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Background: The impact of extreme changes in weather patterns on the economy and
human welfare is one of the biggest challenges our civilization faces. From anthropogenic
contributions to climate change, reducing the impact of farming activities is a priority since
it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested
whether ruminal and stool microbiome components could be used as biomarkers for
methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls
belonging to two feed intervention treatment groups, that is, conventional and by-product-
based diets.

Results: We identified a total of 5,693 amplicon sequence variants (ASVs) in the Nelore
bulls’microbiomes. A Differential abundance analysis with the ANCOM approach identified
30 bacterial and 15 archaeal ASVs as differentially abundant (DA) among treatment
groups. An association analysis using Maaslin2 software and a linear mixed model
indicated that bacterial ASVs are linked to the host’s residual methane emission
(RCH4) and residual feed intake (RFI) phenotype variation, suggesting their potential as
targets for interventions or biomarkers.

Conclusion: The feed composition induced significant differences in both abundance and
richness of ruminal and stool microbial populations in ruminants of the Nelore breed. The
industrial by-product-based dietary treatment applied to our experimental groups
influenced the microbiome diversity of bacteria and archaea but not of protozoa. ASVs
were associated with RCH4 emission and RFI in ruminal and stool microbiomes. While
ruminal ASVs were expected to influence CH4 emission and RFI, the relationship of stool
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taxa, such as Alistipes and Rikenellaceae (gut group RC9), with these traits was not
reported before and might be associated with host health due to their link to anti-
inflammatory compounds. Overall, the ASVs associated here have the potential to be
used as biomarkers for these complex phenotypes.

Keywords: association, archaea, bacteria, biomarkers, Bos indicus, feed efficiency, methane emission

BACKGROUND

The Anthropocene Epoch is marked by the continuous
degradation of the biosphere promoted by human activities,
culminating in the ongoing climate and environmental crisis
(Williams et al., 2015; Cook et al., 2016). One of the current
challenges is to mitigate its effects and sustain an ever-growing
human population by developing methods for efficient food
production. Cattle farming, a valuable source of animal
protein, is alone responsible for a significant environmental
impact due to the occupation and degradation of land for
pasture, contamination of water sources by cattle manure
(Sahoo et al., 2016), and the emission of methane (CH4)
produced by enteric fermentation, a greenhouse gas 28 times
stronger than CO2 (Pachauri and Mayer, 2015).

Key phenotypes for the reduction of the meat industry’s
environmental and economic burden, such as feed efficiency
and methane emission, are linked to interactions between the
host and its associated microbial communities, also known as the
microbiota (Guan et al., 2008; Chang et al., 2019). Although
studies targeting these phenotypes have been published over the
years (Mudadu et al., 2016; Pszczola et al., 2018; Lassen and
Difford, 2020), only recently the microbiota started to be
considered as an important subject to increase efficiency and
reduce costs and the environmental impact of cattle farming (Shi
et al., 2014; Noel et al., 2019).

These microorganisms can shape their host biology through
beneficial interactions and influence health, development, and
immune system modulation (Flint et al., 2007; Belkaid and Hand,
2014). However, most of these microorganisms are elusive and
utterly unknown to science due to inherent difficulties in
cultivation procedures (Solden et al., 2016). Nowadays, it is
possible to access microorganisms’ genomic material directly
and investigate their identity, distribution, relatedness, and
functionality using approaches from the meta-omics field, such
as deep sequencing metagenomics, metabarcoding, and
metatranscriptomics (Gilbert and Dupont, 2011).

The microbiome structure of the Nelore Brazilian beef cattle
has gained the attention of the scientific community in the past
years, being the subject of different studies (de Oliveira et al.,
2013; Lopes et al., 2021), including a previous study by our
research group (Andrade et al., 2020) in which we investigated
the microbiome profiles of two segments of 26 Nelore bulls’
gastrointestinal tract (GIT). We showed that a significant part of
the stool archaeal population co-occurred with the rumen
archaeal population, suggesting the use of stool as a proxy for
the rumen archaeal population.

Herein, we extended that the study by the introduction of an
additional experimental group under a different diet and

compared the microbiome populations from two distant
sections of the Nelore GIT-rumen and rectal ampulla to 1)
identify the impact of the dietary treatment on the
microbiome diversity and abundance; 2) identify associations
between microbiome components and phenotypes, such as
residual CH4 emission (RCH4) and residual feed intake (RFI).

