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Background: Stomach adenocarcinoma (STAD) is one of the most frequently

diagnosed cancers in the world with a poor prognosis due to genetic

heterogeneity. The present study aimed to explore potential prognostic

predictors and therapeutic targets that can be used for STAD treatment.

Methods: We collected relevant data of STAD patients from the Cancer

Genome Atlas (TCGA), including somatic mutation, transcriptome, and

survival data. We performed a series of analyses such as tumor mutational

burden (TMB), immune infiltration, and copy number variation (CNV) analysis to

evaluate the potential mechanism of filaggrin (FLG) mutation in gastric cancer.

Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis, and gene set enrichment analysis (GSEA) were performed for

annotation of differentially expressed genes (DEGs). The STRING online

database was used to construct the protein–protein interaction (PPI) and

ceRNA network and hub genes were identified. Univariate and multivariate

Cox regression analyses were used to determine the effect of selected DEGs on

tumor prognosis.

Results: The FLG-mutant group (FLG-MT) showed a higher mutation load and

immunogenicity in gastric cancer. GO and KEGG analyses identified and ranked

unique biologic processes and immune-related pathway maps that correlated

with the FLG-mutant target. GSEA analysis showed that several tumorigenesis

and metastasis-related pathways were indeed enriched in FLG-mutant tumor

tissue. Both cell cycle–related pathways and the DNA damage and repair

associated pathways were also enriched in the FLG-MT group. The FLG

mutations resulted in increased gastric cancer sensitivity to

24 chemotherapeutic drugs. The ceRNA network was established using

Cytoscape and the PPI network was established in the STRING database.

The results of the prognostic information further demonstrated that the OS

and DFS were significantly higher in FLG mutation carriers, and the FLG gene

mutation might be a protective factor.

Conclusion: The multiple molecular mechanisms of the FLG gene in STAD are

worthy of further investigation and may reveal novel therapeutic targets and

biomarkers for STAD treatment.
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Introduction

Gastric cancer is one of the most common gastrointestinal

malignancies and still constitutes a health burden worldwide

which was responsible for over onemillion new cases of mortality

globally (Sung et al., 2021). Stomach adenocarcinoma (STAD)

constitutes approximately 95% of GC cases, as a well-recognized

heterogeneous type, its rate of 5-year survival is less than 30% for

the advanced stage due to lack of effective therapeutic modalities

(Ajani et al., 2017). Many DNA alterations have been detected in

STAD, and accumulating evidence has demonstrated a crucial

role in genetic correlation research (Ramezankhani et al., 2021).

Recently, the genomic mechanisms of STAD have been widely

studied, and many advanced STAD patients achieved better life

expectations through the progression of targeted therapies and

the chemotherapeutic drug optimization. The therapeutic

backbone of metastatic STAD remains molecularly targeted

therapies, which include HER2-targeting agents, anti-

angiogenic agents, and epidermal growth factor receptor

(EGFR) inhibitors (Alsina et al., 2019). However, several

studies have failed to find the survival benefit of specific new

innovative agents due to the marked multidrug-resistant

phenotype of STAD, only three targeted therapeutics showed

modest OS benefit in phase III trials: trastuzumab, ramucirumab,

and lapatinib (Mizrak et al., 2017). However, negative trials with

targeted agents have significantly outnumbered the positive trials

in STAD in the past few years, and the cause of the genomic

alterations in tumor growth and drug resistance are not fully

known. For example, in the GATSBY trial, compared with

paclitaxel or docetaxel as second-line treatment, trastuzumab

showed no OS benefit (p = 0.86) and was not recommended as

routine second-line treatment for HER2-positive advanced GAC

(Liguigli et al., 2014). The two-phase III first-line and second-line

trials of lapatinib both observed the absence of the primary end-

point of OS advantage (Satoh et al., 2014; Hecht et al., 2016). The

inherent genomic instability may give rise to a weak and

inefficient response to cancer drug therapies, eventually

leading to tumor progression and treatment failure (Russi

et al., 2019). Thus, developing more specific and reliable

biomarkers for clinical trials is essential for understanding the

mechanisms of drug action in STAD therapy.

Recently, bioinformatics has become an effective tool for

screening significant genetic variations that occur in

carcinogenesis and offers a great promise for improved

diagnosis, prognosis, treatment selection, and surveillance for

cancer patients. A previous study used bioinformatics to predict

the DEGs of STAD and its enriched pathways and screened and

evaluated some hub genes to provide some ideas and references

for the early diagnosis and treatment of STAD at the molecular

level. For example, upregulation of COL3A1, COL1A2, BGN, and

THBS2 were found to significantly reduce the survival time of

STAD patients (Qiu et al., 2020). FN1, SPARC, and SERPINE1

were highly expressed and significantly related to a poor

prognosis of STAD (Li et al., 2019). The high expressions of

PER1 and NR1D1 were not only associated with poor OS,

progression-free survival, and disease-free survival, but also

associated with immune infiltration in STAD patients (Huang

et al., 2021). RNA binding protein genes such as PTBP1, PPIH,

SMAD5, MSI2, RBM15, MRPS17, and ADAT3 were identified to

be prognosis-related in STAD patients, the regulatory network

and functional study showed MRPS17 and PTBP1 could reduce

the number of infiltrated immune cells. The complement

component 3a receptor 1 (C3AR1) was proven to promote the

polarization of M2 macrophages and T-cell exhaustion, leading

to the immune escape of STAD and high expression of the

C3AR1 gene is correlated with a poor prognosis (Li et al., 2021).

In addition, in combination with bioinformatics, a prognostic

model has been developed and proven capable of predicting

prognosis of STAD patients (Ye et al., 2020). Nevertheless, the

consequences of genomic alterations on tumor growth and drug

resistance remain largely unexplored. The potential reason is

most likely a combination of complex modes of inheritance span

of different tumor stages and lack of specific target biomarkers.

So far, no biomarker has been shown to be accurate enough to

diagnose or predict the prognosis of STAD. Accordingly, as one

of the emerging frontiers of STAD carcinogenesis and

therapeutic target exploration, in-depth informatics

investigation with larger sample sizes and fine-grained

understanding of new genetic loci are helpful to identify more

robust and reliable genetic biomarkers.

In this study, we systematically analyzed the somatically

mutated genes of STAD based on TCGA database and

screened out the filaggrin (FLG) gene for further investigation.

The FLG gene could be an important candidate for STAD, which

coincides with findings in another study (Wang et al., 2020).

Filaggrin (FLG) protein, which is known as a filament-

aggregating protein, is important for the formation of the

stratum corneum and was proven to play a key role in the

maintenance of an optimal skin, oral, and cervical mucosa

barrier. Its monomer can combine with the keratin filaments

as a matrix protein and results in aggregation of the

keratinocytes. These keratinocytes act as a matrix in the

stratum corneum. A previous study has shown that FLG gene

mutations possibly bring about a greater susceptibility to

Epstein–Barr virus (EBV)–associated gastric carcinoma

(Kuang et al., 2016). This may be related to the fact that

about 9% of gastric cancers harbor EBV infection. The

deletion mutations of the FLG gene are also prevalent in
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Asian populations, so making related genetic research valuable

(Salama et al., 2021). However, the precise mechanisms

underlying its development are still unclear as little is known

about the role of the FLG gene. Thus in this study, we performed

an in-depth investigation into the functional roles of the FLG

gene in STAD. According to the mutation status of the FLG gene,

patients were divided into FLG-mutant (MT) and FLG-wild-type

(WT) groups. We found that the FLG-MT gastric cancer patients

had showed a higher mutation load and immunogenicity. In

addition, we explored the differences in pathway activation

between the FLG-MT gastric cancer patients and FLG-WT

patients through functional enrichment analysis to explain the

effect of FLG on the tumor microenvironment (TME). Next, we

obtained insights into prognosis evaluation, protein and ceRNA

interaction networks, immune infiltration, and anticancer drug

sensitivities, whichmay provide valuable references for diagnosis,

targeted drug research, and prognosis evaluation of STAD.

