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Acute myocardial infarction (AMI) is a leading cause of death and disability worldwide. Early
diagnosis of AMI and interventional treatment can significantly reduce myocardial damage.
However, owing to limitations in sensitivity and specificity, existingmyocardial markers are not
efficient for early identification of AMI. Transcriptome-wide association studies (TWASs) have
shown excellent performance in identifying significant gene–trait associations and several
cardiovascular diseases (CVDs). Furthermore, ferroptosis is a major driver of ischaemic injury
in the heart. However, its specific regulatory mechanisms remain unclear. In this study, we
screened three Gene Expression Omnibus (GEO) datasets of peripheral blood samples to
assess the efficiency of ferroptosis-related genes (FRGs) for early diagnosis of AMI. To the
best of our knowledge, for the first time, TWAS andmRNA expression datawere integrated in
this study to identify 11 FRGs specifically expressed in the peripheral blood of patients with
AMI. Subsequently, using multiple machine learning algorithms, an optimal prediction model
for AMI was constructed, which demonstrated satisfactory diagnostic efficiency in the training
cohort (area under the curve (AUC) = 0.794) and two external validation cohorts (AUC= 0.745
and 0.711). Our study suggests that FRGs are involved in the progression of AMI, thus
providing a new direction for early diagnosis, and offers potential molecular targets for optimal
treatment of AMI.
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INTRODUCTION

Acute myocardial infarction (AMI), a myocardial damage event caused by the rupture of
atherosclerotic plaque, is a leading cause of death and disability worldwide (Murray et al., 2015;
Mozaffarian et al., 2016). Early diagnosis of AMI and interventional treatment can significantly
reduce myocardial damage, improve prognosis and reduce mortality (Braunwald, 2012). Although
the evaluation of existing myocardial markers is one of the gold-standard techniques for diagnosing
AMI, these markers cannot accurately identify patients with AMI owing to limitations in sensitivity
and specificity, resulting in a missed opportunity for optimal treatment (Braunwald, 2012).
Therefore, it is necessary to identify novel biomarkers for early diagnosis of AMI, thus reducing
mortality and improving prognosis.
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Increasing evidence suggests that genetic factors play an
important role in the progression of AMI (O’Donnell and
Nabel, 2011; Kessler et al., 2013). To date, genome-wide
association studies (GWASs) have identified a large number
of susceptibility loci of AMI. However, the results of GWASs fail
to reveal the relative risk of AMI, and only a small proportion of
locus alterations can explain the pathogenesis and progression
of AMI (Deloukas et al., 2013; Nikpay et al., 2015).
Transcriptome-wide association studies (TWASs) can be used
to integrate GWAS data with gene expression data to identify
significant gene–trait associations (Gusev et al., 2016) and have
demonstrated excellent performance in identifying
cardiovascular diseases (CVDs) based on
CARDIoGRAMplusC4D consortium’s GWAS data on CVDs
(Deloukas et al., 2013; Thériault et al., 2018; Zhang et al., 2019).

Ferroptosis is an iron-dependent programmed cell death
characterised by the excessive accumulation of lipid
hydroperoxide, culminating in overwhelming lipid
peroxidation and eventually leading to death (Xie et al., 2016;
Stockwell et al., 2017). Numerous studies have reported that
induction of ferroptosis in cancer cells has emerged as a
promising alternative to tumour therapy, especially in
malignancies that are resistant to conventional treatment
(Hassannia et al., 2019; Liang et al., 2019). Furthermore,
recent studies have suggested that ferroptosis is a major driver
of ischaemic injury in the heart (Gao et al., 2015; Stockwell et al.,
2017). However, the specific regulatory mechanisms of
ferroptosis in the cardiovascular system remain unclear and
require further investigation.

In this study, the results of TWAS and messenger RNA
(mRNA) expression profiles of patients with AMI were
integrated to identify feature genes expressed in peripheral
blood samples. Subsequently, ferroptosis-related genes (FRGs)
were identified by comparing the obtained FRG expression data.
Finally, a robust prediction model for identifying patients with

AMI was constructed using multiple machine learning
algorithms and validated in two independent AMI cohorts,
thus providing new ideas and tools for early diagnosis of AMI.

