 is Epigenetic Silenced

CpG islands in the 4.1N/EPB4IL1 gene promoter (2,000 bp
upstream to 1,000 bp downstream of the transcription start
site, Figure 1A). NSCLC predominantly encompasses the
LUAD (40% prevalence) and LUSC subtypes (25%
prevalence). The MethSurv tool (https://biit.cs.ut.ee/methsurv/)
(Modhukur et al., 2018) was used to perform the assessment of
methylation-based analysis for the 4.1N/EPB41L1 gene promoter
region (TSS200 and TSS1500) in LUAD and LUSC. The heat map
showed that high methylation of the 4.IN/EPB4IL1 gene was
prevalent in both LUAD (Figure 1B) and LUSC (Figure 1C).
Because the MethSurv tool (https://biit.cs.ut.ee/methsurv/) lacks
LCLC data, we investigated the methylation of the 4.1N/EPB41L1
gene in LCLC cells (95C, 95D, and H460) and normal lung
fibroblast cells (MRC5). TBS-seq results showed that promoter
methylation of 4.1N/EPB41L1 was significantly higher in LCLC
cells (95C, 95D, and H460) than in normal lung cells (MRC5) (p <
0.001) (Figures 1D,E). To further validate the role of methylation
in 4.1N/EPB41L1 gene repression, we treated the LCLC cells (95C
and H460) and LUAD cells (A549) with DNA methyltransferase
inhibitor 5-Aza-CdR. After demethylation treatment, the 4.1N/
EPB41L1 gene was restored both at mRNA (Figures 2A-C) and
protein levels (Figures 2D-F). Taken together, these results
indicated that 4.1N/EPB41L1 gene methylation is a cause of
decreased 4.1N/EPB41L1 expression in NSCLC patients.

Prognostic Relevance of 4.1N/EPB41L1
Hypermethylation in LUAD and LUSC

In most cases, evaluating DNA methylation signature in the
promoter region is highly desirable and sensitive for cancer
diagnosis and prognosis. The Kaplan-Meier survival curve
showed that the higher methylation levels in the promoter
(TSS1500, cg13399773 or TSS200, cg20993403) of the 4.IN/
EPB41L1 gene were significantly associated with a shorter overall
survival time (Log-rank p = 0.02, HR = 1.509 or Log-rank p = 0.016,
HR = 1509, respectively) for LUAD patients (Figures 3A,C).
Median methylation levels of the two CpG sites (cg13399773 and
€g20993403) were high (beta>0.5) at stage I and did not essentially
change in tumors of more advanced stages (Figures 3B,D). Unlike
the LUAD, the Kaplan-Meier survival curve showed that the higher
methylation levels in the promoter (TSS1500 cg13399773, TSS1500
€g07030373, or TSS200 cg20993403) of the 4.1N/EPB41L1 gene were
significantly associated with a shorter overall survival time (Log-rank
p =0.045 HR = 0.5709, Log-rank p = 0.018 HR = 0.68 or Log-rank
p = 0.014 HR = 0.639 respectively) for LUSC patients (Figures
4A,C,E). Median methylation levels of the three CpG sites (TSS1500
cg13399773, TSS1500 cg07030373, or TSS200 cg20993403) were
high (beta>0.5) from stage I to IV and tended to decline with tumor
progression (Figures 4B,D,F). We did not further explore the
contrasting  prognostic ~ relevance  of  4.1N/EPB4ILI
hypermethylation between LUAD and LUSC. However,
methylation of the 4.1N/EPB4ILI gene might be an important
mechanism for tumor formation in LUAD and LUSC because
high 4.IN/EPB41L1 gene methylations were observed at stage L
Because the MethSurv tool (https://biit.cs.ut.ee/methsurv/) lacks
LCLC data, the prognostic relevance of 4.1N/EPB41LI
hypermethylation in LCLC was unknown.
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Structure and CpG Islands Prediction of the 4. 1N/EPB411 Gene Promoter
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FIGURE 1 | Promoter methylation of the 4.1N/EPB47L1 gene in NSCLC. (A) In the upper panel, CpG island prediction of the 4. 1N/EPB41L1 gene promoter was
integrated using the CpGPNP program. The red line represented GC content, the green line represents CpG O/E value, and the yellow box represented four predicted
locations of CpG island (range from 82 to 179, 265-361, 2412-2467, and 2542-3002, sequence length >100 bp, GC content >50%, O/E value >0.6). The lower panel
represented the structure of the 4.1N/EPB41L 1 gene promoter (range from TSS -2000 to TSS 1000). Coordinate values of abscissas in the lower and upper panels
were correlated. TSS -2000 in the lower panel corresponded to O in the upper panel. The TSS site in the lower panel corresponded to 2000 in the upper panel. TSS 1000
inthe lower panel corresponded to 3000 in the upper panel. (B,C) Heatmap depicting the CpG methylation level of the 4.1N/EPB41L 1 gene promoter in LUAD and LUSC
patients. Rows and columns represented the CpGs and the patients, respectively. (D) Heatmap depicting the methylation levels of the 4.1N/EPB41L1 gene promoter in
normal lung fibroblast cells MRC5 and LCLC cells (95C, 95D, and H460). The row label was the methylation site. The number of row labels corresponded to the
coordinate value of abscissa in the upper panel of Panel 1A. Methylation levels were represented as beta values and shown as a continuous variable from blue to red. Any
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FIGURE 1 | beta value equal to or greater than 0.6 was considered fully methylated. Any beta value equal to or less than 0.2 was considered to be fully unmethylated.
Beta values between 0.2 and 0.6 were considered to be partially methylated. (E) Boxplots indicating the methylation differences between normal lung fibroblast cells
MRC5 and LCLC cells (95C, 95D, and H460). Median methylation levels (show by a thick black line). ***o < 0.001.