METHODS

Experimental Design
All experimental procedures were conducted following animal
welfare guidelines and were approved by the EMBRAPA
Livestock Science Ethics Committee on Animal
Experimentation, São Carlos, São Paulo (Protocol No. 09/
2016). The experimental population consisted of animals born
in 2014, and the experiment was conducted at the feedlot facility
of “Embrapa Pecuária Sudeste”. It lasted 105 days, which
included 15 days for animal adaptation to the feedlot, 30 days
for growth, and 60 days for animal finishing. Animals were
divided into two groups based on dietary treatment. The first
experimental group (conventional group, n = 26) consisted of
animals fed with a conventional diet based on corn silage, corn,
soybean meals, rumen-protected fat, and urea as a concentrate, as
described in Andrade et al. (2020). The second experimental
group (by-product group, n = 26) replaced concentrates with the
industrial by-products citrus pulp, corn germ, corn germ oil meal,
and peanut shell meal. In both treatment groups, animals received
mineral supplements, active dry yeast, virginiamycin, and
monensin.

Feedlots were divided based on the dietary treatment and
initial weights, with heavyweight and lightweight animals
grouped separately. The facility has collective stalls with an
automatic feeding system (GrowSafe Systems Ltd., Airdrie,
Alberta, Canada), in order to collect data regarding live weight
and daily food consumption. The animals were then sent for
slaughter at 23–24 months of age, following the Guidelines for
Humane Handling, Transport, and Slaughter of Livestock. All
animal data used in this study are available in Supplementary
Table S1.

Host DNA Extraction and Genotyping
5 mL of blood samples were collected from each animal, and
DNA extractions were performed by a salting-out method (Meo
et al., 2009). DNA concentration was measured by
spectrophotometry, and quality was verified by the 260/280
optical density ratio, followed by integrity inspection through
agarose gel electrophoresis. All animals were genotyped using the
GGP Bos indicus 50 k. Genotypes were called in the Illumina
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GenomeStudio software. We applied the following filtering
parameters with PLINK software (Chang et al., 2015): 1) SNP
call rate ≤95%, 2) SNP minor allele frequency (MAF) ≤ 5%, 3)
animals with ≥10% missing genotypes, and 4) SNPs that did not
pass the HWE test (p ≤ 0.001). A total of 41,869 SNPs of all 52
animals were available for further analysis.

Phenotypes
Residual Feed Intake
Individual dry matter intake (DMI, kg/d) was obtained by the
difference between the weight of the diet provided and refusal,
and average daily gain (ADG, kg/d) was estimated by linear
regression of body weight (BW) on days in feedlot. Residual
feed intake (RFI, kg/d) was computed as the residuals from the
regression of DMI on mid-test BW0.75 and ADG (Koch et al.,
1963). The metabolic body weight (MBW, kg) was obtained
with the following equation: MBW = BW0.75. The
contemporary group (CG) was defined as the weighing group
and the slaughter group, which were considered fixed effects by
MIXED procedure of the SAS statistical program (SAS Institute,
Cary, NC, United States, 2011), according to the following
equation:

DMIi � β0 + β1(ADGi) + β2(MBWi) + β3(CGi) + RFIi, (1)
where DMIi is the dry matter intake predicted for animal i; ADGi

is the average daily gain of animal i; MBWi is the metabolic body
weight of animal i; β0 is the regression intercept; β1 is the partial
regression coefficient of ADG; β2 is the partial regression
coefficient of MBW; and β3 is the partial regression coefficient
of CG, and RFIi is the RFI of animal i (Koch et al., 1963).

Residual Methane Emission
The methane emission was measured during the finishing period
in the feedlot using the GreenFeed system (Clock Inc., Rapid City,
SD, United States). The residual methane emission (RCH4) was
obtained by the regression of methane emission using individual
DMI (Donoghue et al., 2016), and CG as covariables in the
MIXED procedure of SAS statistical program (SAS Institute,
Cary, NC, United States, 2011), according to the following
equation:

MEi � β0 + β1(DMIi) + β2(CGi) + residual error, (2)
where MEi is the methane emission predicted for animal i; DMIi
is the dry matter intake predicted for animal i; β0 is the regression
intercept; β1 is the partial regression coefficient of DMI; β2 is the
partial regression coefficient of CG; and, as proposed by
Donoghue et al. (2016), the model residual error of animal i
was considered as the residual methane emission (RCH4).

