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TGFp2 is a Prognostic Biomarker for
Gastric Cancer and is Associated With
Methylation and Immunotherapy
Responses

Bangling Han, Tianyi Fang, Yimin Wang, Yongle Zhang and Yingwei Xue *

Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China

TGFB signaling plays a key role in cancer progression and by shaping tumor architecture
and inhibiting the anti-tumor activity of immune cells. It was reported that high expression
of TGFB can promote the invasion and metastasis of cancer cells in a variety of tumors.
However, there are few studies on TGFB2 and its methylation in gastric cancer. We
analyzed the Harbin Medical University Cancer Hospital (HMUCH) sequencing data and
used public data to explore the potential function and prognostic value of TGFp2 and its
methylation in gastric cancer. In this study, we used the ssGSEA algorithm to quantify 23
methylation sites related to TGFB2. Survival analysis showed that high expression of
TGFB2 and hypomethylation levels of TGFp2 were negative factors in the prognosis of
gastric cancer. Functional enrichment analysis of methylation revealed that methylation of
different TGFB2 methylation scores was mainly involved in energy metabolism, extracellular
matrix formation and cell cycle regulation. In the gastric cancer microenvironment TGFB2
was associated with high levels of multiple immune cell infiltration and cytokine expression,
and high TGFp2 expression was significantly and positively correlated with stemness
markers, stromalscore and EMT. Gene set enrichment analysis also revealed an important
role of TGFB2 in promoting EMT. In addition, we discussed the relationship between
TGFB2 and immunotherapy. The expression of PD-1, PD-L1 and CTLA-4 was elevated in
the TGFB2 high expression group. Also when TGFB2 was highly expressed, the
responsiveness of immune checkpoint blockade (ICB) was significantly enhanced. This
indicates that TGFP2 may become an indicator for predicting the efficacy of
immunosuppressive agents and a potential target for immunotherapy.

Keywords: gastric cancer, TGFp2, NDA methylation, epithelial-mesenchymal transition, tumor microenvironment,
progression

INTRODUCTION

Gastric cancer is a malignant tumor originating from the epithelium of the stomach, with a high
incidence rate and mortality rate (Bray et al., 2018). At present, the conventional treatment of gastric
cancer is difficult to remove the tumor cells completely by surgery and chemotherapy, and cancer
recurrence often occurs. With the rapid development of medical biotechnology, cancer
immunotherapy with strong targeting and low side effects is a rapidly developing research
direction in oncology (Cho et al, 2020). Immunotherapy is mainly aimed at immune cells,
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which can activate the immune system by inhibiting negative
immune regulatory factors, enhance the recognition and killing of
tumor by immune cells, so as to achieve the purpose of tumor
clearance (Cho et al.,, 2012; Garon, 2017).

In the complex tumor microenvironment, TGFp is a
pleiotropic cytokine involved in the regulation of cancer cell
proliferation, apoptosis and metastasis and other cellular
processes (David and Massagué, 2018). TGFp defines three
subtypes (TGFP1, TGFP2 and TGFB3), among which TGFp2 is
highly expressed in many cancers, especially those tumors that
show high transmission potential (Massagué, 1998). In
addition, the increased expression of TGFp2 in a variety of
cancers is often positively correlated with epithelial-
mesenchymal transition (EMT) and coordinated with the
expression of genes related to driving EMT (Vagenas et al,
2007; Yang et al, 2020). TGFpP signaling in the tumor
microenvironment inhibits the anti-tumor function of a
variety of immune cell populations, including T cells and
natural killer cells, and the resulting immunosuppression
severely limits the efficacy of immune checkpoint inhibitors
and other immunotherapy approaches. Inhibitors of TGFp
signaling have been evaluated in a number of clinical trials as a
major pathway to improve the immune effect of cancer, and
combining TGFp related signals can enhance the effect of other
immunosuppressants (Holmgaard et al., 2018; Tauriello et al.,
2018). Trabedersen (AP-12009) was an antisense molecule
complementary to the mRNA expressed by human TGEFf2
gene, it had been applied II/Phase III clinical cases and has
achieved encouraging results (Schlingensiepen et al., 2006).

However, the potential functions and mechanisms of TGF{32
and TGFp2 methylation involved in gastric cancer progression
are unclear. In this study, we comprehensively analyzed the
relationship between TGFP2 and TGFP2 methylation levels
and the microenvironmental characteristics of gastric cancer
based on sequencing data from the Harbin Medical University
Cancer Hospital (HMUCH) and public databases. The expression
levels of TGFP2 were also validated in gastric cancer tissues. The
results showed that TGFP2 was highly expressed in gastric cancer
and was a poor prognostic factor. TGFB2 was closely related to
the gastric cancer microenvironment, and functional enrichment
analysis of TGFP2 and TGFp2-associated methylation was
performed to explore the possible mechanisms of TGFp2
action in gastric cancer.