4.1N/EPB41L1 mRNA is a Direct Target of
miR-454-3p

We previously described that the 95D cells had remarkably lower
4.1N/EPB41L1 expression than the 95C cells (Yang et al., 2016).
Unexpectedly, although the methylation level of the 95D promoter
was higher than that of 95C, there was no significant difference
between the two homologous NSCLC subclones 95C/95D
(Figure 5A). Over half of all protein-encoding genes are
regulated by miRNAs (Turchinovich et al, 2012). Aberrantly
high-expressed oncomiRNA silencing cancer suppressing genes
are frequently found in NSCLC. Therefore, we investigated the
potential miRNAs regulating 4.IN/EPB4IL1 expression. The
miRNA-target gene database TargetScan (miRBase:www.mirbase.
org) was used to predict the potential miRNAs regulating 4.1N/
EPB41L1, and miR-454-3p was suggested as a potential miRNA
(Figure 5B). qPCR results showed that the miR-454-3p was
expressed significantly lower in the 95D cells than in 95C cells
(Figure 5C). After overexpressing the miR-454-3p in A549 cells
(Figure 5D), the expression level of protein 4.1N/EPB41L1 was
downregulated (Figure 5E).

To further examine if 4.1N/EPB41L1 was a target gene of miR-
454-3p, the dual-luciferase activity assay was applied in A549 and
H460 cells. The predicted binding sites of miR-454-3p and 4.1N/
EPB41L1 mRNA and mutant sequences containing four mutated
nucleotides are shown in Figure 5F. MiR-454-3p significantly
suppressed the luciferase activity, and this suppressive effect was

abolished by the mutation in the miR-454-3p-binding region of
the 4.1N/EPB41L1 mRNA 3'UTR in H460 and A549 cells
(Figures 5G,H). The abovementioned results signified that
abnormally highly expressed miR-454-3p is another epigenetic
cause of 4.1IN/EPB41L1 decreasing in NSCLC patients.

Abnormally High-Expressed miR-454-3p
Decreases 4.1N/EPB41L1 in NSCLC

TCGA data were used to extract RNA transcript levels of the miR-
454-3p. We found that the miR-454-3p was significantly higher in
the LUAD (Figure 6A) and LUSC (Figure 6C) tissues in
comparison to the adjacent tissues, whereas the 4.1N/EPB41L]1
mRNA was significantly lower in LUAD (Figure 6B) and LUSC
(Figure 6D) tissues than the corresponding adjacent tissues.
Then, we used qPCR to measure the miR-454-3p and 4.1N/
EPB41L1 mRNA expressions in 37 NSCLC tissues and 31 tumor-
adjacent tissues. We found that the expression patterns are
consistent with TCGA data (Figures 6E,F). Moreover, the
association between miR-454-3p and 4.1N/EPB4I1L1 mRNA
was validated by Spearman’s coefficient analysis. The MiR-
454-3p expression level showed a significantly negative
correlation with 4.1N/EPB41L1 mRNA (r = —0.63, p < 0.0001,
Figure 6G). Expression patterns of miR-454-3p and 4.1N/
EPB41L1 mRNA showed that abnormally high expression of
miR-454-3p negatively regulates 4.1N/EPB41L1 in NSCLC.