RESULTS

Identification of Feature Genes in the
Peripheral Blood of Patients With AMI Using
TWAS
After comparing the peripheral blood data fromGenotype-Tissue
Expression (GTEx) with large-scale GWAS data from
CARDIoGRAMplusC4D for CVDs using TWAS, we identified
1,079 feature genes in the peripheral blood of patients with CVD
(TWAS, p < 0.05). The top 20 identified AMI-related genes in
peripheral blood are listed in Table 1, and detailed results are
provided in Supplementary Table S1.

Identification of Differentially Expressed
Genes and Functional Enrichment Analyses
in the Peripheral Blood of Patients With AMI
Subsequent differential analysis was performed to identify
differentially expressed genes (DEGs) in the peripheral blood
samples of AMI patients and healthy controls. A threshold of fold
change (FC) > 1 and p < 0.05 was set to avoid omission. A total of
3,324 DEGs were identified; of which, 1755 were up-regulated
and DEGs were down-regulated (Figure 1A). Principal
component analysis (PCA) revealed that these DEGs allowed
differentiation between AMI samples and healthy controls
(Figure 1B).

To further investigate the pathophysiological functions of
these DEGs, Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) and (DO) enrichment analyses

TABLE 1 | The top 20 candidate genes identified by TWAS for AMI.

ID Chromosome BEST.GWAS.ID BEST.GWAS.Z TWAS.Z TWAS.P Comparative tissue

PSRC1 1 rs7528419 −8.028 −6.442171 1.18E-10 Whole Blood
CARF 2 rs6722332 7.38 −6.33E+00 2.41E-10 Whole Blood
RP11-378J18.8 1 rs17163358 −6.711 −5.852904 4.83E-09 Whole Blood
GGCX 2 rs1561198 6.06 5.73E+00 1.01E-08 Whole Blood
POC1B 12 rs2681472 5.81 −5.71972 1.07E-08 Whole Blood
IL6R 1 rs4845618 5.284 5.388914 7.09E-08 Whole Blood
SH2B3 12 rs653178 6.66 5.33521 9.54E-08 Whole Blood
FAM177B 1 rs17163358 −6.711 5.269907 1.36E-07 Whole Blood
TAF1A 1 rs17163358 −6.711 5.266864 1.39E-07 Whole Blood
BSND 1 rs11591147 −5.173 5.15595 2.52E-07 Whole Blood
UBE2Q1 1 rs4845618 5.284 5.015 5.30E-07 Whole Blood
RP11–422P24.10 1 rs4845618 5.284 −4.984054 6.23E-07 Whole Blood
CDKN2A 9 rs4977574 18.33 −4.94884 7.47E-07 Whole Blood
SRD5A3-AS1 4 rs11945371 −3.16 −4.911178 9.05E-07 Whole Blood
FES 15 rs8039305 5.36 −4.77814 1.77E-06 Whole Blood
RP11-37E23.5 13 rs7328733 −4.91 4.7098 2.48E-06 Whole Blood
MIA3 1 rs17163358 −6.711 4.631167 3.64E-06 Whole Blood
HIC1 17 rs2760740 4.83 −4.62824 3.69E-06 Whole Blood
SREBF1 17 rs16960744 4.57 −4.5888 4.46E-06 Whole Blood
IP6K2 3 rs34759087 −4.52 4.56636 4.96E-06 Whole Blood
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were performed using clusterProfiler. GO analysis revealed that
the DEGs were mainly involved in T cell activation, lymphocyte
differentiation and adhesion and immune response (Figure 1C).
According to KEGG analysis, the DEGs were involved in various
classical signalling pathways, including transforming growth
factor-beta (TGF-β), mammalian target of rapamycin (mTOR),
tumour necrosis factor (TNF), forkhead box O3 (FoxO) and
chemokine signalling pathways. In addition, they were also
involved in the regulation of T and B cell activity and
apoptosis (Figure 1D). Furthermore, DO analysis revealed the
enrichment of DEGs in several CVDs, including atherosclerosis,

coronary artery disease (CAD) and myocardial infarction
(Figure 1E). These results confirmed a high correlation
between DEGs and AMI and that DEGs mainly regulated
immune cell activity and apoptosis.