Microbiota Sample Collection and
Processing
After the finishing phase, approximately 10 g of stool was
obtained from each animal 2 weeks before slaughtering, and
50 ml of rumen content was collected immediately after
slaughter. All samples were frozen in liquid nitrogen and

permanently stored at −80°C before analysis. DNA extraction
was performed using the Quick-DNA™ Fecal/Soil Microbe
Miniprep Kit (ZYMO Research Corp., Irvine, CA), using
150 mg of each sample and following the standard protocol.
PCR target amplification for the bacterial and archaeal 16S
rRNA and protozoal 18S rRNA coding genes was performed
using the primers 341-b-S-17F and 341-b-S-17F (Klindworth
et al., 2013), Ar915aF and Ar1386R (Kittelmann et al., 2013),
and Reg1320R and RP841F (Henderson et al., 2015), respectively,
following Andrade et al. (2020). Amplicons were sequenced in an
Illumina Miseq platform (2 × 250 bp) using the Illumina V3
sequencing kit at the ESALQ Genomics Center (Piracicaba, SP,
Brazil).

Data Retrieval, Pre-Processing, and
Analysis
In addition to the dataset generated in this study, raw reads
generated by our previous study with bulls fed conventional diet
were retrieved from the SRA database [accession number
PRJNA525838] and processed to infer the impact of dietary
treatments and to search for association with phenotypes.

Raw reads from conventional and by-product groups were
filtered for quality (>Q25) and trimmed at positions 220
(forward) and 175 (reverse) using QIIME 2 version 2018.8
(Bolyen et al., 2019). We selected these positions based on
aggregation plots provided by QIIME 2. The filtered data was
submitted to the DADA2 package to generate amplicon sequence
variants (ASVs) with the option just-concatenate and exclude
chimeric sequences (Callahan et al., 2016). Bacterial sequences
were annotated using the SILVA database version 132 (Quast
et al., 2013), archaeal sequences using the Rumen and Intestinal
Methanogen database (RIM-DB) (Seedorf et al., 2014), and
protozoa using a curated database containing protozoa 18S
rRNA gene sequences (Kittelmann et al., 2015). We used the
resulting ASV table to determine alpha (number of ASVs and the
Shannon–Wiener index) and beta diversities (unweighted
UniFrac distance) with QIIME 2.

Statistical Analysis
We contrasted the microbiome of groups submitted to different
dietary treatments using the Analysis of Composition of
Microbiomes (ANCOM) version 2.1 (Kaul et al., 2017), with
significance values adjusted for multiple tests using the
Benjamin–Hochberg method (α < 0.05). We applied a
conservative W-statistic (W-statistic cutoff = 0.9) in which an
ASV was considered as differentially abundant if its composition
varied when compared to 90% of the rest of the dataset, being the
W-value the number of times the model rejected the null
hypothesis for a given ASV across two groups. ANCOM is a
statistical approach that compares Aitchison’s centered log-ratio
transformed abundances of each ASV individually with all the
remaining ASVs without any distributional assumptions (Kaul
et al., 2017).

ASV abundances were tested for associations with animal
phenotypes, such as RCH4 and RFI phenotypes using the
Microbiome Multivariable Association with Linear Models
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(Maaslin) version 2 (Mallick et al., 2021). Maaslin is a
multivariate model developed for the microbiome data
analysis, as it considers the compositional nature of these
datasets. The analysis was adjusted for treatment and
contemporary groups using the following formula:

m0: CLR(ASV) ~ Phenotype(RFI or RCH4) + Diet + CG

+ residual error, (3)
where CLR is the ASV abundance transformed using the centered
log-ratio method, and e is the residual error. ASVs identified as
significant by the Maaslin analysis, and that was prevalent in
more than 20% of animals with a minimum abundance of
0.001%, had their effect on the phenotypic variation
(response variable) tested by using the linear mixed model
implemented in the lme4qtl package (Ziyatdinov et al.,
2018). Genetic relatedness was included as a random effect
in the form of a kinship matrix to rule out the population
structure effect in the phenotypic variation, jointly with diet and
CG fitted as fixed effects. We built the genomic relatedness
matrix using the AGHmatrix package (Amadeu et al., 2016) of R
(v. 4.0.3), based on the genomic matrix proposed elsewhere
(VanRaden, 2008).