MATERIALS AND METHODS

Patient and Clinical Databases

In this study, frozen tissues (cancer and normal paracancerous
tissue more than 5 cm from the tumor cut edge) were collected
from 231 gastric cancer surgery patients and subjected to high-
throughput sequencing of the transcriptome. All gastric cancer
tissues were certified by independent examination by two
pathologists to confirm the histological type. Patients were
not treated preoperatively with adjuvant therapy such as
radiotherapy and chemotherapy. We uploaded and stored
the sequencing data into the GEO Datasets (GSE184336).

TGFB2 and Methylation in STAD

All patients signed an informed consent form. This study
complied with the requirements of the Research Ethics
Committee of the Harbin Medical University Cancer
Hospital (2019-164-R).

We downloaded gene expression data for pan-cancer from the
TCGA public database, and the cancer abbreviations and full
names for pan-cancer are shown in Supplementary Table S1.
The STAD download data also included mutation information,
pathology data, and survival status. The GSE84437, GSE63089,
GSE62254, GSE34942, GSE29272, GSE26253 and GSE15459
gastric cancer datasets were downloaded from the Gene
Expression Omnibus (GEO) database for further analysis (Li
et al., 2014; Chia et al., 2015; Cristescu et al., 2015; Zhang et al,,
2015; Oh et al.,, 2018; Subhash et al., 2018; Yoon et al., 2020).

Western Blot Analysis and

Immunohistochemistry

Gastric cancer paraffin blocks were serially sectioned with a
section thickness of 4 pm. Immunohistochemical staining was
performed as described previously (Kalantari et al., 2022). Total
proteins of gastric cancer and normal tissues adjacent to the
cancer were extracted and their concentrations were determined.
PVDF membranes (Merck Millipore) were blocked with 5% skim
milk powder and incubated with TGFP2 antibody dilution
(Proteintech, 19999-1-AP, 1:800) overnight at 4°C environment.

TGFp2 Related Methylation

First, we assigned DNA methylation values for TGFB2 with the
average beta value of the probes mapped to the promoter
region, including TSS200 (region from -200 bp upstream to the
transcription start site (TSS) itself), TSS1500 (from -200 to
-1,500 bp upstream of TSS), 1stExon (the first exon) and
5'UTR. Genome annotation of the CpG sites was based on
GRCh38. methylation levels of the CpG sites were estimated as
beta values (Ding et al., 2020).

Then we used the 23 methylation sites of TGFP2 as a joint
feature of TGFB2 methylation and used these 23 methylation
sites as a dataset for TGFP2 methylation scoring. The single
sample gene set enrichment analysis (ssGSEA) algorithm in
the R package GSVA was used to calculate the TGFf2
methylation score in each sample (Hinzelmann et al,
2013). Patients with STAD were grouped according to the
median TGFB2 methylation score and subjected to
methylation differential analysis, and R package methylGSA
was used for functional enrichment analysis of methylation
(Geeleher et al., 2013).

Estimate, EMT and mRNA.i

The R package ESTIMATE was used to calculate stromalscore,
immunescore and ESTIMATEScore to assess the tumor
microenvironment, = where  tumor  purity =  cos
(0.6049872018 + 0.0001467884 * estimate score) (Yoshihara
et al, 2013). We also used the ssGSEA algorithm to assess the
EMT score in gastric cancer patients with the EMT gene set as
described previously (Cristescu et al., 2015). We used the
mRNAsi index to assess the tissue stemness characteristics
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FIGURE 1 | TGFB2 and TGFp2 Methylation. (A) Relationship between TGFB2 and TGFp2 methylation promoter region. (B-D) TGFB2 expression in gastric cancer
tissues and normal tissues in STAD, GSE29272 and GSE184336 (HMUCH). (E) Location of the TGFB2 methylation site on the chromosome. (F) Heatmap of TGF#2 and
TGFp2 methylation expression. Kaplan-Meier survival analysis of TGFp2 in STAD (G), GSE62254 (H) and GSE184336 (I).

of gastric cancer, and miRNA values were referenced to
previous reports (Thorsson et al., 2018).