Identification of FRGs Specifically
Expressed in the Peripheral Blood of
Patients With AMI
Significant gene expression–trait associations were identified
using TWAS; therefore, we integrated the results of TWAS
and differential analyses and intersected them with the
obtained FRGs. Consequently, 11 FRGs were obtained in the
peripheral blood samples of patients with AMI (Figure 2A). In
addition, PCA revealed that these genes could well differentiate
between AMI samples and healthy controls (Figure 2B).
Furthermore, a heatmap was created to visualise significant
differences in the expression of these genes between AMI
samples and healthy controls (Figure 2C). The expression of
lymphoid-specific helicase (HELLS), high-mobility group box 1
(HMGB1), interferon-gamma gene (IFNG), sterol carrier protein
2 (SCP2), sorting nexin 4 (SNX4) and voltage-dependent anion
channel 3 (VDAC3) was significantly low, whereas that of
glucose-6-phosphate dehydrogenase (G6PD), mitogen-
activated protein kinase 3 (MAPK3), mucin 1 (MUC1),
NADPH oxidase-1 (NOX1) and WD repeat domain
phosphoinositide-interacting protein 2 (WIPI2) was
significantly high in AMI samples (Figure 2D). A
protein–protein interaction (PPI) network of these 11 genes
was constructed using the String database, which revealed
MAPK3 and HMGB1 as the hub genes (Figure 2E). In
addition, the correlation network revealed a significant
correlation pair between the 11 genes (Figure 2F).

Construction and Validation of an Optimal
Ferroptosis-Related AMI Prediction Model
Four proven machine learning algorithms (least absolute
shrinkage and selection operator [LASSO], random forest and
boruta [RFB], support vector machine [SVM] and extreme
gradient boosting [XGBoost]) were used to identify key
ferroptosis-related features in the training cohort, yielding 4,
9, 11 and 11 genes, respectively (Figure 3). Furthermore, three
key genes (MAPK3, WIPI2 and VDAC3) shared by the four
algorithms were selected as FRGs to build a prediction model
(Figure 4A). Subsequently, we assessed the efficiency of the four
supervised machine learning algorithms (logistic regression
[LR], random forest [RF], SVM and XGBoost) using receiver
operating characteristic (ROC) curves based on five-fold cross-
validation (Figure 4B). Classifiers trained on three key FRGs
were found to differentiate well among patients with AMI (LR,
AUC = 0.794; RF, AUC = 0.743; SVM, AUC = 0.759; Xgboost,
AUC = 0.666, Figure 4C). Notably, the LR model exhibited the
highest AUC. The performance of the four algorithms was
subsequently evaluated in detail, and the results are presented
in Table 2. The LR model had the highest Kolmogorov–Smirnov
(KS) value, demonstrating a high efficiency in differentiating

FIGURE 1 | Identification of DEGs and functional enrichment in AMI. (A)
A volcano plot showing DEGs in AMI samples and healthy controls (p < 0.05).
The up-regulated genes are marked in red, and the down-regulated genes are
marked in blue; (B) PCA of DEGs showing good differentiation power;
(C) GO biological process enrichment analysis of DEGs; (D) KEGG
enrichment analysis of DEGs; (E) DO enrichment analysis of DEGs.
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between AMI samples and healthy controls (KS = 0.519). In
addition, the LR model had the best accuracy (accuracy = 0.692).
However, because AMI is a severe acute disease, patients with
AMI need to be identified more accurately; therefore, recall is
equally important. Satisfactorily, the LR model also had the
highest recall (recall = 0.75).

Therefore, we hypothesized that LR may serve as the best
prediction model. The predictive efficiency was validated by
applying the LR model to two external cohorts. The ROC
curves exhibited satisfactory efficiency of the model with an
AUC value of 0.745 in the GSE29532 dataset and 0.711 in the
GSE34198 dataset (Figure 4D). In addition, a confusion matrix

FIGURE 2 | Identification of FRGs specifically expressed in the peripheral blood of patients with AMI. (A) A Venn diagram showing the intersection of TWAS results,
DEGs and obtained FRGs, wherein 11 shared FRGs were identified; (B) PCA of FRGs showing good differentiation power; (C) A heatmap showing the transcriptional
profiles of FRGs in AMI samples and healthy controls; (D) Box plots showing differential expressions of FRGs in AMI samples and healthy controls. Wilcoxon test; *p <
0.05, **p < 0.01, ***p < 0.001; (E) PPI network of FRGs; (F) Correlation network of FRGs.
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was used to visualise the efficiency of the classification model
(Figure 4E). Notably, the classifier exhibited satisfactory
efficiency in the GSE29532 dataset, and all patients with AMI
were correctly identified, with only six healthy individuals being
misidentified as patients with AMI. However, the small number
of healthy controls in this dataset might have created a bias in
assessing the efficiency of the classifier. Moreover, in the
GSE34198 dataset, the classifier exhibited good efficiency and
correctly identified 31 patients with AMI and 33 healthy
individuals; however, 18 patients with AMI were incorrectly
identified as healthy individuals. Considering the accurate
predictive efficacy of the LR model, a nomogram was
constructed to estimate the odds ratio of AMI more clearly
(Figure 5A). According to the calibration curve and hosmer-
lemeshow test (p > 0.05), the nomogram was accurate and robust
(Figure 5B).