A likelihood ratio test was used to contrast models (m1 and
m2) to investigate the ASV impact on the phenotype. Our model
can be described by the following formula:

m1: phenotype (RFI or RCH4) ~ Diet + CG + Kinship Matrix
+ residual error.

m2: phenotype (RFI or RCH4) ~ centered log-ratio (ASV) +
Diet + CG + Kinship Matrix + residual error.

Significant values for all models were adjusted for multiple
tests using the false discovery rate (FDR) method (α<= 0.05).

RESULTS

Microbiome Composition
The sequencing of microbiome rDNA amplicons from ruminal
and stool samples of the by-product group yielded a total of
10,573,763 paired-end reads (4,628,604 paired-end reads for
bacteria, 4,443,390 for archaea, and 1,501,769 for protozoa),
reaching 20,241,296 paired-end reads with the addition of
sequencing data from animals fed conventional diet. After
quality control and singleton exclusion, we identified a total of
4,519 bacterial ASVs (2,680 ruminal ASVs and 1,839 stool ASVs),
1,023 archaeal ASVs (421 ruminal ASVs and 602 stool ASVs),
and 151 ruminal protozoa ASVs across treatments. Rarefaction
curves based on the alpha diversity metrics of the
Shannon–Wiener index (diversity) reached a plateau, which
indicated that additional sequences would not likely result in
additional features (Supplementary Figure S1).

Comparison of samples from different treatment groups using
alpha diversity metrics (observed ASVs and Shannon–Wiener
indexes) by the Kruskal–Wallis testing method revealed that
rumen bacterial microbiome was significantly more abundant
and richer in animals fed the conventional diet than those fed the
by-product diet (p = 0.006 and p = 0.04, respectively), whereas the

ruminal archaea diversity was richer (p = 0.0004) but not more
abundant. There was no significant difference between diets when
contrasting alpha diversity metrics of stool samples. Conversely,
comparisons of the beta diversity metric unweighted UniFrac
using the PERMANOVA approach revealed that samples of
archaea and bacteria tended to form two significant clusters,
which represented the treatment groups (adjusted p < 0.01)
(Figures 1, 2), a tendency most pronounced in stool
populations. Protozoa populations showed no significant
differences between treatment groups (Supplementary
Figure S2).

Differentially Abundant ASVs in Dietary
Treatment Groups
We applied ANCOM to investigate the influence of dietary
treatments in the microbiome composition at the ASV level.
Seventeen ruminal ASVs of bacterial origin were differentially
abundant (DA) with higher abundance in the conventional
group, from which the most prominent were classified as
Bacteroidales (group F082) (ASV 20 and 23),
Christensenellaceae (ASV 112), Pedosphaeraceae families (ASV
145), and the genus Succiniclasticum (ASV 170). Ten DA ASVs
had higher abundance in the by-product group, of which the most
abundant were classified as Succiniclasticum (ASV 97),
Acetitomaculum (ASV 116), Lachnospiraceae family (ASV
247), Fibrobacter (ASV 96), and Succinivibrio genus (ASV
118) (Supplementary Figure S3). Also, three stool ASVs
were DA in our experimental groups; one was classified as a
member of the family Rikenellaceae (ASV 361) and was
more abundant animals fed conventional diet, while the ASV
332, classified as a member of the family Prevotellaceae, and
the ASV 526, classified as the genus Oscillibacter, were more
abundant in animals fed the by-product diet (Supplementary
Figure S4).

Eight archaeal ASVs were DA among treatment groups in the
rumen microbiome. Four ASVs classified as M. gottschalkii
(ASVs 1, 2, 13, and 11), one as M. ruminantium (ASV 23),
and one ASV belonging to the family Methanomassiliiicoccaceae
(ASV 36) were all more abundant in animals fed conventional
diet. In contrast, one classified as M. ruminantium (ASV 4) and
the other as Methanosphaera (group ISO3-F5) (ASV 33) were
more abundant in the by-product group (Supplementary Figure
S5). Seven archaeal ASVs were DA in the stool microbiome. From
these, the ASVs classified as M. gottschalkii (ASVs 2, 13, and 11)
and M. smithii (ASV 28) were more abundant in animals fed a
conventional diet. At the same time, M. ruminantium (ASV 4)
and Methanosphaera (group ISO3-F5) (ASVs 5 and 33) were
more abundant in animals fed by-product diet (Supplementary
Figure S6). No ASVs of protozoa origin were observed as DA for
any biome or group.