Materials and methods

Data downloads

The masked somatic mutation data of STAD patients used in

this study were retrieved from the TCGA GDC database (http://

portal.gdc.cancer.gov/). Patients with a pathologic diagnosis of

stomach adenocarcinoma were included. The data were

preprocessed by VARSCAN software, and visualizations of

somatic mutations were carried out in R (Foundation for

Statistical Computing, Vienna, Austria) using the package

Maftools (Mayakonda et al., 2018). The gene expression data

(FPKM value) of the patients’ RNA sequencing were downloaded

and converted to the TPM value, and the lncRNA and mRNA

associations were then established. In addition, the

clinicopathological features and prognosis of the STAD

patients, such as gender, age, malignant stage, TNM stage,

and MSI value, all these data were obtained from the UCSC

Xena (http://xena.ucsc.edu/). We used the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm (http://tide.dfci.

harvard.edu) to predict the response to immunotherapy of each

sample (Jiang et al., 2018).

Copy number variation analysis

To analyze the copy number variations (CNVs) of FLG genes

in TCGA-STAD patients, the masked copy number segment data

were downloaded using the TCGAbiolinks R package (version

2.6.12). GISTIC 2.0 was used to conduct GenePattern5 analysis of

downloaded CNV fragments (Reich et al., 2006). We use default

settings in the GISTIC 2.0 analysis with the exception of several

parameters (e.g., the confidence coefficient was 0.99; X

chromosomes were not excluded prior to analysis). Finally,

the results of GISTIC 2.0 analysis were visualized using the

Maftools package of R software (Mayakonda et al., 2018).

Calculation and correlation analysis of
somatic mutation and tumor mutation
load fraction

Tumor mutational burden (TMB) in this study was defined

as the number of somatic synonymous mutations per megabase

in each tumor sample, with silent mutations excluded. The

Wilcoxon matched-pairs signed-rank test was used to

compare TMB values between FLG mutation and non-

mutation groups.

Identification of differentially expressed
genes (DEGs) and clinical correlation
analysis

To analyze the effect of FLG mutation on tumorigenesis in

STAD patients, the samples in the TCGA database were divided

into a mutation group and a non-mutation group according to

the FLG mutation situation. The DEGs between the two groups

were determined using the DESeq2 package in R (Love et al.,

2014). The cut-off criteria for statistical significance were a log-

fold change (FC) of greater than 1 and a p-value of less than 0.05.

Visualizations of differentially expressed genes such as volcano

plots and heatmaps were generated using standard R packages.

Functional enrichment analysis

The GO analysis serves as a bioinformatics tool that provides

structured annotations, including biological processes (BPs),

molecular functions (MFs), and cellular components (CCs),

for genes and gene products. KEGG (http://www.genome.jp/)

is a widely used database storing information about genomes,

biological pathways, diseases, and drugs. Enrichment plots of

gene signatures were generated using the R package

clusterProfiler (Yu et al., 2012), and FDR critical value of less

than 0.05 was considered to indicate a statistically significant

difference. To investigate the differences in biological processes

between different groups, the enrichment analysis was performed

using GESA (Hanzelmann et al., 2013). GSEA is a statistical

method to assess whether a priori defined set of genes shows

statistically significant concordant differences between two

different biological statuses (Subramanian et al., 2005). GSEA

analysis of the gene expression profiling dataset of TCGA-STAD

patients was implemented using the clusterProfiler package. C2.

all.v6.2. symbols.gmt was selected as the reference gene set. False

discovery rate < 0.1, and p-value < 0.05 were set as the cut-off

criteria.
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Comparison of biological functions and
immune estimation scores

We further analyzed the correlation between different

subgroups and some biological related processes. The

immune and stromal scores were evaluated by applying the

ESTIMATE algorithm using the estimate R package (R

version 3.5.3) (Yoshihara et al., 2013). The scores were

used to reflect the level of immune cell and stromal cell

infiltration of tumor tissue. The Mann–Whitney U-test was

used to compare the infiltration levels of immune cells

between two groups.

Protein–protein interaction network
construction

The PPI information available in the STRING network in the

STRING database (http://string-db.org, version 10) is useful for

predicting physical and functional interactions (Szklarczyk et al.,

2019). All DEGs were mapped to the STRING database, and the

interactions with reliability scores of more than 0.4 were selected

to analyze the relationship of the DEGs. Cytoscape v3.7.2 was

used to select the key nodes with the strongest connectivity for

visualizing molecular interaction networks (Shannon et al.,

2003). The MCODE plugin in Cytoscape 3.7.2 was used to

identify the most densely connected region in the PPI based

on vertex weights, which could identify hub genes in the PPI

network.

Construction of ceRNA networks

We further retrieved experimentally validated

miRNA–mRNA interactions from the miRTarBase. Based on

core mRNAs obtained from PPI interaction analysis,

miRTarBase was utilized to predict possible regulatory

miRNA, and further predict related lncRNA. The alluvial

diagrams of the co-expression network with the overlapped

lncRNA–miRNA–mRNA relationships were generated using

the R package ggalluvial.

Sensitivity analysis of anticancer drugs

Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) is a public database for tumor

molecular therapy and mutation exploration (Vanden et al.,

2018). The R package pRRophetic was used for downloading

cell line gene mutation data and IC50 values of different

anticancer drugs and analyzing the correlation between FLG

gene mutation patients and the sensitivity of different anticancer

drugs.

Validation of clinical prediction models

The relationship between clinicopathological and prognostic

features (overall survival OS) and FLG gene mutations of STAD

patients in TCGA was analyzed with the logistic regression and

receiver operating characteristic (ROC) methods. The Harrell

consistency index (C-index) of FLG expression was based on the

best separation. The diagnostic ROC curve was used to explore

the prognostic or predictive accuracy of each characteristic

underlying the area under the curve (AUC). The

Kaplan–Meier curve was used to estimate the effects of FLG

on the overall survival of STAD patients.

Statistical analysis

All statistical analyses were performed as the means ±

standard deviation. The R software (version 4.0.2) was utilized

to measure the data. Quantitative data that were not normally

distributed were evaluated using the Mann–Whitney U-test,

and Student’s t-test was used for normally distributed data.

For analysis of relations between categorical variables, we used

the chi-squared test or Fisher’s exact test when appropriate.

The correlation coefficients among different genes were

calculated by Pearson correlation analysis. Survival analysis

was estimated using R package survival and survival

differences were determined by Kaplan–Meier analysis, the

log-rank test was used to compare OS among groups. R

software with the package pROC was used to produce the

ROC curve, the area under the curve (AUC) as a measure of

accuracy. All tests were two-sided with a significance level of

p < 0.05.

Results

Association between the FLG status and
clinical characteristics

Somatic genetic alterations data on STAD patients were

downloaded from the TCGA database and analyzed as

previously described (see Table 1). The waterfall plot for all

STAD patients in the study showed that the top tenmost mutated

genes are TTN, TP53, MUC16, ARIDIA, LRPIB, SYNE1, FLG,

CSMD3, FAT4, and PCLO, and 19% of the patients carried FLG

mutation. Missense mutations accounted for the majority of

mutation types of STAD patients, with C>T being the most

common single-nucleotide variant (SNV) (Figure 1A).

Meanwhile, correlation analysis showed that FLG had co-

occurrence with LRP1B and RYR2 (p < 0.05), and tended to

be mutually exclusive with TTN, TP53, and MUC16 (p < 0.05).

(Figure 1B). TCGA-STAD patients were allocated into two

groups based on the FLG mutation status, the FLG-mutant
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group (FLG-MT) (Figure 1C) and FLG-wild-type group (FLG-

WT) (Figure 1D). The left side is the FLG-MT group, and the

right side is the FLG-WT group. Genes are sorted by the

mutational frequency, and samples are sorted and ordered

according to the non-synonymous mutational load. The top

30 most frequently mutated genes of FLG-MT and FLG-WT

groups are shown in the waterfall plot. The amino acid changes of

the FLG gene are highlighted in Figure 1E, the missense mutation

appeared to be the major form of mutations in all STAD patients.

Meanwhile, based on FLG mutation levels, the CNV data of

FIGURE 1
Correlation of clinical characteristics of STAD patients with FLG gene mutation. (A) Waterfall plot for all STAD patients in the study. Types of
mutations were classified according to different categories, the majority of which were missense mutations. The C＞ T mutation is the most
common SNV. The corresponding TMB values of specific tumor samples and top 30 rankedmutant genes are also shown. (B) Correlation analysis of
different mutant genes. (C,D) Top 30 most frequently mutated genes in FLG-mutant and non-mutant groups. The left side is the FLG-mutant
group, the right side is the non-mutant group. Genes are sorted by mutational frequency, and samples are sorted and ordered according to non-
synonymousmutational load. The legend earlier shows themutation load. Age, gender, grade, stage, andOS status are noted in order. (E)Distribution
diagram of amino acid variation of FLG proteins in the TCGA-STAD dataset, missense mutation is the main form. (F) TCGA-STAD samples with
available CNV data were analyzed using GISTIC 2.0 software and visualized using Maftools package.
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TCGA-STAD patients were divided into the mutant group and

the non-mutant group. As shown in Figure 1F, the CNV levels of

multiple genes have changed significantly.

