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Adverse Childhood Experiences are stressful and traumatic events occurring before the
age of eighteen shown to cause mental and physical health problems, including increased
risk of obesity. Obesity remains an ongoing national challenge with no predicted solution.
We examine a subset of the Healthy Nevada Project, focusing on a multi-ethnic cohort of
15,886 sequenced participants with recalled adverse childhood events, to study how
ACEs and their genotype-environment interactions affect BMI. Specifically, the Healthy
Nevada Project participants sequenced by the Helix Exome+ platform were cross-
referenced to their electronic medical records and social health determinants
questionnaire to identify: 1) the effect of ACEs on BMI in the absence of genetics; 2)
the effect of genotype-environment interactions on BMI; 3) how these gene-environment
interactions differ from standard genetic associations of BMI. The study found very strong
significant associations between the number of adverse childhood experiences and adult
obesity. Additionally, we identified fifty-five common and rare variants that exhibited gene-
interaction effects including three variants in the CAMK1D gene and four variants in LHPP;
both genes are linked to schizophrenia. Surprisingly, none of the variants identified with
interactive effects were in canonical obesity-related genes. Here we show the delicate
balance between genes and environment, and how the two strongly influence each other.
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INTRODUCTION

Childhood trauma and adversity has long been linked with a greater risk of negative adult
health outcomes (Felitti et al., 1998; McCrory et al., 2011; Merrick et al., 2019; Jones et al., 2020;
Park et al., 2020). Adverse Childhood Experiences or Events (ACEs) are defined as traumatic
events and unsafe environments occurring in children before the age of 18 (Felitti et al., 1998).
The original ACE questionnaire and scoring protocol contains ten Yes/No questions that
examine the incidence of emotional, physical, sexual maltreatment, neglect, substance abuse
within the household, mental illness in the household, violence, and incarceration of a
household member (Felitti et al., 1998).

ACEs range across several of the Social Determinants of Health (SDOH) categories as defined by
the Center for Disease Control (CDC), including safe housing, violence, education, income, access to
(nutritious) food; all SDOH factors have been shown to have profound impact on individuals’
physical health and quality of life. Numerous national studies indicate the seriousness and incidence
of ACEs with prevalence as high as 63.6% of adults experiencing at least one ACE and 16%

Edited by:
Lindsay Fernandez-Rhodes,

The Pennsylvania State University
(PSU), United States

Reviewed by:
Cristin McArdle,

The Pennsylvania State University
(PSU), United States

Sarah JC Craig,
The Pennsylvania State University

(PSU), United States

*Correspondence:
Joseph J. Grzymski

joeg@dri.edu

Specialty section:
This article was submitted to

Applied Genetic Epidemiology,
a section of the journal
Frontiers in Genetics

Received: 17 November 2021
Accepted: 04 February 2022
Published: 07 March 2022

Citation:
Schlauch KA, Read RW, Neveux I,
Lipp B, Slonim A and Grzymski JJ

(2022) The Impact of ACEs on BMI: An
Investigation of the Genotype-
Environment Effects of BMI.
Front. Genet. 13:816660.

doi: 10.3389/fgene.2022.816660

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8166601

ORIGINAL RESEARCH
published: 07 March 2022

doi: 10.3389/fgene.2022.816660

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.816660&domain=pdf&date_stamp=2022-03-07
https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.816660/full
http://creativecommons.org/licenses/by/4.0/
mailto:joeg@dri.edu
https://doi.org/10.3389/fgene.2022.816660
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.816660


experiencing at least four ACEs; the CDC reports that at least five
of the top ten leading causes of death are associated with ACEs
(Merrick et al., 2019; Jones et al., 2020; Park et al., 2020).

Obesity is another challenge for North America (TFAH,
2020). Approximately 70% of adults in the US are considered
overweight (BMI ≥ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), which
causes yearly increases in health care expenses (Ward et al., 2021).
Each one-unit increase in BMI can increase the cost of healthcare
by $253 per patient each year, and those obese individuals have an
overall excess healthcare cost of $1,861 per patient per year (Ward
et al., 2021). In Nevada, the adult obesity rate is between 30 and
35% (TFAH, 2020). The general rate of obesity is higher in low-
to-middle income countries than in high-income countries,
highlighting an association of lower income with higher BMI
(Levine, 2011; Kim et al., 2018).