Association Between Bacterial ASVs
Identified in the Nelore GIT and RCH4
We applied a generalized linear model (GLM) within the
Maaslin2 framework to investigate ASVs associated with RCH4
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emission variation. This analysis allowed us to identify
significant associations between bacteria and RCH4 in both
environments. A second model was used to validate the
direction and strength of association of ASVs identified by
Maaslin2. We identified a single bacterial ASV associated
with High-RCH4 (High emission) in the rumen, the ASV
3873 (coef_CLR = 0.54, coef_RCH4 = 0.48), classified as a
Solobacterium (Figure 3A), and one associated with Low-
RCH4 (Low emission) in the stool environment, the ASV 85
(coef_CLR = −1.18, coef_RCH4 = −0.48), classified as Alistipes

(Figure 3B). There were no significant associations between
RCH4 emission and archaea or protozoa ASVs.

Association Between Bacterial ASVs in the
Nelore GIT and Feed Efficiency
Association analysis between RFI and microbiome components
was performed using the same GLM and mixed models described
for the RCH4 analysis. We identified four bacterial ASVs
associated with RFI in the rumen environment, three of these

FIGURE 1 | (A) Comparison between observed ASV (amplicon sequence variants) metric between treatment groups showed no significant difference in the
bacterial population of animals submitted to different diets in both rumen (green line) and stool (yellow line). (B) Shannon index comparisons showing a significant
difference (p < 0.01) in the richness of bacteria from the rumen microbiome. (C) PCoA using the rumen microbiome unweighted UniFrac distance showing a tendency of
clustering of samples from conventional group (blue) and B (orange). (D) PCoA using the stool microbiome unweighted UniFrac distance showing an almost linear
separation of samples from animals fed conventional diet (blue) and by-product diet (orange).
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associated with feed inefficient (High-RFI) and one ASV
associated with feed efficient animals (Low-RFI) (Figure 4).
We also identified one ASV associated with High-RFI and one
with Low-RFI in the stool environment (Figure 2).

Among those associated with High-RFI, were the ASV 3718
(coef_CLR = 0.54, coef_RFI = 0.54), classified as
Christensenellaceae (gut group R-7), the ASV 1452 (coef_CLR

= 0.71, coef_RFI = 0.49), classified as Succinivibrio, ASV 813
(coef_CLR = 0.82, coef_RFI = 0.45), classified as Prevotella in the
rumen, and the ASV 4228 (coef_CLR = 0.49, coef_RFI = 0.50),
classified as Ruminococcaceae UCG-005, in stool environments.
The ASV 1083 (coef_CLR = −0.91, coef_RFI = −0.48) and ASV
260 (coef_CLR = −1.00, coef_RFI = −0.46), both classified as
Rikenellaceae RC9, were significant in Low-RFI (Figure 4) in

FIGURE 2 | (A) Comparison between observed ASV (amplicon sequence variants) metric between treatment groups showed no significant difference in archaea
populations of animals submitted to different diets in both rumen (green line) and stool (yellow line). (B) Shannon index comparisons showing a significant difference (p <
0.01) in the richness of archaea in the rumen microbiome. (C) PCoA using the rumen microbiome unweighted UniFrac distance showing no significant difference
between groups (p > 0.1). (D) PCoA using the stool microbiome unweighted UniFrac distance showing a tendency of clustering of samples from animals fed
conventional diet (blue) and by-product diet (orange).
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rumen and stool environments, respectively. There were no
significant associations between RFI, and archaea or
protozoa ASVs.

DISCUSSION

Our previous study extensively explored the microbiome
structure from two different sections of the Nelore cattle GIT
under a single dietary treatment (Andrade et al., 2020). Herein,
we expand this study by introducing a new experimental group
under a different diet and related the microbiome to production

phenotypes. We compared these groups to investigate the impact
of the diet on microbial abundance and diversity, and the
contribution of individual ASVs on complex phenotypes, such
as RFI and RCH4.