Relationships between the FLG mutation
status and biological characteristics and
mutation load in STAD

We analyzed the effects of FLG gene mutations on different

biological characteristics. The FLG gene expression levels did

not differ significantly between FLG-mutant and non-mutant

groups (p = 0.280), as shown in Figure 2A. The TMB value

(Figure 2B, p < 0.001) andMSI value (Figure 2C, p < 0.001) were

elevated significantly in the FLG-mutant group, and the TIDE

score (Figure 2D, p = 0.023) was decreased compared with the

non-mutant group. These data support that the patients with

FLG mutation may benefit from targeted therapies and

immunotherapy. In addition, combining tumor biological

characteristics with somatic mutational signatures, the

Sanger signatures decomposed 96 spectrums of mutational

signatures into 30 different local areas (Alexandrov et al.,

2013). A significant change occurred in signatures 1, 6, and

17 in the FLG-mutant group (Figures 2E,F). We further

analyzed the effects of FLG gene mutations on immunologic

characteristics of TCGA-STAD patients. The immune and

stromal scores were used to quantify the immune and matrix

components in STAD. The results showed that there was no

significant difference in the immune (Figure 3A, p = 0.622) and

stromal scores (Figure 3B, p = 0.504) among patients with FLG

gene mutations, compared to patients without FLG gene

mutations. Meanwhile, based on the TIMER database

searches, we observed effects of somatic copy number

alterations (SCNAs) on immune cell infiltration in FLG

mutation tumor samples. The results suggested SCNAs,

especially arm-level gain and high amplification, have a

differential effect on tumor infiltrating immune cells

including B cells, CD4+ T cells, CD8+ T cells, macrophages,

neutrophils, and dendritic cells. Then, we further analyzed the

correlation between FLG mutations and different biological

FIGURE 2
Biological characteristics of FLG gene mutations in STAD patients. (A) There were no significant differences in gene expression levels between
patients with and without FLG mutations. (p = 0.280). (B) TMB was significantly higher in patients with FLG mutation (p < 0.001). (C) MSI was
significantly higher in patients with FLG mutation (p < 0.001). (D) Patients with FLG mutation had a significantly lower TIDE score than those in the
non-mutant group (p = 0.023). The lower the TIDE score, the better the effect of immunotherapy. (E)Cosmic signature thermogram analysis of
FLG-mutant patients in the TCGA dataset, the corresponding clinical features of the patients are shown earlier. (F) Cosmic signature thermogram
analysis of non-mutant patients in the TCGA dataset.
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pathways. The data demonstrated that changes in biological

pathways were mainly enriched in cell cycle, DNA damage

repair, DNA damage response, DNA damage replication,

Fanconi anemia, homologous recombination, mismatch

repair, and nucleotide excision repair (Figures 3D–K, p < 0.05).

Drug sensitivity analysis

To detect the drug sensitivity of FLG gene mutations in

STAD patients, we utilized the Genomics of Drug Sensitivity

in Cancer (GDSC) database, which contains drug sensitivity

data for 138 chemotherapy drugs and small-molecule drugs.

The results showed that the IC50 values of

24 chemotherapeutic drugs and small-molecule anticancer

drugs were significantly different between FLG and non-

mutant patients (p < 0.001, Figure 4), especially in LFM.

A13, AZD8055, and X17. AAG.

Construction and evaluation of the
nomogram model

To further explore the relationships between the FLG

mutation status and clinical phenotype in bladder cancer,

clinical correlation analysis of FLG gene mutations was

conducted. In the TCGA-STAD dataset, the results of survival

analysis showed that the FLG mutations suggest better overall

survival (OS, log-rank p = 0.074, Figure 5A, Table 2) and disease-

free survival (DFS, log-rank p = 0.041, Figure 5B, Table 3) in

STAD patients, but have no significant effect in progression-free

survival (PFS, log-rank p = 0.163; Figure 5C). To further explore

FIGURE 3
Effects of FLG genemutations on immunological characteristics in TCGA-STAD datasets. (A) In TCGA-STAD datasets, the immune scores in the
FLG-mutant group were unremarkable compared to those in the non-mutant group. (p = 0.622). (B) Matrix score in the FLG-mutant group was
unremarkable compared to that in the non-mutant group. (p = 0.504). (C) Immune cell infiltration was analyzed using the TIMER website. The
significant differences were observed in the immune cell infiltration between FLG-mutant and non-mutant groups. (D–K) Biological functions
were significantly different betweenmutant and non-mutant groups (p <0.05), including cell cycle–related pathways, DNA injury repairment-related
pathways.
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the effects of mutations in FLG genes on TCGA-STAD patients,

combined with the clinicopathological features of the patients,

the univariate and multivariate Cox regression analyses showed

that the mutation levels of the FLG gene are protective factors for

STAD patients, but not independent protective factors,

suggesting the potential diagnostic roles of FLG in STAD.

Using clinicopathological parameters including age, gender,

tumor stage, depth of invasion, lymph node metastasis, and

distant metastasis, a nomogram to prognosticate OS and DFS

was proposed and internally validated (Figures 5D,F).

Discrimination of the nomogram was measured by calculating

the c-index (concordance index), which indicated a high

discrimination ability (OS: 0.675, 95% CI, 0.628–0.722; DFS:

0.663, 95% CI, 0.600–0.725). The calibration plot showed

excellent concordance for the 1-, 3-, and 5-year predicted and

actual OS and DFS probabilities (Figures 5E,G). Therefore, The

FLG mutation can be used as an independent prognostic

indicator in STAD. The prognostic nomogram based on FLG

mutation may serve as a reliable model for predicting survival of

patients.

Differential expression analysis

To analyze the effect of FLG gene mutation on tumorigenesis in

TCAG-STAD patients, the patients were divided into the

FLG-mutant group and non-mutant group, and the differential

gene expression analysis was further performed. After

standardization and removal of batch effects in the microarray

results, we found that 100 genes were significantly upregulated

and 414 genes were significantly downregulated in the TCGA-

STAD dataset (Figures 6A,B). To explore how FLG gene

mutation may affect the gastric carcinogenesis, we conducted a

functional enrichment analysis on the differentially expressed

genes. GO analysis revealed a number of biological processes

affected by FLG gene mutation, such as cornification, keratinocyte

differentiation, skin development, endoplasmic reticulum lumen, and

cornified envelope (Figure 5C, Table 4). The KEGG pathway analysis

showed that the differentially expressed immune genes were related

primarily to neuroactive ligand–receptor interaction, protein

digestion and absorption, chemical carcinogenesis, and pancreatic

secretion pathways (Figure 5D, Table 5). Next, we analyzed the

FIGURE 4
Sensitivity of FLG mutations on chemotherapeutic drugs and small-molecule anticancer drugs based on GDSC database analysis. (A–X) The
IC50 values of 24 drugs between FLG and non-mutant patients.
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functional enrichment pathways of the FLG-MT and FLG-WT

groups in the TCGA-gastric cancer by GSEA (Table 6). The

results showed that pathways enriched among the differentially

expressed genes in FLG-mutant tissues, which include ribosomes,

focal adhesion, dilated cardiomyopathy, regulation of actin

cytoskeleton, and ECMreceptor interaction, as is shown in Figure 7B.