A . B . c "

. 2.5 — =om g 2.5 i = ouM § 6 1 = oum

@ 20 = 10uM 9 5, = oM 3

5 - g4

515 3 15 @

4 4 ‘Z_

£ = <

g 0.5 5 0.5 5

0.0 T 0.0 0
& .0& &""\ &
o0 ‘4? o° v’y
q,,c; 5 &@ &
»
& ,‘\u“
D 5-Aza-CdR E 5-Aza-CdR F 5-Aza-CdR
0 1 10 pM 0 1 10 uM 0 1 10 pM
4 1N| S S—— = ' e
GAPDH GAPDH | s s s | GAPDH | S
95C H460 A549
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EPB41L7 mRNA in 95C, H460, and A549 cells after O uM or 1 uM 5-Aza-CdR treatments for 48 h (D-F) 95C, H460, and A549 cells were treated with 0, 1 or 10 uM 5-
Aza-CdR for 48 h, and then the protein was detected by Western blot. The data were presented as the mean + SD, *p < 0.05.
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FIGURE 3 | Methylation levels and prognosis of the 4.1N/EPB41L1 promoter in patients with LUAD. (A) Kaplan—Meier curves for cg13399773-4.1N showing
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(show by a thick black line) and interquartile range were summarized by the boxplot within each violin plot. HR: hazard ratio; LR: log-likelihood ratio; LUAD: lung
adenocarcinoma. Methylation levels were represented as beta values. Any beta value equal to or greater than 0.6 was considered fully methylated. Any beta value equal
to or less than 0.2 was considered to be fully unmethylated. Beta values between 0.2 and 0.6 were considered to be partially methylated.

M M
M M
[ ]\ [} / \
[\ | f \
/ \\ “ | [ \ | \
| \ |
JA R _ | '
/ \ \
/ \ / | ‘
[ \/ | \ Cistage |
( |/ [] | | | [Istage Il
| \ [ \ | | Istage Ill
| || | | \ \ [Istage IV
\ - H | \
| [ || \ | [
“ \ 1 I U
\ \
. \ / |
I S | / |
\ | \ \ / |
\ L/ L
\ / |
A/ ! |
\ |/ |
] | |
\|/ {
\l/
\l
]
n=250 n=113 n=73 n=20
clinical stage
|
|
Al T\
i \
[
I\ [\
’Jf \ | | [CIstage |
/ \ ‘\ | [Istage Il
/ / | \ [Istage lll
/ \ / ' [“Istage IV
\/ |

n=250 n=113 n=73

clinical stage

n=20

DISCUSSIONS

DNA methylation in the promoter region results in gene repression,
which is one of the most well-defined epigenetic hallmarks. We
previously revealed that downregulated 4.1N/EPB4ILI exerts
antitumor effects by activating the cdlassical Wnt pathway and
C-MYC expression in NSCLC (Wang et al, 2016; Yang et al,
2016; Yang et al, 2021). The Wnt pathway disruption driven by
methylation of promoter regions plays a key driving role in the high
CpG island methylated phenotype LUAD subtype. This subtype is also
significantly correlated with the overexpressed MYC gene (Cancer
Genome Atlas Research, 2014; Duruisseaux and Esteller, 2018). 4.1N/
EPB41L1 has many similar biological characteristics to its homologous
4.1B/EPB41L3. High promoter methylation of the 4.1B/EPB4I1L3
gene-induced gene-silencing frequently occurs in NSCLC (Kikuchi

et al,, 2005; Zhang et al., 2012), breast cancer (Heller et al.,, 2007), renal
clear cell carcinoma (Yamada et al., 2006), and prostate cancer (Schulz
et al, 2007; Schulz et al, 2010). Thus, we decided to explore the
underlying epigenetic disruptions of 4.IN/EPB4IL1 deficiency in
NSCLC. Similarly, we found that high 4.1N/EPB4IL1 gene
methylation was prevalent in LUAD and LUSC. 4.1B/EPB4IL3
gene methylation is a potential indicator for poor prognosis in
NSCLC patients, especially in LUAD patients (Kikuchi et al., 2005).
We found that a higher methylation level of 4.1N/EPB41L1 gene CpG
sites (cg13399773 and cg20993403) was potential predictive markers of
shorter overall survival in LUAD patients. It is acceptable that patients
with higher promoter methylation within the 4. 1N/EPB41L1 gene have
a shorter overall survival time because the methylation inhibits tumor
suppressor 4.IN/EPB41L1 expression at the transcriptional level
However, it is a different matter for LUSC, which remains to be
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FIGURE 4 | Methylation levels and prognosis of the 4.1N/EPB41L1 promoter in patients with LUSC. (A) Kaplan—Meier curves for cg13399773-4.1N showing

survival in lower (beta <0.675, shown in blue) and higher methylation groups (beta > 0.675, shown in red) dichotomized by the maxstat method. (C) Kaplan-Meier curves
for cg07030373-4.1N showing survival in lower (beta <0.796, shown in blue) and higher methylation groups (beta > 0.796, shown in red) dichotomized by the maxstat
method. (E) Kaplan—-Meier curves for cg20993403-4.1N showing survival in lower (beta <0.611, shown in blue) and higher methylation groups (beta > 0.611,