Immune Cell Infiltration and Cytokines

We quantified the level of immune cell infiltration in STAD
using multiple methods, including CIBERSORT, MCPcounter,
TIMER, ssGSEA and quanTIseq algorithms, and immune cells
for each STAD patient were calculated as described previously
(Becht et al., 2016; Charoentong et al., 2017; Li et al., 2017;

Chen et al.,, 2018; Finotello et al., 2019). In addition, we
analyzed the relationship between TGFP2 and cytokines
(receptor, chemokine, immunoinhibitor, immunostimulator
and MHC) in the gastric cancer microenvironment (Ru
et al,, 2019).

Gene Set Enrichment Analysis
GSEA was presented between the high and low TGFp2
groups. Pathways with nominal p < 0.05 and false
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discovery rate (FDR) < 0.05 were considered signifificantly
enriched (Subramanian et al, 2005). The “h.all.v7.1.
entrez.gmt” was chosen as the reference.

Tumor Mutations

The R package maftools was used to analyze gene mutation
information in STAD patients (Mayakonda et al, 2018). The
Gistic 2.0 algorithm was used to identify copy number variation
(CNV) and to display the frequency of CNV changes between
different TGFB2 groupings (Mermel et al, 2011). Tumor
mutation burden (TMB) and neoantigens were calculated as
previously described. The SCNA module in the TIMER database
(http://timer.cistrome.org/) was used to compare the relationship
between different somatic copy number alterations of TGFp2 and
immune cell infiltration.

Immunotherapy and Chemotherapy

In this study, we evaluated the relationship between TGFp2
expression levels and immunotherapy. First, we used the
submap algorithm to compare the similarity between the
STAD expression data and the skin cancer immunotherapy
dataset, a feature that can be reflected in the response of STAD
to immunotherapy (Hoshida et al., 2007; Roh et al., 2017). We
also used the ImmuCellAl database to predict immune
checkpoint blockade (ICB) response (anti-PD-1 or anti-
CTLA-4 treatment) in STAD patients (Miao et al., 2020).

TGFB2 and Methylation in STAD

We estimated the sensitivity of STAD patients to
chemotherapeutic agents using the genomics of drug
sensitivity in cancer (GDSC) database (Yang et al., 2013).
The half-maximal inhibitory concentration (IC50) was
quantified and analyzed by the R package RpRophetic
(Geeleher et al., 2014).

Nomogram and Calibration

Independent risk factors were identified by cox multi-factor
regression analysis, and used R package rms to construct a
nomogram to predict the probability of overall survival
(Shariat et al., 2008). The calibration chart was used to
evaluate the performance of the nomogram, and the 45°
diagonal line represented the best predicted value. The
index of concordance (C-index) was used to assess the
agreement between the actual results and the probabilities
predicted by the model.

Statistical Analysis

The chi-square test was used to analyze the association
between different TGFP2 subgroups and clinicopathological
parameters. Kaplan-Meier survival curves were used to
compare survival analyses between different subgroups
followed by a log-rank test. The R package DESeq2 was
used for differential analysis of count data of STAD
patients, and the limma package was used for differential
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FIGURE 2 | TGFp2 protein level detection in gastric cancer. IHC (A) and Western blot validation (B) of TGFB2 protein in gastric cancer tissues. o < 0.05.
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FIGURE 3 | TGFB2 methylation score. (A) Correlation between TGFB2 methylation score and TGFB2 expression. Kaplan-Meier survival analysis of TGFg2
methylation score in OS (B) and PFI (C). (D) Correlation of TGFB2 with methylation sites, and the column color represents the correlation of the difference, no statistical
significance in gray. (E) Prognostic analysis of TGFp2 methylation sites. HR < 1.0 (Red) indicates that the methylation site is a favorable prognostic marker.

analysis of methylation between different subgroups. The area
under curve (AUC) value of ROC curve was calculated by the
survivalROC R package. All statistical analyses were
performed in R software (version 3.6.1). p-values less than
0.05 were considered statistically significant differences.

RESULT
TGFp2 and TGFp2 Methylation

The correlation between TGFB2 and promoter region
methylation in STAD was significantly negative, while
TGFp1 and TGFP3 gene expression was not associated with
promoter region methylation (Figure 1A and Supplementary
Figures S1A,B). We compared the expression level of TGFf2
in the STAD, GSE29272 and GSE184336 (HMUCH) data sets,
and TGFpP2 was expressed at higher levels in cancer tissues