There are a number of known environmental and genetic links
to obesity. More specifically, associations between ACEs and
adult obesity are substantiated by several studies (Felitti et al.,
1998; Danese and Tan, 2014; Shields et al., 2016; Merrick et al.,
2019; Jones et al., 2020; Wiss and Brewerton, 2020): individuals
who report at least one ACE are at a much higher risk of
becoming overweight and suffering from adult obesity
(Fuemmeler et al., 2009; Davis et al., 2019; Gardner et al.,
2019). The California Women’s Health Study found that obese
women were 27% more likely to report sexual or physical
childhood abuse (Alvarez et al., 2007). In the original ACE
cohort studied by Felitti, participants who experienced more
than three ACEs had 1.5-fold risk for severe obesity (BMI ≥
35 kg/m2) in adulthood (Felitti et al., 1998); in a more recent
study, adults who recalled four or more ACEs were 1.9 times as
likely to be severely obese (Anda et al., 2006). Although all
mechanisms relating ACEs and obesity are unknown, the most
frequently cited in published studies include social disruption,
chronic stress, mental health, and socioeconomic status (Wiss
and Brewerton, 2020), whereas others include stress-induced
overeating, sleep issues, and changes in the gut microbiome
(Vámosi et al., 2010; Miller and Lumeng, 2018; Tomiyama, 2019).

Genetic links with obesity have also been well established, and
most genetic associations include a “standard” set of obesity-
related genes and common variants (Frayling et al., 2007; Scuteri
et al., 2007; Loos et al., 2008; Song et al., 2008; Willer et al., 2009;
Speliotes et al., 2010; Graff et al., 2013; Namjou et al., 2013; Locke
et al., 2015; Rask-Andersen et al., 2017; Iepsen et al., 2018;
Sahibdeen et al., 2018; Yengo et al., 2018; Schlauch et al.,
2019, 2020; Akbari et al., 2021; Chalazan et al., 2021; Loos and
Yeo, 2021). Yet even with large sample sizes, the genetic effects
from some of the most recent studies have only been able to
explain a small portion of BMI variance, approximately 6%
(Yengo et al., 2018; Loos and Yeo, 2021). Here we study how
the effects of both genetics and Social Determinants of Health are
linked to BMI. While we focus on the impact of ACEs on BMI, we
also consider smoking, alcohol consumption, and education as
possible influential environmental exposures.

The Healthy Nevada Project (HNP), is an all-comers
population health study that was formed in 2016 (Read et al.,
2019, 2021; Cirulli et al., 2020; Grzymski et al., 2020; Schlauch
et al., 2020). As of October 2021, the HNP includes 43,000 whole-

exome sequenced participants who are cross-referenced with up
to 16 years of Electronic Health Records (EHR). Additionally,
17,839 participants have responded to a voluntary, retrospective
ACEs survey, providing a unique basis to study clinical,
sociodemographic, and genetic drivers of BMI.

In this study, we examine links between ACEs and BMI in
the HNP cohort. We first establish the profound association
between ACEs and BMI in the absence of genetics. We then
explore the genome-wide-environment interactions of BMI
with ACEs using approximately five million rare and common
variants. This genome-wide environment interaction study
(GWEIS) examines the genotype-environment (GxE) effect of
each variant independently, enabling the detection of variants
that cause participants with different genotypes to react
differently across ACE exposures in terms of BMI. Many of
these variants do not associate with BMI levels in a gene-only
GWAS, and therefore would not be used in a standard two-
step genotype-environment study examining only significant
variants of interest.

Most readily available long-term treatments of obesity are not
successful, making prevention an essential key to overcoming the
disease (LeBlanc et al., 2011; Montesi et al., 2016). Knowledge of
potential risk factors, such as ACEs and their modification,
becomes an important aspect of disease prevention.

METHODS

Data Disclosure Statement
In order to minimize unintentional sharing of information that
can be used to re-identify private information, a subset of the
phenotype data used in this study is available at https://datadryad.
org/. Additionally, included are summary statistics of results that
support the study’s findings. Please see the Data Availability
Statement below.