shown in red) dichotomized by the maxstat method. (B,D,F) Violin plots showing the methylation levels of cg13399773-4.1N, cg07030373-4.1N, and cg20993403-
4.1N among stage -V LUAD patients. Median methylation levels (show by a thick black line) and interquartile range were summarized by the boxplot within each violin
plot. HR: hazard ratio; LR: log-likelihood ratio; LUSC: lung squamous cell carcinoma. Methylation levels were represented as beta values. Any beta value equal to or
greater than 0.6 was considered fully methylated. Any beta value equal to or less than 0.2 was considered to be fully unmethylated. Beta values between 0.2 and 0.6

elucidated in the future. The 5-year survival rate is less than 15% for
NSCLC patients, but the rate can increase to 63% with the early stage of
initial diagnosis (van Rens et al, 2000; Geng et al, 2017), thus
demonstrating the value of the early diagnosis of NSCLC. 4.1B/
EPB41L3 gene promoter methylation is regarded as an early event
in renal clear cell carcinoma (Yamada et al,, 2006). In this study, high
4.IN/EPB41L1 gene methylation was also observed to be a relatively
early event in LUAD and LUSC patients, indicating its valuable role in
tumorigenesis and potential as an early detection marker.

qPCR results of our sample set and the TCGA database
together showed that the miR-454-3p was upregulated in the
NSCLC tumor tissue, which contrasted with the results from
another independent study (Jin et al., 2019). Interestingly, tumor
expression of miR-454-5p in NSCLC is reported as upregulated
(Zhu et al.,, 2016), but another report suggests its expression to be
downregulated (Liu et al, 2018). It is not rare when various
clinical specimens are evaluated; the expression levels of some
miRNAs are different. Because of the complexity of NSCLC
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FIGURE 5 | MiR-454-3p directly bound to 3'UTR of 4.1N/EPB41L1 mRNA. (A) There was no significant difference in methylation levels of the 4.1N/EPB41L1 gene
promoter between the two homologous NSCLC subclones 95C and 95D. (B) MiR-454-3p was a predicted binding partner of 4.1N/EPB47L1. (C,D) After transfecting
A549 cells with miR-454-3p or negative control mimics, the expression levels of miR-454-3p and protein 4.1N/EPB41L1 were detected using gPCR and Western blot,
respectively. (E) miR-454-3p expression was significantly lower in 95C cells than 95D cells. (F) Schematic representation of the predicted binding sites of miR-454-
3p and 4.1N/EPB41L1 mRNA and the mutated sequences in potential binding sites. (G,H) A549 or H460 cells were co-transfected with miR-454-3p or control mimics
and wild-type (psiCHECK2-4.1N-wt) or mutant-type (psiCHECK2-4.1N-mut) plasmids. 48 h later, dual-luciferase activity was measured. The data were presented as the
mean + SD. *p < 0.05 GADPH and U6 were used as loading control of 4.1N/EPB41L17 mRNA and miR-454-3p, respectively.

development, for these miRNAs, the specimen integration of
different NSCLC stages and histological types could impede their
expressions together (Zhong et al., 2021). In NSCLC, our study
showed aberrantly high-expressed miR-454-3p directly bound to
4.1N/EPB41L1 mRNA 3'UTR and led to the depression of tumor
suppressor 4.1N/EPB4IL1 at the posttranscriptional level,
uncovering the known miRNAs regulating 4.1N/EPB4I1L1. It
has been reported that the miR-454-3p also acts as
oncomiRNA in oral squamous cell carcinoma (Shi et al,
2021), cervical cancer (Guo et al,, 2018; Shukla et al., 2019;
Song et al,, 2019; Li et al.,, 2021), liver cancer (Li et al., 2019),

breast cancer (Ren et al, 2019; Wang et al., 2020), and colon
cancer (Li et al., 2018). Moreover, an integrative bioinformatics
analysis indicates that miR-454-3p is a biomarker for diagnosing
some cancers, including the LUAD (Botling et al., 2013), which
needs further confirmation studies in the future.

Epigenetic alterations have been demonstrated to be highly
orchestrated from the initiation step to therapy resistance step in
lung cancer (Quintanal-Villalonga and Molina-Pinelo, 2019).
Although many research studies have revealed the vital
anticancer roles of 4.1 family members, the knowledge of the
underlying epigenetic mechanism behind their loss in cancers is
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nearly empty. This study showed that promoter methylation and
miR-454-3p were implicated in the expression deregulation of the
4.1N/EPB41L1 at transcriptional and posttranscriptional levels,
respectively. The epigenetic abnormalities are reversible; the
application of upregulating 4.1N/EPB4IL1 by targeting DNA
methylation and miR-454-3p may represent a promising
therapy for NSCLC treatment.
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