than in the adjacent normal tissues (p < 0.01) (Figures 1B-D).
We also showed the location distribution and detailed
information of 23 TGFP2 methylation sites in the
chromosome (Figure 1E and Supplementary Table S2).
Heatmap demonstrated TGEFP2 expression and 23
methylation site levels (Figure 1F). In the survival analysis
of the STAD, GSE62254 and GSE184336 datasets, patients
with high TGF2 expression all had shorter survival times (p <
0.001) (Figures 1G-I). We verified the protein expression
level of TGFP2 in gastric cancer tissues, and the results of IHC
experiments showed that TGFP2 was mainly distributed in
cancer cells, with a small amount of distribution in the
mesenchyme (Figure 2A). The results of Western blot
assay showed that the protein expression level of TGFp2
was higher in gastric cancer tissues than normal tissues,
which was consistent with the results of transcriptome
sequencing level (GSE184336) (Figure 2B).
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We performed cox univariate analysis of the methylation sites and
the results showed that cg01558923, cg06899755, cgl1976166,
cg13285637, cg17934824, cg21387604, cg22021178 and cg27508144
were statistically significant in STAD (Figure 3E). In addition, we also
performed Kaplan-Meier survival analysis for 23 methylation sites, and
most of them (cg01558923, cg06899755, cg08746138, cgl0484211,
cgl1976166, cgl2461345, cgl3285637, cgl7934824, cg21387604,
€g22021178, cg26343258 and cg27508144) high expression was
beneficial to prolong patient survival (Supplementary Figure S2).

TGFB2 Methylation Score
To quantify the overall expression level of TGFp2 methylation, we
evaluated TGFB2 methylation expression in STAD patients using the

ssGSEA algorithm with 23 methylation sites as the reference set.
Pearson correlation analysis showed a significant negative correlation
between TGFpP2 and TGFp2 methylation score (Figure 3A). Patients
with high TGFB2 methylation scores in STAD had longer survival
times at OS (overall survival), PFI (progression-free interval), DPI
(disease-free interval) and DSS (disease-specific survival) levels
(Figures 3B,C and Supplementary Figures S1C,D). In addition,
we also analyzed the correlation between 23 TGFp2 methylation sites
and TGFp2 expression separately, and the results showed that 18
methylation sites were expressed at opposite levels to TGFp2
expression. Although the levels of the four methylation sites
(cg18876728, cg20698667, cg25132662 and cg20991819) followed
the same trend as TGFp2 expression, the cg18876728, cg20698667
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and cg25132662 site was in the body region and the cg20991819 was  score subgroups with screening criteria of p < 0.05 and |delta| >

in the 3'-UTR region at the end of the coding region, neither of which 0.2 (Figure 4A).

was within the promoter region that affects TGFP2 expression Then, we performed functional enrichment analysis of

(Figure 3D and Supplementary Figure S3). methylation among different TGFP2 methylation score groupings
based on differential methylation analysis. The results of GO (Gene
Onotology) analysis showed that methylation between different

Diﬁer_ential An?lysis of Methyl_ation and subgroups is mainly involved in cell cycle regulation (cell cycle
Functional Enrichment Analysis arrest, nuclear transcription factor complex and negative regulation

We grouped STAD patients according to the median TGFB2  of mitotic cell cycle), extracellular matrix formation (cell-substrate
methylation score, 169 cases in the TGFf2-methy.score-Low  adherens junction and cell-substrate junction) and energy
group and 168 cases in the TGFP2-methy.score-High group.  metabolism regulation (regulation of ATP metabolic process,
After removing some undetected methylation probes, a total of =~ ATPase complex, oxidoreductase complex, mitochondrial gene
337 samples (pathological type of gastric adenocarcinoma) and  expression, nucleoside triphosphate biosynthetic process and ATP
375,361 DNA methylation sites were obtained from TCGA. We = metabolic process) (Figure 4B). The results of KEGG (Kyoto
identified 25,053 differentially methylated positions (DMPs) in ~ Encyclopedia of Genes and Genomes) analysis showed that
the analysis of differences between different TGFP2 methylation = methylation among different subgroups may be involved in
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FIGURE 5 | TGFB2 and gastric cancer microenvironment. (A) Correlation analysis of TGFp2 with CSC, EMT and ESTIMATE in The Cancer Genome Atlas (TCGA).

(B) Bubbile plots of the correlation between TGFp2 and ESTIMATE (Stromalscore and Tumor purity), CAFs and EMT (EMT, CDH1, VIM, ZEB1) in multiple GEO datasets.
(C) Bubble plots of TGFp2 correlation with M1 (IL1R1, FIZ1, TGFB1, IL10 and CD163) and M2 (NOS2, IL23A and IL15RA) marker genes in multiple GEO datasets.
Different colors represent different correlations. (D,E) Gene Set Enrichment Analysis (GSEA) was used to analyze the differences in gene function among different
TGFp2 subgroups.
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cancer progression by regulating signaling pathways Wnt signaling
pathway, JAK-STAT signaling pathway and Pathways in cancer
(Figure 4C).