FIGURE 5
Effects of FLG gene mutation on clinicopathological features in the TCGA-STAD dataset. (A–C) In the TCGA-STAD dataset, the survival analysis
showed that OS (log-rank p = 0.074) and DFS (log-rank p = 0.041) were better in patients with FLG gene mutations, but no significant impact on PFS
(log-rank p = 0.163). (D) OS nomogram was constructed by the mutation of FLG gene combining with clinicopathological features. (E) Calibration
curve of the FLG gene mutation nomogram. The abscissa axis is predicted survival, the ordinate axis is observed survival, every calculation is
repeated 1,000 times. The calibration plots demonstrate good agreement between the predictions made by the nomogram and actual prognosis of
patients for 1-,3-, and 5 years. (F) Nomogram constructed by the mutation of FLG gene combining with clinicopathological features. (G) Calibration
curve of the nomogram of FLG gene mutation. The abscissa axis is predicted survival, the ordinate axis is observed survival, every calculation is
repeated 1,000 times. The calibration plots demonstrate good agreement between the predictions made by the nomogram and actual prognosis of
patients for 1-,3-, and 5 years.
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Construction of PPI and ceRNA networks

The PPI network of the DEGs was constructed using Cytoscape

software based on the STRING database (Figure 8A). The

upregulation of gene expression was indicated in red, whereas

the downregulation of gene expression was indicated in blue. The

MCODE plugins were used to choose the local high density as

important nodes, and defined as hub genes (Figure 8B). The top six

miRNAs with the highest number of target mRNAs are identified,

hsa-miR-29c-3p, hsa-miR-409-3p, hsa-miR-548p, hsa-miR-29b-3p,

hsa-miR-29a-3p, and hsa-miR-144-3p (Figure 8C). Also, by

integrating the miRNA–mRNA and miRNA–lncRNA regulatory

relationships, the ceRNA network of miRNA–mRNA–lncRNA

interactions was constructed based on the miRTarBase. As

shown in Figure 8D, the lncRNA–miRNA–mRNA network

comprises six lncRNA, 5 miRNA, and 2 mRNA nodes.

Discussion

Stomach adenocarcinoma (STAD) is among the most lethal

human malignancies with both high mortality and high

metastatic capacity (Smyth et al., 2020). Certain genes have

been shown to play essential roles in STAD development

(Wang et al., 2019). Despite the large number of studies

carried out to date, our understanding of molecular

mechanisms of STAD is still limited due to lack of stable and

effective biomarkers. Therefore, there is an urgent need for more

FIGURE 6
Functional enrichment analysis of the differentially expressed genes based on FLG gene mutation. (A,B) Volcano plot and heatmap show the
expression of DEGs between FLG-mutant and non-mutant groups. (C) Based on CC, BP, and MF levels, GO analysis suggests that differentially
expressed genes are closely related to cornification, keratinocyte differentiation, skin development, endoplasmic reticulum lumen, and cornified
envelope biological processes. (D) KEGG analysis showed that these differentially expressed genes were participated in the neuroactive
ligand–receptor interaction, protein digestion and absorption, chemical carcinogenesis, and pancreatic secretion and other biological related
signaling pathways.
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reliable molecular biomarkers, early diagnosis, and effective

treatments. We collected the TCGA-gastric cancer containing

clinical data and mutation data to explore the gene mutation and

pathological mechanism of STAD using bioinformatic analysis,

and we found that FLG genemutations have an important impact

on the clinical and biological characteristics of STAD. These

mutations comprise missense and CNV changes, the majority

being missense mutations. We further identified 100 upregulated

DEGs and 414 downregulated DEGs in the FLG mutation

group. We applied three pathway analyses, GO, KEGG, and

GSEA, to analyze the biological functions of these DEGs. Go

analysis revealed that changes in modules were mostly enriched

in biological processes such as keratinization, keratinocyte

differentiation, and skin development. KEGG pathway

enrichment analysis reveals that DEGs were mainly involved

in neuroactive ligand–receptor interaction, protein digestion and

absorption, and chemical carcinogenesis pathways. GSEA also

revealed biologically relevant pathways associated with ribosome,

focal adhesion, dilated cardiomyopathy, regulation of actin

cytoskeleton, and ECM receptor interaction. Then through

PPI network construction, key hub genes and the most

significant module were selected. In addition, we found that

mutations in the FLG gene were associated with immune cell

infiltration, and genetic mutation of FLG in STAD causes

increased sensitivity to anticancer agents. We examined the

relationship between FLG mutations and prognosis. FLG

mutations were significantly associated with better disease-free

and overall survival, and appeared to be an independent

prognostic factor. Based on these findings, we proposed that

the FLG gene could be regarded as a potential biomarker to

further explore the molecular mechanism and the prognostic

effects of STAD.

Gastric cancer development involves multiple gene

alterations. In this study, we first applied computational

algorithms to detect driver genes using somatic mutations of

STAD tissues and classified the data into different categories.

TTN, TP53, MUC16, ARIDIA, LRPIB, SYNE1, FLG, CSMD3,

FAT4, and PCLO were the 10 most frequently mutated genes,

which is partially in concordance with previously published

studies (Wang et al., 2020). For example, TP53 mutations

were more common in gastrointestinal adenocarcinomas with

intact DNAmismatch repair protein expression (Krishnamurthy

et al., 2022). MUC16 mutations were found to be potentially

associated with GC prognosis, some mutation statuses ofMUC16

and TTN were identified with high potential in predicting TMB

(Yang et al., 2020). For another example, the somatic mutation

rate of the ARIDIA gene varies significantly between GC patients

of Asian and Caucasian descent (20.7% vs. 32.1%, p = 0.01),

which might have important implications for precise

therapeutics in GC patients (Jia et al., 2017). There are also

genes, such as SYNE1, the high level of SYNE1 promoter

methylation was associated with poorer chemotherapy efficacy

in advanced gastric cancer patients (Qu et al., 2021). Also, FAT4,

a tumor suppressor gene exerts an important role in cell

adhesion. Reduced expression of FAT4 and increased

methylation of its promoter may accelerate the progression of

benign tumors to malignant GC (Pilehchian et al., 2017).

However, at present, there are still limited studies on the

effects of FLG mutations on STAD. We, therefore, chose the

FLG gene for subsequent studies.

FIGURE 7
GSEA analysis based on differential expression of TCGA-STAD datasets. (A) Upper panel showed the GSEA analysis based on the differential
expression of TCGA-STAD datasets. (B) Results showed tumor tissue with FLG mutation is closely related to ribosome, focal adhesion, dilated
cardiomyopathy, regulation of action cytoskeleton, and ECM receptor interaction pathways.
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The protein encoded by the FLG gene is an intermediate

filament-associated protein that aggregates keratin intermediate

filaments in mammalian epidermis. It is initially developed as

profilaggrin, which is localized in keratohyalin granules, and is

subsequently proteolytically processed into individual functional

filaggrin molecules. In humans, the FLG gene is located within

the epidermal differentiation complex (EDC) on chromosome 1q21,

spans~25 kb of DNA and comprises three exons and two introns.

Exon 1 is non-coding and protein translation start site begins within

exon 2. The majority of the profilaggrin protein is encoded by the

exon 3 (Sandilands et al., 2009). The FLG gene is composed of

tandem repeats with CNVs consisting of 10, 11, or 12 copies of the

sequence encoding filaggrin monomers. Tandem repeats are usually

present in coding and regulatory regions of the human genomes, so

it has a greater chance of mutation and are associated with many

genetic diseases (Kim et al., 2020). The loss-of-functionmutations in

FLG are common, and approximately 2–10% of Europeans carried

at least one FLG null mutation. The FLG loss-of-function mutation

is associated with ichthyosis vulgaris, atopic dermatitis,

inflammatory dermatosis, and inflammation dysregulated diseases

such as asthma and allergy (Brown and McLean, 2012; Zhu et al.,

2018). One previous study has explored two single-nucleotide

polymorphism (SNP) loci of the FLG gene, rs3126085 and

K4671X, which were associated with EBV-associated gastric

carcinoma for (EBVaGC). The genotype AA of rs3126085

(c.3321delA), as a most popular FLG mutation in Chinese Han

people, was considered as a hazardous sign for EBV-associated

gastric carcinoma (Yang et al., 2017). Another study detected the

FLG rs2065955 genotype and allele distribution in 64 EBV-

associated gastric carcinoma samples, and found genotype CC

may contribute more to the risk of developing EBVaGC (Kuang

et al., 2016). Nevertheless, no significant difference in FLG

expression was detected by immunohistochemical analysis in

those studies. It would be speculative to guess that a single-

nucleotide variation in intron may have little impact on the gene

expression, or the intragenic CNV may also complicate the process

FIGURE 8
Construction of protein–protein interaction (PPI) and ceRNA network. (A) Layout in Figure for protein–protein interactions were created by
Cytoscape software via the link provided by STRING. Values on the lines connecting the spheres indicate upregulated genes in red and
downregulated genes in blue. The color shades have a positive relationwith logFC. (B)MCODE algorithm is used to identify high density regions from
the PPI network and the size of the circles is proportionate to the logFC, the color shades are proportional to p-value. (C,D) ceRNA interaction
network was constructed by Cytoscpe and Sankey diagram based on the hub genes.
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of cancer pathogenesis. Interpretation of the results of prior studies

may have been hampered by limited sample sizes and heterogeneous

study populations. So, it is necessary to integrate the complexity of

cancer genome data and multiplex optimization in a single method

as bioinformatics to facilitate data integration and processing.