The Microbiome Structure Is Affected by
Feed Composition
Analysis of alpha diversity metrics showed that both bacteria and
archaea only differed in the rumen environment, being less rich in
animals of the by-product group. This richness difference could
be explained by the presence of citrus pectin on the by-product

FIGURE 3 | Standardized beta coefficient for the RCH4 trait versus the module abundance (CLR) variation of amplicon sequence variants (ASV) in (A) rumen; (B)
stool. Both the phenotypic variation and ASV abundance variation were retrieved from the beta coefficients of mixed models and Maaslin2 GLM regressions. Taxonomic
information generated by QIIME 2 was included.

FIGURE 4 | Standardized beta coefficient for the RFI trait vs. the module abundance (CLR) variation of amplicon sequence Vvriants (ASV) in (A) rumen; (B) stool.
Both the phenotypic and ASV abundance variations were retrieved from the beta coefficients of mixed models and Maaslin2 GLM regressions. Taxonomic information
generated by QIIME 2 was included in the legend.
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diet formulation. Citrus pectin is a polysaccharide that can
selectively stimulate the microbiome, affecting its composition
(Larsen et al., 2019), and is linked to the decrease of Prevotella
copri, a bacteria associated with rheumatoid arthritis in humans
(Pianta et al., 2017). Also, PCoA analysis of the unweighted
UniFrac beta diversity metric highlighted distinct clusters in
treatment groups for bacteria (rumen and stool microbiomes)
and archaea (stool microbiome), but not for protozoa. Altogether,
these results indicate the diet as an essential microbiome
modulator for bacteria and archaea populations, in agreement
with previous studies in which different diets and feed
components’ impact on microbiome diversity was evaluated
(Dill-McFarland et al., 2019; Popova et al., 2019). Such
differences in the microbiome composition had little to no
impact on the phenotypes studied herein, in agreement with
the lack of diet effect on phenotypes. We hypothesize, however,
that this lack of observable effect could be explained by the
microbiome functional redundancy, in which the taxonomic
composition can vary between individuals, but its functional
capacity is conserved (Tian et al., 2020). However, this
hypothesis resides outside the scope of this paper, and further
studies have to be implemented to test it.

Differential abundance analysis with individual bacterial ASVs
revealed a significant impact of the dietary treatment in the
bacterial populations of both environments. In the rumen, the
ASVs classified as belonging to the Christensenellaceae family
and the Prevotella and Fibrobacter genera were identified as more
abundant in animals fed a conventional diet. These
microorganisms are known producers of short-chain fatty
acids (SCFAs), such as acetate, butyrate, and propionate
(Neumann et al., 2017; Waters and Ley, 2019). Besides, ASVs
classified within genera known to produce succinate and
propionate, that is, Succiniclasticum and Succinivibrio (Hespell,
1992; van Gylswyk, 1995), were identified as more abundant in
animals fed by-product diet. Differently from acetate and
butyrate production, which increases H2 concentration in the
rumen (Wolin, 1960), propionate is an electron acceptor end
product of rumen fermentation and a viable alternative to
methanogenesis to decrease the ruminal H2, a process known
as H2 sink (Ungerfeld, 2015; Wang et al., 2018). This alternative
H2 sink process decreases energy loss caused by methanogenesis
and the resulting surplus of feed energy has the potential of
diluting the host maintenance costs, increasing its feed efficiency.

The three DA ASVs identified in the stool samples were
classified as bacteria that commonly inhabit the hindgut,
including the Oscillibacter genus and Prevotellaceae family,
both more abundant in animals fed by-product diet, and
Rikenellaceae family, more abundant in animals fed
conventional diet (Marounek and Duskova, 1999; Chen et al.,
2011; Lee et al., 2012). The identification of a small number of DA
ASVs in the stool microbiome is consistent with the previous
alpha diversity analysis, in which there was no significant
difference in both abundance and richness among
experimental groups.

The dietary treatment also significantly impacted the archaea
populations, e.g., an increased abundance of ASVs classified asM.
gottschalkii in both rumen and stool environment of animals fed

conventional diet, andM. ruminantium in both environments of
animals fed by-product diet. A study on sheep with contrasting
phenotypes for CH4 emission found a higher abundance of the
archaea M. gottschalkii in the higher emitter group and M.
ruminantium in the lower emitter group (Shi et al., 2014).