TGFp2 and Hypoxia and Pro-Angiogenesis
Genes

Given the important function of methylation on metabolic
regulation among different TGFB2 methylation score
subgroups and that oxygen content is one of the important
factors affecting energy metabolism, we compared hypoxia and
proangiogenesis-related genes among patients with different
TGEFpP2 subgroups. The results showed that hypoxia-related

TGFB2 and Methylation in STAD

genes (HIF1A family, HK1, HK3, PKM, PFKL, PFKM and
SLC2A1) were higher in the high TGFB2-expressing subgroup
of patients, while pro-angiogenic genes (MMP7, MMP9,
MMP10, FGF1, FGF2, PDGFB, ANGPT, ANGPT2, TNF,

CXCL8 and TGFPl) expression was also higher
(Figures 4D,E).

TGFB2 and Gastric Cancer
Microenvironment

In the tumor microenvironment we analyzed the

relationship between TGFB2 and tumor stemness, EMT
and ESTIMATE scores, respectively, with similar results
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FIGURE 6 | TGFB2 and immune cell infiltration and cytokine levels. (A) TGFB2-related gene network. Correlation of TGFB2 with immune cells (B) and cytokines (C).
Correlation of TGFB2 with immune cells in multiple GEO datasets (D). *p < 0.05, *p < 0.01, and **p < 0.001.
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between different pan-cancers. TGFB2 was significantly
negatively correlated with mRNAsi and significantly
positively correlated with cancer stem cell markers
DCLK1, Lgr5, CDI133 and CD44. Also TGFP2 was
significantly positively correlated with EMT score and
mesenchymal markers (CDH2, VIM and ZEB1), and in
STAD, there was no significance in the analysis between
TGFP2 and CDHI. In addition, TGFP2 was positively
correlated  with  stromalscore, immunescore and
ESTIMATEScore and negatively correlated with tumor
purity in a variety of tumors including STAD (Figure 5A).

We also performed validation in the GEO gastric cancer

correlated with tumor purity in several datasets, which was
consistent with the results of the analysis in STAD. In the
correlation analysis with EMT, TGFB2 was positively
correlated with EMT and mesenchymal markers and
negatively correlated with CDH1 in multiple datasets
(Figure 5B). We also analyzed the relationship between
TGFP2 and M1 and M2 marker genes, and the results
showed that TGFP2 was negatively associated with most
MIl-related marker genes and positively associated with M2-
related genes (Figure 5C). According to the differential
analysis of different TGFP2 groupings, GSEA analysis
showed that the high TGFP2 expression group promoted

dataset (GSE184336 (HMUCH), GSE84437, GSE63089, epithelial-mesenchymal transition, inflammatory response
GSE62254, GSE34942, GSE29272, GSE26253 and and angiogenesis, and inhibited interferon alpha
GSE15459). The results showed that TGFB2 was positively ~ response, oxidative phosphorylation and DNA repair

correlated with stromalscore and CAFs and negatively

(Figures 5D,E).
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TGFp2 and Immune Cell Infiltration and
Cytokine Levels

We used the GeneMANIA cloud database to analyze other genes
related to TGFP2, and the gene network showed that TGFp2 was
more closely related to LTBP3, LTBP1 and BMP2 (Figure 6A)
(Warde-Farley et al., 2010). Given the important role of TGFB2 in
the tumor microenvironment, we further analyzed the relationship
between TGFP2 and immune cell infiltration and cytokines
(receptor, chemokine, immunoinhibitor, immunostimulator and
MHC). The results showed that TGFB2 was significantly and
positively correlated with increased levels of multiple immune cell
infiltration and cytokines (Figures 6B,C). Meanwhile, TGF-f2 had
strong correlation with various immune cell (CD8" T cell, Monocyte,
TAM, M1 Macrophage, M2 Macrophage and Treg) marker genes
(Supplementary Table S3).

Similarly in the high TGFp2 subgroup most immune cells
infiltrated and cytokine expression levels were higher
(Supplementary Figures S4A-E and Supplementary Figure
S5). In contrast, most immune cells in the high TGFp2
methylation score subgroup had low levels of infiltration
(Supplementary Figure S4F). We also analyzed the
correlation between TGFP2 and immune cell infiltration in the
GEO dataset, and the results showed that TGFp2 positively
correlated with activated CD4 T cell, CD56dim natural killer

cell, immature dendritic cell, mast cell, natural killer cell and
regulatory T cell in multiple GEO datasets (Figure 6D).