We found missense mutation is the predominant form of

FLG genetic variation through the analysis of the amino acid

changes in the FLG mutation group. Next, we demonstrated the

existence of CNV alternations in the FLGmutation group, which

would actually alter the FLG gene structure and function of

tumor cells, so further analysis of these CNV regions should be

treated as priority in the future. We finally identified

100 upregulated DEGs and 414 downregulated DEGs. The

heatmap of all DEGs showed obvious difference between the

FLG-mutant and non-mutant groups. To better understand the

interactions among DEGs, we further performed functional

enrichment analysis. The GO term enrichment analysis shows

that DEGs were mainly involved in biological processes such as

cornification, keratinocyte differentiation, skin development,

endoplasmic reticulum lumen, and cornified envelope. As in

previous studies, the role of filaggrin in skin physiology and

disease is well-established; we thus surmise that FLG gene

mutation may also have a role in epidermal differentiation,

morphogenesis, and homeostasis of gastric cancer cells. These

signatures may help to untangle remaining questions about the

biological processes in STAD progression.

TMB and MSI can serve as the predicting factors for selecting

patients that likely to benefit from immune checkpoint inhibition

therapy. Notably, the mutant FLG expression was correlated with

high TMB and MSI values. In addition, the patients in the FLG-MT

group had a negative TIDE score, indicating lack of tumor immune

evasion phenotypes. Although we did not find the differences in the

immune score and stromal score in the FLGmutation group, but at

different mutation levels, we observed significant changes in the

immune cell infiltration. Filaggrin is a key protein involved in many

inflammation dysregulated diseases, and lack of filaggrin protein can

induce inflammation and T-cell infiltration (Brown and McLean,

2012). Our analysis also found that cell cycle and DNA

repair–related pathways showed significant enrichment in the

FLG mutation group. We have validated the performance of FLG

mutation using the GDSC heterogeneous dataset containing

molecular descriptors of drugs with transcriptomic expressions of

STAD cell lines. We screened 138 drugs and compared the response

to common anticancer drugs between the FLG mutation and non-

mutation groups and identified significantly different responses to

three of these drugs. The application of the Bruton’s tyrosine kinase

(BTK) inhibitor LFM-A13 in solid cancer has been discovered

recently. It promotes apoptosis, has an antiproliferative effect,

and increases the sensitivity of cancer cells to chemotherapy

drugs (Uckun et al., 2011). AZD8055 is a small-molecule

inhibitor of mammalian target of rapamycin (mTOR) kinase

activity; mTOR plays an important, albeit complex, role in tissue

TABLE 1 The baseline patient data of STAD in TCGA database.

Variables All patients FLG-WT FLG-MT p Value

(n = 343) (n = 278) (n = 65)

Age 0.014*

<65 144 (42.0%) 126 (45.3%) 18 (27.7%)

≥65 199 (58.0%) 152 (54.7%) 47 (72.3%)

Gender 0.761

Female 119 (34.7%) 98 (35.3%) 21 (32.3%)

Male 224 (65.3%) 180 (64.7%) 44 (67.7%)

Grade 0.01*

G1 & G2 134 (39.1%) 99 (35.6%) 35 (53.8%)

G3 & GX 209 (60.9%) 179 (64.4%) 30 (46.2%)

T 1

T1 & T2 88 (25.7%) 71 (25.5%) 17 (26.2%)

T3 & T4 & TX 255 (74.3%) 207 (74.5%) 48 (73.8%)

M 0.079

M0 306 (89.2%) 244 (87.8%) 62 (95.4%)

M1 & MX 37 (10.8%) 34 (12.2%) 3 (4.6%)

N 0.09

N0 & N1 192 (56.0%) 149 (53.6%) 43 (66.2%)

N2 & N3 & NX 151 (44.0%) 129 (46.4%) 22 (33.8%)
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homeostasis and tumorigenesis (Marshall et al., 2011). The positive

expression of p-mTOR was more frequent in advanced gastric

cancers (Murayama et al., 2009).

KEGG pathway enrichment analysis reveals that DEGs were

mainly involved in several pathways such as neuroactive

ligand–receptor interaction, protein digestion and absorption, and

chemical carcinogenesis. The neuroactive ligand–receptor interaction

pathway was suggested to play a key role in the effect of DNA

methylation onGCprognosis (Dai et al., 2021). The protein digestion

and absorption pathwaywas found to be significantly enriched inGC

tissues (Liu et al., 2020). In particular, the loss of FLG in neck

squamous cell carcinoma tissue was found to result in a dramatic

resistance to targeted therapies (Bai et al., 2021). GSEA analysis

further revealed significant enrichment of ribosome, focal adhesion,

dilated cardiomyopathy, regulation of actin cytoskeleton, and ECM

receptor interaction in mutant FLG tissues. Actin cytoskeletal

remodeling was proven to affect epithelial–mesenchymal

transition in gastric cancer cells (Yang et al., 2017). Subsequently,

in order to find the co-existence pattern among all the DEGs, we

constructed the PPI network. From the network, several hub genes

with high degrees were found. For example, the G-protein–coupled

receptor GPRC6A is located in multiple tissues, including

gastrointestinal epithelia; studies have shown that GPRC6A is

involved in regulating glucose and fat metabolism in certain

cancers such as prostate cancer progression (Pi et al., 2021).

GALNT9 (an initiator of O-glycosylation) is a member of a sub

family that differs significantly in the sequence fromotherGALNAC-

T members, and has been shown to be dysregulated in cancer by

promoter methylation (Pangeni et al., 2015).

This was the first time we evaluated the relationship between

FLG, clinicopathological features, and prognosis in STAD. We

explored the prognostic value of FLG mutation in the TCGA-

STAD database. Compared to the non-mutant group, the results

showed that patients withmutantFLGhad better overall survival and

disease-free survival, but had no effect on progression-free survival.

Combining FLG-mutant tumor types with clinicopathological

features showed that FLG mutation was a protective factor but

not an independent protective factor. Our current nomogram also

showed that the FLGmutation had a significant influence on 1-, 3-,

and 5-year prognosis, future studies are needed to externally validate

TABLE 2 Univariate and multivariate analyses with the Cox proportional hazards regression model based on FLG gene mutation for predicting OS in
TCGA database.

Univariate cox analysis Multivariate cox analysis

HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value

Age (≥65 vs. < 65) 1.55 1.09 2.20 0.013733 1.81 1.27 2.59 0.001054

Gender (male vs. female) 1.21 0.84 1.73 0.300951 1.25 0.87 1.79 0.229855

Grade (G3 & GX vs. G1 & G2) 1.45 1.02 2.05 0.03755 1.34 0.92 1.94 0.122587

T-stage (T3 & T4 & TX vs. T1&T2) 1.74 1.14 2.65 0.010536 1.53 0.99 2.37 0.054883

M-stage (M1 & MX vs. M0) 1.77 1.08 2.90 0.024188 1.86 1.13 3.07 0.014555

N-stage (N2 & N3 & NX vs. N0 & N1) 1.66 1.19 2.31 0.002856 1.47 1.04 2.08 0.029323

FLG mutation (MT vs. WT) 0.66 0.42 1.04 0.075563 0.70 0.44 1.13 0.144729

TABLE 3 Univariate andmultivariate analyses with the Cox proportional hazards regression model based on FLG gene mutation for predicting DFS in
TCGA database.