DISCUSSION

AMI, a common and highly prevalent CAD worldwide, can cause
malignant arrhythmias and heart failure, resulting in high
mortality and disability (Roger et al., 2012; Mozaffarian et al.,
2016). Advancements in thrombolytic and interventional
techniques have significantly improved the prognosis of

patients with AMI. However, owing to the low specificity and
sensitivity of existing myocardial markers, a large proportion of
patients fail to receive prompt treatment, resulting in irreversible
myocardial damage and the eventual occurrence of heart failure
and arrhythmias (Braunwald, 2012; Eapen et al., 2012). Early
diagnosis can be effective in improving the prognosis and
reducing the mortality of patients with AMI. Therefore, it is
essential to identify effective diagnostic biomarkers and develop
diagnostic models for AMI.

In this study, we systematically screened for FRGs specifically
expressed in the peripheral blood of patients with AMI and build a
stable AMI diagnostic model integrating three key ferroptosis-
related markers (MAPK3, WIPI2 and VDAC3) using multiple
machine learning algorithms. In addition, the predictive efficiency
of the diagnostic model was evaluated in two external cohorts.

To develop a robust diagnostic model for AMI, TWAS was
initially performed using large-scale GWAS data on AMI to
identify feature genes in the peripheral blood of patients with
AMI. Subsequent differential analysis of mRNA expression
profiles identified 3,324 DEGs. Furthermore, functional
annotation identified the primary involvement of DEGs in
immune response and multiple classical signalling regulatory
pathways, including TGF-β, mTOR, TNF, FoxO and
chemokine signalling pathways, suggesting that the main
biological processes involved in the progression of AMI are

FIGURE 3 | Key FRGs screened using machine learning algorithms (A) 4 FRGs obtained using the LASSO algorithm based on the minimum lambda; (B) 9 FRGs
obtained using the RFB algorithm; (C) 11 FRGs obtained using the SVM algorithm; (D) 11 FRGs obtained using the XGBoost algorithm.

TABLE 2 | Comparison of the diagnostic efficacy of four different machine learning models.

Model TP TN FP FN Precision Recall F1 score Accuracy KS Error

LR 24 13 7 8 0.774193548 0.75 0.761904762 0.692307692 0.5192012 0.307692308
RF 24 12 7 9 0.774193548 0.727272727 0.75 0.673076923 0.4270353 0.326923077
SVM 24 11 7 10 0.774193548 0.705882353 0.738461538 0.692307692 0.4270353 0.307692308
Xgboost 24 12 7 9 0.774193548 0.727272727 0.75 0.461538462 0.4746544 0.538461538
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inflammatory and immune responses. Moreover, further
enrichment analyses revealed an important role of DEGs in
various CVDs.

Ferroptosis plays a positive regulatory role on immune
function in an inflammatory environment (Wang et al.,
2019; Kapralov et al., 2020). Recent studies have reported
promising applications of ferroptosis in the prevention of
CVDs (Gao et al., 2015; Stockwell et al., 2017; Fang et al.,

2019). Therefore, we considered FRGs as potential
biomarkers and integrated the results of TWAS and DEG
and FRG expression data to screen for FRGs in the
peripheral blood of patients with AMI. For clinical
convenience and cost reduction, we used four machine
learning algorithms (LASSO, RFB, SVM and XGBoost)
and eventually proposed a diagnostic model comprising
three FRGs (MAPK3, WIPI2, and VDAC3). MAPK3 plays