TGFB2 and Mutations

We showed the 25 genes with the highest mutation frequency in
different TGFB2 subgroups and the difference of copy number
variation between the two groups (Figures 7A,B,D). TGFfp2
expression was associated with mutations in genes (ACVR2A,
ARID1A and CACNAI1E) (Figure 7C). Tumor mutation burden
and neoantigens were both higher in the TGFB2 low expression
group (Figures 7E,F). We also analyzed the effect of somatic copy
number alterations (CNAs) of TGFp2 on immune cell infiltration
to elucidate the potential mechanism of TGFP2 associated with
infiltration of different immune cells, and the results showed that
arm-level deletion and arm-level gain significantly affected the
infiltration levels of B cells, CD4" T cells, CD8" T cells,

neutrophils, macrophages and dendritic cells in STAD
(Figure 7G).

TGFp2 and Immunotherapy and
Chemotherapy

We explored the relationship between TGFB2 and

immunotherapy, and PD-1, PD-L1 and CTLA-4 expression
levels were higher in the TGFP2 high expression group (p <
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TABLE 1 | The relationship between TGFB2 expression and clinicopathological factors in HMUCH (GSE184336) and TCGA-STAD database.

Clinical Features Total TGFp2 Expression (HMUCH)
Low (%) High (%)
Age
<60 114 57 (49.1 57 (49.6)
>60 117 59 (50.9 58 (50.4)
Gender
Female 83 39 (33.6%) 44 (38.3%)
Male 148 77 (66.4%) 71 (61.7%)
TNM stage
I 36 20 (17.2) 16 (13.9)
1] 49 27 (23.3) 22 (19.1)
1] 129 61 (52.6) 68 (59.1)
\Y 17 8 (6.9) 9 (7.8
T stage
T 21 11 (9.5 10 8.7)
T2 25 17 (14.7) 8(7)
T3 142 70 (60.3) 72 (62.6)
T4 43 18 (15.5) 25 (21.7)
N stage
NO 65 33 (28.4) 32 (27.8)
N1 29 19 (16.4) 10 8.7)
N2 44 23 (19.9) 21 (18.9)
N3 93 41 (35.3) 52 (45.2)
Histologic Grade
G1 4 3 (2.6) 1(0.9)
G2 92 46 (39.6) 46 (40)
G3 135 67 (57.8) 68 (59.1)

Bold values indicate p-value < 0.05.

0.05) (Figures 8A-C). We evaluated immunotherapy response
using two methods, firstly the submap algorithm results
showed that CTLA-4 immunosuppressive treatment was
meaningful for patients in the high TGFB2 group and
secondly a higher proportion of patients in the high TGFp2
group were also predicted to respond to immunotherapy
according to the ImmuCellAI database (chi-squared test =
10.724, p = 0.001) (Figures 8D,E).

As an important method of adjuvant treatment for gastric
cancer, chemotherapy plays an important role in clinical
treatment. Differences in chemotherapy (IC50) between
different TGFp2-expressing groups were predicted according
to the GDSC database, which showed a higher sensitivity to
Lapatinib, Metformin, Methotrexate, Mitomycin. C, Paclitaxel,
AZD6244, BIBW2992, Sorafenib and Erlotinib in the low TGFp2
group (Figure 8F).

TGFp2 and TGFB2 Methylation Scores and

Clinicopathological Factors

To further assess the clinical relevance of TGFB2 and TGFp2
methylation scores, we divided patients into two groups based on
median TGFP2 and TGFP2 methylation scores (Table 1 and
Supplementary Table S4). In the STAD dataset, patients in the
TGEFB2 high expression group had worse tumor grade, and the
TGFB2 methylation score was associated with T stage (Figures
9A,B). The time-dependent area under the ROC curve (AUC) for

p-Value Total TGFp2 Expression (STAD) p-Value
Low (%) High (%)
0.948 0.864
105 56 (29.8) 56 (30.6)
236 132 (70.2) 127 (69.4)
0.462 0.859
122 68 (36.2) 66 (35.9)
222 120 (63.8) 121 (64.7)
0.708 0.453
53 32 (17.5) 21 (11.9)
112 58 (31.7) 54 (30.7)
154 74 (40.4) 80 (45.5)
40 19 (10.4) 21 (11.9)
0.217 0.176
19 14 (7.4) 5(2.8)
80 41 (21.8) 39 (21.8)
168 87 (46.3) 81 (45.2)
100 46 (24.5) 54 (30.2)
0.241 0.494
111 63 (34.6) 48 (27.3)
97 46 (25.3) 51 (29.0)
76 36 (19.8) 40 (22.7)
74 37 (20.3) 37 (21)
0.606 0.003
10 7 (3.8) 3(1.7)
138 84 (45.2) 54 (29.8)
219 95 (561.0) 124 (68.5)

TGEFB2 at 1, 3 and 5 years in the STAD, GSE62254 and GSE15459
datasets was around 0.6 (Figures 9C-E). In addition, The AUCs of
the 1-, 3- and 5-years time-dependent ROC curves for TGFp2
methylation scores in STAD were 0.387, 0.394 and 0.439,
respectively (Figure 9F).