Univariate cox analysis Multivariate cox analysis

HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value

Age (≥65 vs. <65) 1.09 0.71 1.68 0.690387 1.31 0.84 2.03 0.231999

Gender (male vs. female) 1.53 0.94 2.48 0.088376 1.50 0.92 2.45 0.101933

Grade (G3 & GX vs. G1 & G2) 1.51 0.96 2.37 0.073327 1.23 0.77 1.99 0.387691

T-stage (T3 & T4 & TX vs. T1&T2) 2.12 1.19 3.77 0.010885 1.73 0.96 3.13 0.069976

M-stage (M1 & MX vs. M0) 1.67 0.86 3.23 0.12934 1.68 0.87 3.27 0.124968

N-stage (N2 & N3 & NX vs. N0 & N1) 2.09 1.35 3.22 0.000851 1.81 1.16 2.84 0.009531

FLG mutation (MT vs. WT) 0.52 0.28 0.98 0.044748 0.59 0.31 1.14 0.117505
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the proposed nomograms to establish their value in predicting the

long-term prognosis of STAD patients.

A few limitations of the current study are worth mentioning.

Although microarray-based bioinformatic analysis is a powerful

analytic tool for a deeper understanding of molecular mechanisms

and for identifying potential biomarkers of STAD, further efforts are

needed. First, though the FLG gene has been demonstrated to have a

high diagnostic and prognostic value in STAD patients, current

TABLE 4 Gene Ontology analyses using differentially expressed genes (DEGs).

Ontology ID Description Count p-
value

Gene

BP GO:
0070268

Cornification 24 1.96E-16 TGM1/KRT4/KLK5/KRT6C/KRT14/KRT13/SPINK5/KRT78/KRT5/KRT6A/
KRT24/IVL/LCE3D/SPRR2F/SPRR3/KLK13/KRT6B/SPRR1A/SPRR2E/SPRR2B/
SPRR2G/SPRR2D/KRT82/KRT38

BP GO:
0030216

Keratinocyte differentiation 34 1.05E-13 TGM1/KRT4/KLK5/KRT6C/KRT14/KRT13/SPINK5/KRT78/KRT5/KRT6A/
S100A7/KRT24/SCEL/IVL/LCE3D/CERS3/SPRR2F/SPRR3/KLK13/KRT6B/
SPRR1A/SERPINB13/SPRR2E/SPRR2B/LCE3E/LELP1/SPRR2G/KRTAP13-1/
KRTAP2-3/KRTAP4-6/KRTAP11-1/SPRR2D/KRT82/KRT38

BP GO:
0043588

Skin development 40 1.17E-13 TGM1/KRT4/KLK5/KRT6C/KRT14/KRT13/LRP4/SPINK5/KRT78/DKK4/KRT5/
COMP/KRT6A/S100A7/KRT24/SCEL/IVL/LCE3D/CERS3/SPRR2F/SPRR3/
KLK13/DKK1/KRT6B/SPRR1A/SERPINB13/SPRR2E/SPRR2B/DACT2/FOXE1/
LCE3E/LELP1/SPRR2G/KRTAP13-1/KRTAP2-3/KRTAP4-6/KRTAP11-1/
SPRR2D/KRT82/KRT38

CC GO:
0005788

Endoplasmic reticulum lumen 30 7.19E-11 ALB/AFP/FGG/APOB/APOA1/VTN/GHRL/ITIH2/FGA/CHGB/CASQ2/BPIFB2/
APOA4/SERPINA10/CES1/VGF/AHSG/COL2A1/CASQ1/PENK/COL26A1/F2/
NOTUM/AMELX/COL9A3/APOA2/MTTP/PDIA2/GCG/SPP2

CC GO:
0001533

Cornified envelope 13 3.43E-09 TGM1/SCEL/IVL/LCE3D/SPRR2F/SPRR3/SPRR1A/SPRR2E/SPRR2B/LCE3E/
LELP1/SPRR2G/SPRR2D

CC GO:
0062023

Collagen-containing
extracellular matrix

31 1.23E-08 FGG/APOA1/VTN/ITIH2/ANXA8/ADIPOQ/FGA/APOC3/APOA4/CBLN1/
NCAM1/AHSG/COL2A1/ORM1/SERPINA3/FGB/PTPRZ1/L1CAM/COMP/
COL26A1/ORM2/F2/THBS4/S100A7/AMELX/COL9A3/PRTN3/MMP8/S100A8/
PRSS1/SPP2

MF GO:
0048018

Receptor–ligand activity 41 2.88E-12 SCGB3A1/APOA1/GHRL/IL37/SCT/ANGPTL3/ADIPOQ/CHGB/FGF20/IGF2/
SST/VIP/NTS/VGF/CARTPT/IL36A/DEFB4A/PENK/FGF19/F2/NTF4/THBS4/
AMELX/PPBP/TTR/IFNW1/EPHA7/FGF3/INHA/EPGN/CSH2/NPPB/DKK1/
GCG/LEFTY1/IFNL2/MLN/IFNL3/IL3/SLURP1/INSL5

MF GO:
0030546

Signaling receptor activator
activity

41 4.01E-12 SCGB3A1/APOA1/GHRL/IL37/SCT/ANGPTL3/ADIPOQ/CHGB/FGF20/IGF2/
SST/VIP/NTS/VGF/CARTPT/IL36A/DEFB4A/PENK/FGF19/F2/NTF4/THBS4/
AMELX/PPBP/TTR/IFNW1/EPHA7/FGF3/INHA/EPGN/CSH2/NPPB/DKK1/
GCG/LEFTY1/IFNL2/MLN/IFNL3/IL3/SLURP1/INSL5

MF GO:
0005179

Hormone activity 18 8.70E-10 GHRL/SCT/ADIPOQ/CHGB/IGF2/SST/VIP/NTS/VGF/CARTPT/PENK/TTR/
INHA/CSH2/NPPB/GCG/MLN/INSL5

TABLE 5 Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using differentially expressed genes.

ID Description Count p-value Gene

hsa04080 Neuroactive ligand–receptor
interaction

29 1.92E-08 51738/6343/2862/6750/7432/4922/4886/155/5179/2147/6865/1136/2904/1443/5644/1129/
886/2641/6863/2740/11255/2834/9248/4295/134864/3350/3361/57152/10022

hsa04974 Protein digestion and absorption 12 1.56E-05 1280/5222/4311/136227/1299/477/5644/10136/1358/643834/1357/643847

hsa05204 Chemical carcinogenesis 10 6.05E-05 1576/1543/1646/79799/127/54578/7367/6822/131/221357

hsa04972 Pancreatic secretion 11 7.31E-05 6343/1811/22802/3778/477/5644/886/10136/1358/9635/1357

hsa04976 Bile secretion 10 0.000121 6343/1576/79799/9971/477/570/54578/7367/6822/6555

hsa00980 Metabolism of xenobiotics by
cytochrome P450

9 0.000198 1576/1543/79799/127/54578/7367/6822/131/221357

hsa04979 Cholesterol metabolism 7 0.000309 338/335/27329/345/337/336/8435

hsa04977 Vitamin digestion and absorption 5 0.000346 338/335/337/5948/9227

hsa00830 Retinol metabolism 8 0.000393 1576/1543/79799/127/9227/54578/7367/131
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understanding of detailed mechanisms is limited. For deeper

understanding of mechanisms underlying the FLG gene

functions, the mRNA expression levels of the FLG gene need to

be performed by RT-PCR, and the protein expression levels of the

FLG gene need to be performed by Western blot and the

immunochemistry method in separate cohorts. Moreover, a

more detailed examination by utilizing a combination of in vitro

and in vivo techniques may further elucidate the diagnostic and

therapeutic effects of the FLG gene in STAD patients. Second, as a

retrospective study, potential selection bias and recall bias were

inevitable, and more studies in settings with better statistics are

necessary. Third, due to the incomplete clinical information on

STAD from the TCGA database and the limited sample size, we

needmore long-term follow-up data and the clinical benefit of early

detection for further validation and study.

Conclusion

Our study first comprehensively demonstrated the

expression and function, and prognostic value of the FLG

gene in STAD. We found that the FLG-MT group showed a

higher mutation load and immunogenicity in STAD patients.

We further identified DEGs between the FLG-WT and FLG-

MT groups and performed GO analysis, pathway enrichment

analysis, PPI network construction, and prognostic analysis to

understand its role in STAD at the molecular level. Further

analyses showed that the DFS and OS were significantly

different by mutation status and FLG gene mutation might

be a protective factor. We also demonstrated that FLG

mutation patients showed comparably high mutation

counts than FLG intact patients in DNA damage

repairment-related pathways. Then we found that FLG

mutations resulted in increased gastric cancer sensitivity to

24 chemotherapeutic drugs and small-molecule anticancer

drugs, especially in LFM. A13, AZD8055, and X17. AAG.