FIGURE 4 | Construction and validation of a ferroptosis-related AMI prediction model. (A) Screening of three key FRGs in the GSE48060 dataset using four
machine learning algorithms; (B) Schematic diagram of training and validation of a stable classifier in the training cohort using four machine learning algorithms based on
five-fold cross-validation; (C) ROC curves of four predictors based on cross-validation in the training cohort; (D)ROC curves for applying the optimal classifier (LR) to two
external validation cohorts; (E) Confusion matrix of the predictors in two external validation cohorts. Left, GSE29532; right, GSE34198.
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a key role in cell differentiation, cell proliferation, stress
response and apoptosis when the heart receives
pathophysiological stimuli (Purcell et al., 2007; Gutkind
and Offermanns, 2009; Lorenz et al., 2009). It has been
suggested that MAPK3 induces cardiac hypertrophy in
response to pathological injury in the heart (Purcell et al.,
2007; Lorenz et al., 2009; Kehat and Molkentin, 2010).
Furthermore, another study has demonstrated that
MAPK3 downregulation leads to apoptosis in cardiac
myocytes (Liu et al., 2018). These studies suggest that
MAPK3 expression increases in the presence of
myocardial ischaemia, exerting a protective effect to
inhibit apoptosis and hence maintaining normal ejection
function through compensatory hypertrophy (Lorenz et al.,
2009; Gartz et al., 2018; Deng et al., 2021). However, over-
activated MAPK3 can lead to dilated cardiomyopathy and
heart failure (Huby et al., 2016). Our study showed
increased MAPK3 expression in patients with AMI, thus
providing a basis for early diagnosis. However, considering
the adverse impact of MAPK3, new molecular therapeutic
strategies should also be developed. WIPI2 is a key protein
that promotes the growth and elongation of
autophagosomes and mainly regulates autophagy in cells.
Therefore, degradation of WIPI2 can effectively inhibit
autophagy (Wan et al., 2018; Lu et al., 2019; Wan and
Liu, 2019). Previous studies have suggested that activating
autophagy plays a cardioprotective role in cases of
myocardial ischaemia. However, sustained autophagy can
also lead to heart failure (Nishida et al., 2009; Sciarretta
et al., 2018). The functional role of autophagy in cardiac
ischaemia/reperfusion is complex, and targeting autophagy
has been suggested as a potential therapy for myocardial
injury (Delbridge et al., 2017). To the best of our knowledge,
the present study is the first to report that WIPI2 is highly
expressed in AMI, thus providing novel insights into the role
of autophagy and pharmacological intervention in
myocardial ischaemia. Furthermore, VDAC3 is mainly

found in the mitochondrial outer membrane and is
responsible for transporting low-molecular-weight
metabolites. Therefore, mitochondrial dysfunction due to
VDAC3 alterations can lead to apoptosis and several
diseases (Reina et al., 2016; Karachitos et al., 2017; Chin
et al., 2018). Consistent with our study, several studies have
reported a decrease in VDAC3 expression after the
treatment of cerebral ischaemia (Yao et al., 2018),
suggesting that VDAC3 prevents mitochondrial damage
and improves tissue function after ischaemia. Therefore,
VDAC3 may also be a potential therapeutic target for AMI
and requires further investigation.

Machine learning has a wide range of applications in
biomedicine and exhibits excellent efficiency in clinical
diagnosis and optimal treatment (Rajkomar et al., 2019;
Do and Le, 2020; Goecks et al., 2020; Le et al., 2021). In
this study, the predictive power of four machine learning
classifiers (LR, RF, SVM and XGBoost) was evaluated to
build a stable LR-based AMI prediction model, which
showed excellent predictive power in the training cohort
(AUC = 0.794, accuracy = 0.692). Furthermore, the
prediction model exhibited good efficiency in two external
validation cohorts (AUC = 0.745 and 0.711), providing new
insights into early and rapid diagnosis of AMI. Chen et al.
also developed a RF diagnostic model of AMI, the AUC value
is 0.855 (train set) and 0.731 (test set) (Yifan et al., 2021).
Fang et al. developed a SVM diagnostic model of AMI, the
AUC value is 0.860 (train set) and 0.921 (test set) (Fang et al.,
2020). Compared with two previous studies, our model
showed satisfactory accuracy in both two external
validation data, suggested that our model was more robust
and universal. However, limited by the small sample size, the
prediction model did not have satisfactory accuracy and
recall in the external validation cohort, which led to
misdiagnosis and missed diagnoses. Therefore, larger AMI
cohorts can better train a diagnostic model to improve the
prediction accuracy.