Phenotypic Associations Indicate
Biomarkers for RCH4 Emission in the GIT
Microbiota
The GLMmodel analysis identified two bacterial ASVs associated
with the RCH4 phenotype in the rumen and stool microbiomes.
This reduced number of significant results was expected since this
phenotype is complex and caused by different microbe–microbe
and host–microbiome interactions. In addition, the microbiome
functional redundancy may also play an essential role in it,
reducing the likelihood of pinpointing a biomarker using
metabarcoding alone.

Regarding the rumen microbiome, an ASV classified as
belonging to the Solobacterium genus was identified as the
most abundant bacterial ASV in animals with High-RCH4.
This genus was first described in 1999 (Kageyama and Benno,
2000) and had the species Solobacterium moorei as its sole
representative. This bacterium is an important producer of
volatile sulfur compounds (VSC) such as hydrogen sulfide
(H2S) in the human oral microbiome (Stephen et al., 2014).
This compound was previously identified in vitro as having
inhibitory properties against methane oxidation (Lee et al.,
2015), preventing methanotrophs from metabolizing CH4 by
using it as a carbon source, which could have, in turn,
contributed to the increase in CH4 concentration.

In the stool microbiome, the ASV belonging to the Alistipes
genus was associated with the decrease of the RCH4. This genus
comprises Gram-negative and anaerobic bacteria commonly
identified in the bovine GIT microbiome (Dowd et al., 2008;
Holman and Gzyl, 2019). Like other members of the
Rikenellaceae family, bacteria from this genus produce acetate
and propionate, both fatty acids with anti-inflammatory
properties in the gut of humans and chickens (Polansky et al.,
2015; Parker et al., 2020).

Although we were not able to identify a direct link between
anti-inflammatory compounds and methane production,
researchers have been describing the potential use of different
species of seaweed as a feed component to reduce the enteric
methane production in dairy and beef cattle (Machado et al.,
2014; Abbott et al., 2020). These seaweed species, especially the
red seaweed, are rich to some extent in alkaloids, a nitrogenous
compound with microbiome modulator capabilities and anti-
inflammatory activity (Abbott et al., 2020). Although this link is
hypothetical, the relationship between these taxa with methane
emission and their biomarker/probiotic potential has to be
further investigated using more layers of metagenomic
information, such as metagenomes and metatranscriptomes.
Another possible mechanism for this association comes from
the observation of an increase in peristaltic movements in
humans with higher abundance of the genus Alistipes
(Scarpato et al., 2019; Sugitani et al., 2021). If this effect holds
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for ruminants, it could affect rumen emptying, thus providing a
mechanism for the reduction in methane emission.

Surprisingly, we could not identify archaeal ASVs associated
with RCH4, in both environments. Known significant
contributors to methane production, species of archaea
belonging to the Methanobrevibacter genus, such as M.
gottschalkii and M. ruminantium, were highly abundant in the
rumen microbiome of both experimental groups, with the diet
having a significant impact on the archaea population structure.
Still, archaeal ASVs failed to reach the significance threshold
regarding this phenotype.

Feed Efficiency Is Linked to SCFA
Producers in Both Environments
The ASVs identified as associated with High-RFI (decreasing the
feed efficiency) in the rumen environment were taxonomically
classified as Prevotella and Succinivibrio genus, and
Christensenellaceae (gut group R-7). These results agreed with
a recent study with rumen samples from Nelore cattle, in which
OTUs classified as belonging to these same genera were linked to
High-RFI (Lopes et al., 2021). Species from the genus Prevotella
have a major role in the digestion of complex polysaccharides,
such as cellulose and hemicellulose, and have been identified as
abundant in both spectra of feed efficiency in cattle (Carberry
et al., 2012; Hernandez-Sanabria et al., 2012; Myer et al., 2015),
suggesting that the effect of Prevotella in the feed efficiency
phenotype in cattle is species-specific (Perea et al., 2017).

Succinivibrio dextrinosolvens, the only representative species
of the Succinivibrio genus, presented an increased relative
abundance in the rumen fluid of High-RFI Hereford ×
Aberdeen Angus steers (Hernandez-Sanabria et al., 2012) and
Nelore (Lopes et al., 2021). This species is usually abundant in
animals fed with high starch diets (O’Herrin and Kenealy, 1993)
and produces formate and SCFA, such as acetate and succinate
(Russell and Hespell, 1981). Formate can be reduced to CO2, H2,
and CH4 by the action of rumen methanogens (Lovley et al.,
1984), which can lead to a significant loss of feed energy and,
consequently, a reduced feed efficiency.