This study not only suggests the potential value of the FLG

gene as a novel biomarker, but also offers new diagnostic and/

or therapeutic avenues for STAD.
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TABLE 6 Results of gene set enrichment analysis (GSEA).

Name Size Enrichment score NES p-value Leading edge

KEGG_RIBOSOME 87 0.956547 1.656318 1.00E-10 Tags = 85%, list = 3%, signal = 83%

KEGG_FOCAL_ADHESION 199 0.830965 1.46027 2.21E-10 Tags = 39%, list = 8%, signal = 36%

KEGG_DILATED_CARDIOMYOPATHY 90 0.87904 1.521094 4.21E-07 Tags = 17%, list = 3%, signal = 16%

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 212 0.78167 1.373872 4.26E-07 Tags = 36%, list = 13%, signal = 32%

KEGG_ECM_RECEPTOR_INTERACTION 83 0.883822 1.530104 5.20E-07 Tags = 42%, list = 6%, signal = 40%

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_
CARDIOMYOPATHY_ARVC

74 0.894349 1.542548 9.25E-07 Tags = 23%, list = 3%, signal = 22%

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 83 0.874796 1.514478 2.17E-06 Tags = 17%, list = 3%, signal = 16%

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 80 0.887199 1.532384 2.31E-06 Tags = 34%, list = 6%, signal = 32%

Frontiers in Genetics frontiersin.org16

Yicheng et al. 10.3389/fgene.2022.808542

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.808542


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ajani, J. A., Lee, J., Sano, T., Janjigian, Y. Y., Fan, D., Song, S., et al. (2017). Gastric
adenocarcinoma. Nat. Rev. Dis. Prim. 3, 17036. doi:10.1038/nrdp.2017.36

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S.,
Biankin, A. V., et al. (2013). Signatures of mutational processes in human cancer.
Nature 500, 415–421. doi:10.1038/nature12477

Alsina, M., Miquel, J. M., Diez, M., Castro, S., and Tabernero, J. (2019). How I
treat gastric adenocarcinoma. ESMO Open 4, e000521. doi:10.1136/esmoopen-
2019-000521

Bai, Y., Zhao, Z., Boath, J., van Denderen, B. J., and Darido, C. (2021). The
functional GRHL3-filaggrin axis maintains a tumor differentiation potential and
influences drug sensitivity. Mol. Ther. 29, 2571–2582. doi:10.1016/j.ymthe.2021.
03.016

Brown, S. J., and McLean, W. H. (2012). One remarkable molecule: Filaggrin.
J. Invest. Dermatol. 132, 751–762. doi:10.1038/jid.2011.393

Dai, J., Nishi, A., Li, Z. X., Zhang, Y., Zhou, T., You, W. C., et al. (2021). DNA
methylation signatures associated with prognosis of gastric cancer. BMC Cancer 21,
610. doi:10.1186/s12885-021-08389-0

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/
1471-2105-14-7

Hecht, J. R., Bang, Y. J., Qin, S. K., Chung, H. C., Xu, J. M., Park, J. O., et al. (2016).
Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal
growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or
gastroesophageal adenocarcinoma: TRIO-013/LOGiC--A randomized phase III
trial. J. Clin. Oncol. 34, 443–451. doi:10.1200/JCO.2015.62.6598

Huang, Z., He, A., Wang, J., Lu, H., Zhang, R., Wu, L., et al. (2021). The
circadian clock is associated with prognosis and immune infiltration in
stomach adenocarcinoma. Aging (Albany NY) 13, 16637–16655. doi:10.
18632/aging.203184

Jia, F., Teer, J. K., Knepper, T. C., Lee, J. K., Zhou, H. H., He, Y. J., et al. (2017).
Discordance of somatic mutations between asian and caucasian patient populations
with gastric cancer.Mol. Diagn. Ther. 21, 179–185. doi:10.1007/s40291-016-0250-z

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24,
1550–1558. doi:10.1038/s41591-018-0136-1

Kim, J., Copeland, C. E., Seki, K., Vogeli, B., and Kwon, Y. C. (2020). Tuning the
cell-free protein synthesis system for biomanufacturing of monomeric human
filaggrin. Front. Bioeng. Biotechnol. 8, 590341. doi:10.3389/fbioe.2020.590341

Krishnamurthy, K., Urioste, S. N., Cusnir, M., Schwartz, M., Alghamdi, S.,
Sriganeshan, V., et al. (2022). The mutational landscape of upper
gastrointestinal adenocarcinomas-A study of similarities and differences. Pathol.
Res. Pract. 232, 153830. doi:10.1016/j.prp.2022.153830

Kuang, X., Sun, L., Liu, S., Zhao, Z., Zhao, D., Liu, S., et al. (2016). Association of
single nucleotide polymorphism rs2065955 of the filaggrin gene with susceptibility
to Epstein-Barr virus-associated gastric carcinoma and EBV-negative gastric
carcinoma. Virol. Sin. 31, 306–313. doi:10.1007/s12250-016-3721-9

Li, L., Zhu, Z., Zhao, Y., Zhang, Q., Wu, X., Miao, B., et al. (2019). FN1, SPARC,
and SERPINE1 are highly expressed and significantly related to a poor prognosis of
gastric adenocarcinoma revealed by microarray and bioinformatics. Sci. Rep. 9,
7827. doi:10.1038/s41598-019-43924-x

Li, J., Zhou, W., Wei, J., Xiao, X., An, T., Wu, W., et al. (2021). Prognostic value
and biological functions of RNA binding proteins in stomach adenocarcinoma.
Onco. Targets. Ther. 14, 1689–1705. doi:10.2147/OTT.S297973

Liguigli, W., Tomasello, G., Toppo, L., Ratti, M., and Passalacqua, R. (2014).
Ramucirumab for metastatic gastric or gastroesophageal junction cancer: results
and implications of the REGARD trial. Future Oncol. 10, 1549–1557. doi:10.2217/
fon.14.106

Liu, J., Ma, L., Chen, Z., Song, Y., Gu, T., Liu, X., et al. (2020). Identification of
critical genes in gastric cancer to predict prognosis using bioinformatics analysis
methods. Ann. Transl. Med. 8, 884. doi:10.21037/atm-20-4427

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.Genome Biol. 15, 550. doi:10.
1186/s13059-014-0550-8

Marshall, G., Howard, Z., Dry, J., Fenton, S., Heathcote, D., Gray, N., et al. (2011).
Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with
AZD8055. Biochem. Soc. Trans. 39, 456–459. doi:10.1042/bst0390456

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28, 1747–1756. doi:10.1101/gr.239244.118

Mizrak, K. D., Harada, K., Shimodaira, Y., Amlashi, F. G., Lin, Q., Ajani, J. A.,
et al. (2017). Advanced gastric adenocarcinoma: optimizing therapy options. Expert
Rev. Clin. Pharmacol. 10, 263–271. doi:10.1080/17512433.2017.1279969

Murayama, T., Inokuchi, M., Takagi, Y., Yamada, H., Kojima, K., Kumagai, J.,
et al. (2009). Relation between outcomes and localisation of p-mTOR expression in
gastric cancer. Br. J. Cancer 100, 782–788. doi:10.1038/sj.bjc.6604915

Pangeni, R. P., Channathodiyil, P., Huen, D. S., Eagles, L. W., Johal, B. K., Pasha,
D., et al. (2015). The GALNT9, BNC1 and CCDC8 genes are frequently
epigenetically dysregulated in breast tumours that metastasise to the brain. Clin.
Epigenet. 7, 57. doi:10.1186/s13148-015-0089-x

Pi, M., Nishimoto, S. K., and Darryl, Q. L. (2021). Explaining divergent
observations regarding osteocalcin/GPRC6A endocrine signaling. Endocrinology
162, bqab011. doi:10.1210/endocr/bqab011

Pilehchian, L. M., Nikbakhsh, N., Samadani, A. A., Fattahi, S., Taheri, H., Shafaei,
S., et al. (2017). FAT4 hypermethylation and grade dependent downregulation in
gastric adenocarcinoma. J. Cell Commun. Signal. 11, 69–75. doi:10.1007/s12079-
016-0355-5

Qiu, J., Sun, M., Wang, Y., and Chen, B. (2020). Identification of hub genes and
pathways in gastric adenocarcinoma based on bioinformatics analysis. Med. Sci.
Monit. 26, e920261. doi:10.12659/msm.920261