FIGURE 5 | Construction of the nomogram based on the logistic regression model. (A) Nomogram specifically quantified the odds ratio of AMI based on 3
ferroptosis characteristics. (B) The calibration curves of nomogram.
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MATERIALS AND METHODS

Data Acquisition
The mRNA expression profiles of patients with AMI were
obtained from three GEO databases, namely, GSE48060,
GSE29532 and GSE34198. Samples for all three datasets
were collected from the peripheral blood of patients with
AMI. The GSE48060 dataset (Suresh et al., 2014), which was
generated using platform GPL570, was used as the training
cohort for variable screening and model training. The
GSE29532 and GSE34198 datasets, from platforms
GPL5175 and GPL6102, respectively (Silbiger et al., 2013),
served as external validation datasets of the model to avoid
batch effects. All datasets were log2 normalised.

In addition, large-scale GWAS data on CAD were obtained
from CARDIoGRAMplusC4D, including 60,801 clinical
cases and 123,504 controls from 48 GWAS meta-analyses
of CAD (Nikpay et al., 2015; Luo et al., 2019). The selected
cases that belonged to the MI subgroup constituted
approximately 70% of the total number of cases. Refer to
the original study (Nikpay et al., 2015) for specific
information on the dataset.

TWAS Analysis
In this study, the FUSION software was used for performing
TWAS on patients with AMI (Gusev et al., 2016). Briefly, tissue-
specific gene expression was obtained based on GWAS data and
gene expression data using whole-blood gene expression data
from the GTEx consortium as reference weights. Subsequently,
the imputed gene expression was correlated with traits to evaluate
the association of each gene with a given disease. Furthermore,
potential AMI-related genes were screened, with a threshold of
FDR<0.05.

Identification of DEGs and Functional
Enrichment Analyses
In this study, differential expression analysis was performed using
the R package “limma”. To avoid omission, DEGs were screened
at a threshold of p < 0.05, and the efficiency of DEGs was
evaluated via PCA. Subsequently, functional enrichment
analyses of DEGs, including GO, KEGG and DO, were
performed using the R package “clusterProfiler” (Yu et al.,
2012), pathways with FDR <0.05 were considered significant.

Identification of Differential FRGs
FRGs were obtained from the FerrDb database (Zhou and Bao,
2020) (http://zhounan.org/ferrdb) and previous studies
(Stockwell et al., 2017; Hassannia et al., 2019; Doll et al., 2019;
Bersuker et al., 2019). Supplementary Table S1 enlists the FRGs
included in this study. The intersection genes of TWAS, DEGs
and FRGs were considered FRGs specifically expressed in the
peripheral blood of patients with AMI and were used for further
analysis. Subsequently, a PPI network of the FRGs was
constructed using the String database (http://string-db.org/)
(Szklarczyk et al., 2015). The correlation among FRGs was

assessed using Pearson correlation coefficient, and Cytoscape
(version 3.7.1) was used to visualise the correlation network.

Robust Predictive Model Built Using
Multiple Machine Learning Methods
The R packages glmnet, rms, e1071, randomForest, Boruta and
XGBoost were used to build a machine learning model (Sauerbrei
et al., 2007; Kim, 2014; Li et al., 2019; Yperman et al., 2020). First,
LASSO regression (nfold = 5, type. measure = “class”), SVM
(number = 20), RFB (doTrace = 2, ntree = 1,000, maxRuns = 100),
and XGBoost (max_depth = 2, eta = 1, silent = 1, nround = 25)
analyses were performed on the entire dataset to screen for key
FRGs. Consequently, the intersection genes obtained via analyses
were considered the key FRGs associated with AMI and were used
to further construct and train a prediction model. Subsequently,
the efficiency of the prediction model was assessed via five-fold
cross-validation in the dataset. Specifically, the GSE48060 dataset
was divided into five equal parts, wherein 4/5 of the training data
was used to train the prediction model. Subsequently, the trained
model was applied to the remaining 1/5 of the training data for
prediction. We integrated prediction results from the five
iterations and evaluated the efficiency of the classifier by
plotting ROC curves and using a confusion matrix. Eventually,
we considered LR as an optimal classifier to build a prediction
model for AMI and applied it to two external validation cohorts
to assess the generalisation ability.
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