The Christensenellaceae (gut group R-7) produces acetate and
butyrate as fermentation end products in the rumen and was
identified as dominant in the ileum of high-feed conversion rate
(FCR) pigs (Quan et al., 2018). This taxon was also associated
with methane emission in Holstein cows (Ramayo-Caldas et al.,
2020) a phenotype that can negatively influence feed efficiency
(Hegarty et al., 2007). Interestingly, contrary to our results with
the rumen microbiome, the family Christensenellaceae was
linked to Low-RFI in the stool microbiome of Angus steers
(Welch et al., 2021).

Regarding the stool environment, the only bacterial ASV
associated with High-RFI was classified as belonging to the
Ruminococcaceae UCG-005 genus-level cluster. Although the
family Ruminococcaceae is highly abundant in the stool
microbiome of ruminants (Andrade et al., 2020; Dai et al.,
2021), there is limited literature exploring the relationship
between members of this microbiome and feed efficiency
phenotypes in ruminants. Nonetheless, members of this family

were correlated with the FCR trait in pigs (McCormack et al.,
2017; Aliakbari et al., 2021).

The Potential of Rikenellaceae (Gut Group
RC9) as a Biomarker for Feed Efficiency
The ASVs abundancy associated with an increase of the feed
efficiency trait in both rumen and stool environments were
taxonomically classified as belonging to the Rikenellaceae (gut
group RC9). The Rikenellaceae (gut group RC9), as other
members of the Rikenellaceae family, can produce different
SCFAs, such as propionate, acetate, and succinate, some with
anti-inflammatory properties (Tedelind et al., 2007; Parada
Venegas et al., 2019). Gut microbes associated with anti-
inflammatory effects have been linked to gut health and with
feed-efficient pigs, as inflammation may redirect feed energy that,
otherwise, could be used for host growth and weight gain
(Gardiner et al., 2020).

Besides, Welch et al. (2021) hypothesized that the link between
highly feed-efficient animals and stool bacteria belonging to the
Rikenellaceae family resides in the abundance of
glycosaminoglycans present in their hindgut, as individuals
from this family can use mucin as carbon and energy sources
(Bomar et al., 2011), they could metabolize and have a
competitive edge over other bacteria. Although this area is still
in its infancy, recent studies have linked OTUs classified as
belonging to this gut group, or to a lower taxonomic level
such as the Rikenellaceae family. Species from this family have
been linked to Low-RFI in the rumen of Nelore steers and in the
stool microbiome of Angus steers, being also linked to Low-FCR
in the stool microbiome of pigs (Quan et al., 2018; Lopes et al.,
2021; Welch et al., 2021). Altogether, these results indicate a role
of this specific taxon on this phenotype and suggest it as an RFI
biomarker for highly efficient animals.

The GIT is a continuous and interconnected system, but the
knowledge regarding the stool microbiome in ruminants is limited
compared to the rumenmicrobiome for obvious reasons; however,
it is a non-invasive sample that might represent a proxy for the
rumen environment (Andrade et al., 2020). Nonetheless,
identifying biomarkers for important production phenotypes in
stool is advantageous as the sampling is less stressful and can be
implemented in the animal routine. Understanding the biology of
specific microorganisms that contribute to complex phenotypes
may help to develop successful interventions for methane
mitigation and feed efficiency improvement in bovines. Still,
additional experiments have to be performed to assess the
potential biomarkers identified in this study.

CONCLUSION

The feed composition induced significant differences in both
abundance and richness of ruminal and stool microbial
populations in ruminants of the Nelore breed. The dietary
treatment based on industrial by-products applied to one of
our experimental groups influenced the microbiome diversity
of bacteria and archaea but not of protozoa. ASVs were
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associated with RCH4 emission and RFI in ruminal and stool
microbiomes. While ruminal ASVs are expected to influence
CH4 emission and feed efficiency, the relationship of stool taxa
with these traits might be associated with host health, through
their link to anti-inflammatory compounds. Overall, the ASVs
identified have the potential to be used as biomarkers for these
complex phenotypes.
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