To test whether TGFB2 could be an independent prognostic
factor, we performed multivariate Cox regression analysis
based on the clinical characteristics of the patients,
including age, T stage and TNM stage. We found that
TGFP2 was a reliable and independent prognostic marker
for assessing patient prognosis in STAD (HR = 1.25, 95%
CI 1.058-1.47, p = 0.009; Figure 9G). TGFP2 remained an
independent prognostic marker in the GSE62254 dataset (HR
= 3.866, 95% CI 2.2-6.79, p < 0.001; Figure 9H). These results
suggested that TGFP2 was a valid predictor of prognosis for
patients with gastric cancer.

Nomogram and Calibration

In order to quantify the influence of clinicopathological factors
including TGFpB2 on the prognosis, we used a nomogram to
establish a predictive model. We drew a nomogram based on
the multivariate analysis of STAD patients (age, TNM and
TGFp2; p < 0.05) (Figure 10A). The calibration chart for the 5-
years survival rate of the three cohorts was well predicted
(C-index: 0.661 for STAD cohort, 0.726 for validation cohort
GSE62254, and 0.762 for validation cohort GSE15459)
(Figures 10B-D).
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FIGURE 9 | TGFB2 and TGF2 methylation scores and clinicopathological factors. (A) Heatmap of TGFB2 and clinicopathological features in STAD. (B) Heatmap of
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DISCUSSION

Cancer cells are controlled by multiple regulatory signals during
development, among which the TGF family plays an important
role. Some studies have reported that the TGFP2 signaling
pathway plays a pro-cancer role in a variety of tumors, such
as highly aggressive gliomas, breast cancers, and squamous cell
carcinomas (Busch et al., 2015; Zhang et al., 2017; Abraham et al.,
2018). However, there are fewer studies on TGFP2 and its
methylation in gastric cancer. The results of this study showed
that the TGFP2 expression level was significantly and negatively
correlated with the TGFP2 methylation promoter region and
TGFP2 methylation score. The expression levels of TGFp2 in
gastric cancer tissues were significantly higher in the datasets
GSE184336, GSE29272 and STAD than in normal tissues
adjacent to the cancer. Survival analysis showed that patients

with high levels of TGFB2 gastric cancer had shorter survival
times and those with high TGFf2 methylation scores had longer
survival times. Multiple methylation sites acted as conservation
roles in the univariate analysis of TGFP2 methylation sites.
TGFp2 was an independent prognostic factor for patients with
gastric cancer in both the STAD and GSE62254 datasets in a
multifactorial survival analysis. In view of the relationship
between TGFB2 expression and TGFP2 methylation, the
results all emphasized that high TGFP2 expression is a poor
prognostic factor for gastric cancer, which is consistent with the
results of previous research reports (Yang et al., 2020).
Methylation functional enrichment analysis revealed that
methylation of different TGFp2 methylation scores is mainly
involved in participating in cell cycle regulation, extracellular
matrix formation and energy metabolism regulation. The
proportion of energy metabolism-related regulation was high
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in the enrichment analysis (GO) results, and considering the
importance of oxygen content in energy supply, we further
analyzed the marker genes that correlate TGFB2 with the
oxygen content of the tissue microenvironment. The results
showed high expression of HIF1A family and pro-angiogenesis
related genes in the microenvironment of patients in the high
TGEFp2 group, which can be inferred to be a hypoxic environment
within the high TGFp2 expressing tumor tissues. Studies have
reported that in the myocardial ischemia experiment of mice,
with the increase of hypobaric hypoxia time, the mRNA level of
TGEFp increases (Xiao et al., 2016). Hypoxia, as one of the
important features of tumors, plays an important role in
cancer progression; therefore, high expression of TGFB2 may
also be indirectly involved in tumor progression by regulating
hypoxia-related genes. Tumor cells induce hypoxia through
various mechanisms, such as high metabolic rate and high
oxygen consumption, creating a chronic hypoxic environment,
activating hypoxia-inducible factors (HIF) signaling pathways,
accelerating tumor growth, increasing tumor aggressiveness, and
contributing to tumor metastasis (Andrysik et al., 2021).