Qu, Y., Gao, N., and Wu, T. (2021). Expression and clinical significance of
SYNE1 andMAGI2 gene promoter methylation in gastric cancer.Med. Baltim. 100,
e23788. doi:10.1097/MD.0000000000023788

Ramezankhani, R., Solhi, R., Es, H. A., Vosough, M., and Hassan, M. (2021).
Novel molecular targets in gastric adenocarcinoma. Pharmacol. Ther. 220, 107714.
doi:10.1016/j.pharmthera.2020.107714

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J. P., et al. (2006).
GenePattern 2.0. Nat. Genet. 38, 500–501. doi:10.1038/ng0506-500

Russi, S., Verma, H. K., Laurino, S., Mazzone, P., Storto, G., Nardelli, A., et al.
(2019). Adapting and surviving: Intra and extra-cellular remodeling in drug-
resistant gastric cancer cells. Int. J. Mol. Sci. 20, E3736. doi:10.3390/
ijms20153736

Salama, R. H., Rasheed, Z., Ahmed, A. A., Bin Saif, G. A., Elkholy, M. M., Abd El-
Moniem, A. E., et al. (2021). Missense, silent, non-sense and frame-shift mutations
in exon 3 of the filaggrin gene in patients with bronchial asthma, atopic dermatitis,
allergic rhinitis andmixed atopy.Nucleosides Nucleotides Nucleic Acids 40, 357–367.
doi:10.1080/15257770.2021.1880009

Sandilands, A., Sutherland, C., Irvine, A. D., and McLean, W. H. (2009). Filaggrin
in the frontline: role in skin barrier function and disease. J. Cell Sci. 122, 1285–1294.
doi:10.1242/jcs.033969

Satoh, T., Xu, R.-H., Chung, H. C., Sun, G.-P., Doi, T., Xu, J.-M., et al. (2014).
Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment
ofHER2 -amplified advanced gastric cancer in asian populations: TyTAN—a
randomized, phase III study. J. Clin. Oncol. 32, 2039–2049. doi:10.1200/JCO.
2013.53.6136

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303

Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., and Lordick, F.
(2020). Gastric cancer. Lancet 396, 635–648. doi:10.1016/S0140-6736(20)
31288-5

Frontiers in Genetics frontiersin.org17

Yicheng et al. 10.3389/fgene.2022.808542

https://doi.org/10.1038/nrdp.2017.36
https://doi.org/10.1038/nature12477
https://doi.org/10.1136/esmoopen-2019-000521
https://doi.org/10.1136/esmoopen-2019-000521
https://doi.org/10.1016/j.ymthe.2021.03.016
https://doi.org/10.1016/j.ymthe.2021.03.016
https://doi.org/10.1038/jid.2011.393
https://doi.org/10.1186/s12885-021-08389-0
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1200/JCO.2015.62.6598
https://doi.org/10.18632/aging.203184
https://doi.org/10.18632/aging.203184
https://doi.org/10.1007/s40291-016-0250-z
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.3389/fbioe.2020.590341
https://doi.org/10.1016/j.prp.2022.153830
https://doi.org/10.1007/s12250-016-3721-9
https://doi.org/10.1038/s41598-019-43924-x
https://doi.org/10.2147/OTT.S297973
https://doi.org/10.2217/fon.14.106
https://doi.org/10.2217/fon.14.106
https://doi.org/10.21037/atm-20-4427
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1042/bst0390456
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1080/17512433.2017.1279969
https://doi.org/10.1038/sj.bjc.6604915
https://doi.org/10.1186/s13148-015-0089-x
https://doi.org/10.1210/endocr/bqab011
https://doi.org/10.1007/s12079-016-0355-5
https://doi.org/10.1007/s12079-016-0355-5
https://doi.org/10.12659/msm.920261
https://doi.org/10.1097/MD.0000000000023788
https://doi.org/10.1016/j.pharmthera.2020.107714
https://doi.org/10.1038/ng0506-500
https://doi.org/10.3390/ijms20153736
https://doi.org/10.3390/ijms20153736
https://doi.org/10.1080/15257770.2021.1880009
https://doi.org/10.1242/jcs.033969
https://doi.org/10.1200/JCO.2013.53.6136
https://doi.org/10.1200/JCO.2013.53.6136
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/S0140-6736(20)31288-5
https://doi.org/10.1016/S0140-6736(20)31288-5
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.808542


Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102,
15545–15550. doi:10.1073/pnas.0506580102

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249.
doi:10.3322/caac.21660

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
et al. (2019). STRING v11: protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47, D607–D613. doi:10.1093/nar/
gky1131

Uckun, F., Dibirdik, I., Sarkissian, A., and Qazi, S. (2011). In vitro and in
vivo chemosensitizing activity of LFM-A13, a dual-function inhibitor of
Bruton’s tyrosine kinase and polo-like kinases, against human leukemic
B-cell precursors. Arzneimittelforschung. 61, 252–259. doi:10.1055/s-0031-
1296196

Vanden, H. J., Maddox, E., Maalouf, S. W., Iorns, E., and Tsui, R. (2018).
Replication Study: Systematic identification of genomic markers of drug sensitivity
in cancer cells. Elife 7, e29747. doi:10.7554/eLife.29747

Wang, Q., Liu, G., and Hu, C. (2019). Molecular classification of gastric
adenocarcinoma. Gastroenterol. Res. 12, 275–282. doi:10.14740/gr1187

Wang, H., Shen, L., Li, Y., and Lv, J. (2020). Integrated characterisation of cancer
genes identifies key molecular biomarkers in stomach adenocarcinoma. J. Clin.
Pathol. 73, 579–586. doi:10.1136/jclinpath-2019-206400

Yang, Y., Liu, W., Zhao, Z., Zhang, Y., Xiao, H., Luo, B., et al. (2017). Filaggrin
gene polymorphism associated with Epstein-Barr virus-associated tumors in China.
Virus Genes 53, 532–537. doi:10.1007/s11262-017-1463-x

Yang, Y., Zhang, J., Chen, Y., Xu, R., Zhao, Q., Guo, W., et al. (2020). MUC4,
MUC16, and TTN genes mutation correlated with prognosis, and predicted tumor
mutation burden and immunotherapy efficacy in gastric cancer and pan-cancer.
Clin. Transl. Med. 10, e155. doi:10.1002/ctm2.155

Ye, Z., Zheng, M., Zeng, Y., Wei, S., Wang, Y., Lin, Z., et al. (2020). Bioinformatics
analysis reveals an association between cancer cell stemness, gene mutations, and
the immune microenvironment in stomach adenocarcinoma. Front. Genet. 11,
595477. doi:10.3389/fgene.2020.595477

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16,
284–287. doi:10.1089/omi.2011.0118

Zhu, Z., Lee, P.H., Chaffin,M.D., Chung,W., Loh, P. R., Lu,Q., et al. (2018). A genome-
wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of
asthma and allergic diseases. Nat. Genet. 50, 857–864. doi:10.1038/s41588-018-0121-0

Frontiers in Genetics frontiersin.org18

Yicheng et al. 10.3389/fgene.2022.808542

https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3322/caac.21660
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1055/s-0031-1296196
https://doi.org/10.1055/s-0031-1296196
https://doi.org/10.7554/eLife.29747
https://doi.org/10.14740/gr1187
https://doi.org/10.1136/jclinpath-2019-206400
https://doi.org/10.1007/s11262-017-1463-x
https://doi.org/10.1002/ctm2.155
https://doi.org/10.3389/fgene.2020.595477
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41588-018-0121-0
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.808542

	Association of FLG mutation with tumor mutation load and clinical outcomes in patients with gastric cancer
	Introduction
	Materials and methods
	Data downloads
	Copy number variation analysis
	Calculation and correlation analysis of somatic mutation and tumor mutation load fraction
	Identification of differentially expressed genes (DEGs) and clinical correlation analysis
	Functional enrichment analysis
	Comparison of biological functions and immune estimation scores
	Protein–protein interaction network construction
	Construction of ceRNA networks
	Sensitivity analysis of anticancer drugs
	Validation of clinical prediction models
	Statistical analysis

	Results
	Association between the FLG status and clinical characteristics
	Relationships between the FLG mutation status and biological characteristics and mutation load in STAD
	Drug sensitivity analysis
	Construction and evaluation of the nomogram model
	Differential expression analysis
	Construction of PPI and ceRNA networks
	Discussion

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