In the gastric cancer microenvironment TGEP2 is closely
related to tumor stemness, EMT and stroma. Cancer stem
cells (CSCs) a subpopulation of tumor cells with the ability to
self-renew and differentiate, play an important role in cancer
progression (Yang et al, 2015). mRNAsi is an indicator

describing the degree of similarity of tumor cells to stem cells
and can be considered as a quantification of CSCs. TGFp2 was
negatively correlated with mRNAsi and significantly positively
correlated with stemness markers (DCLK1 and CD44) in this
study, so TGFP2 may be important factor in maintaining tumor
stemness and promoting tumor differentiation in gastric cancer
(Kalantari et al., 2017). EMT is the process by which polar
epithelial cells convert to migratory mesenchymal cells and
acquire the ability to invade and migrate, and it is present in
several physiological and pathological processes in the human
body. There are many regulatory factors of EMT, such as TGFp,
Wnt signaling pathway, microRNA and transcription factors
(Vergara et al, 2019). Our results showed that TGFB2 was
significantly and positively correlated with EMT, CDH2, VIM
and ZEB1. As cancer cells weaken their epithelial features during
EMT, they may express fewer tumor-specific neoantigens to
avoid recognition by immune cells, all of which contribute to
cancer progression (Batlle and Massagué, 2019). Also high
expression of TGFP2 in the gastric cancer microenvironment
was associated with higher levels of stromalscore and CAFs
infiltration, and similar results were seen in the pan-cancer
and multiple gastric cancer datasets. In functional enrichment
analysis, the high TGFP2 expression group promoted epithelial-
mesenchymal transition and angiogenesis and inhibited oxidative
phosphorylation and DNA repair.
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Our findings suggested that TGFp2 was strongly correlated with a
variety of immune cell infiltrates, including CD8" T cells, monocytes,
TAM, M1 macrophages, M2 macrophages and Treg. Treg is a
subgroup of cells with significant immunosuppressive effects
(Flemming, 2016). As an important secretion factor, TGFp2 has a
strong correlation with Treg, so Treg may inhibit protective immune
cells through TGFp2. TGEp also affects the types of Myeloid-derived
suppressor cells (MDSCs) in TME, including macrophages and
neutrophils, prompting them to gradually transform into a tumor-
promoting phenotype during cancer progression (Fridlender et al,,
2009; Laoui et al,, 2011). The results of this study showed that TGFp2
was negatively correlated with M1 macrophage markers and
positively correlated with M2 macrophage markers, showing an
overall M2 macrophage phenotype that promotes immune escape
of tumor cells. The relationship between TGFp2 and immune cell
infiltration was also demonstrated by genetic mutations, and the
results showed that the somatic copy number alteration (Arm-level
Gain) of the TGFP2 gene was closely related to the level of STAD
immune cell infiltration.

Given the strong correlation between TGFB2 and immune cell
infiltration and its important role in the regulation of immune cell
function in gastric cancer, TGFp2 is an important factor that cannot
be ignored in gastric cancer immunotherapy. Stromal fibroblasts and
other cells in tumor tissue shape the immunosuppressive
environment of the tumor through TGFp signaling, inhibiting the
anti-tumor activity of immune cells and preventing or diminishing
the effects of anti-cancer immunotherapy (Chakravarthy et al., 2018).
Therefore, inhibition of TGFP signaling is considered to be a
prerequisite and an important way to improve the effectiveness of
immunotherapy. Considering TGFp, CTLA4 and PD-L1/PD-1 as
parallel immunosuppressive pathways, combining TGF( inhibitors
with other immune checkpoint inhibitors may improve treatment
outcomes. Combination therapy has been pre-evaluated in mouse
cancer models where, depending on the model and experimental
design, anti-PD-1 or anti-PD-L1 antibody treatment enhanced the
antitumor effects of TGFp inhibition and inhibited tumor metastasis
(Mariathasan et al.,, 2018). The results of this study showed higher
TMB and neoantigens in the low TGFf2 expression group. At the
same time, we also predicted the response of TGF{2 expression level
to ICB treatment, and patients with high TGFp2 expression had a
higher response rate from ICB therapy. However, this study has some
limitations and still needs further validation by biological experiments
and clinical data.

In conclusion, high expression of TGFB2 and
hypomethylation of TGFP2 are factors of poor prognosis in
gastric cancer. The high expression of TGFP2 in gastric cancer
tissue affects the tumor microenvironment and the level of
immune cell infiltration by regulating DNA damage,
angiogenesis, inflammation and EMT. The high responsiveness
of ICB when TGFpB2 is highly expressed suggests that the
detection of TGFB2 expression can predict the response of
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