IRB and Informed Consent
This study was conducted under a human subject protocol
approved by the University of Nevada Institutional Review
Board under project #1106618-15. Participants in the Healthy
Nevada Project undergo written and informed consent to having
genetic information associated with electronic health information
(EHR) in a deidentified manner. Inclusion criteria are individuals
older than 18 years who can appear in person at an HNP study
location to participate in the education and consent process. A
copy of the consent can be found at https://healthynv.org/about/
consent/. Patient identifiers are not incorporated into the research
EHR: the EHR and genetic data are linked in a separate
environment via a unique identifier as approved by the IRB.

The Renown EHR Database
The Renown Health EHR system was instantiated in 2007 on
the EPIC system (EPIC System Corporation, Verona,
Wisconsin, United States), and contains lab results,
diagnosis codes (ICD9/ICD10), and demographic
information of approximately 1.8 million hospital patient
visits from 2005 to the present date.
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Social Health Determinants Questionnaire
All consenting HNP participants are invited to complete the HNP
social health determinants survey. The survey is voluntary and
confidential bound through an NIH Certificate of Confidentiality.
The survey consists of 103 sociodemographic-related questions
including adverse childhood events (ACEs), other traumatic
events, education, household income, alcohol use, cigarette
use, drug use, and other behavioral patterns. Survey questions
for ACEs closely follow the ten questions described previously
(Felitti et al., 1998; Shonkoff, 2016; Merrick et al., 2019; Jones
et al., 2020). A standard ACE questionnaire and scoring protocol
can be found here: https://www.ncjfcj.org/wp-content/uploads/
2006/10/Finding-Your-Ace-Score.pdf. Although ACEs are the
focus of this study, we also use three other self-reported
sociodemographic factors to use as validation: alcohol use,
cigarette smoking, and education level. The HNP survey was
created on the Survey Monkey platform [www.SurveyMonkey.
com], based on the retrospective recall of each participating
individual.

HNP Cohorts
The HNP is an all-comers population health study located in
Nevada, with targeted recruitment occurring throughout the
state’s urban and rural areas. The project as of October 2021
includes 43,000 participants with a wide range of
sociodemographic characteristics. Each participant has cross-
referenced electronic medical records, and 17,389 also
participated in the HNP Social Health Determinants
Questionnaire. In this research, the main focus lies on 11,880
European HNP participants with both BMI medical records and
self-reported survey responses of adverse childhood events. We
define participants as European based on their genetic admixture
(European admixture >0.85, Other ethnicity admixture <0.1) and
refer to this cohort as HNPEU. Further, all quality control
measures were performed identically on the smaller cohorts:
African American (HNPAA, African admixture > 0.3, East and
South Asian admixture <0.1), and LatinX (HNPLX, North
American admixture > 0.1, East and South Asian admixture
<0.1) cohorts (N = 304, N = 1,774) respectively. These studies are
presented in the Supplementary Materials.

A subcohort of participants suffering from schizophrenia was
extracted from the HNP to test the relationship between
schizophrenia and ACES, as many of top GWEIS hits were
observed in schizophrenia-related genes. Participants with the
diagnosis “Schizophrenia” and/or ICD9 code 295.xx (typically
295.90) or ICD10 code F20.9 were included in the schizophrenia
subcohort (N = 74). Exclusionary criteria for their controls were
Psychological Disorders, ICD9 codes 295-306.99.

Phenotypic Measures
BMI measures for HNP participants were processed as published
previously (Schlauch et al., 2020; Read et al., 2021). Briefly,
multiple records were agglomerated while taking outlying
measures into account. As these processed measures were not
normally distributed, processed BMI values were transformed via
a rank-based inverse normal transformation with the RankNorm
function in R and the offset k = 0.375 that corresponds to the

Blom transform, following other similar studies (Locke et al.,
2015; Rask-Andersen et al., 2017). Raw BMI measures are
presented as kg/m2. Transformed BMI measures are denoted
by BMIT. Both raw and transformed BMI values of HNPEU
participants are presented in Supplementary Table S1.

ACEs as an Environmental Exposure
Adverse childhood events (ACEs) were reported as “Yes” or “No”
for each of ten types of events based on the retrospective recall of
each participating HNP individual. Unanswered questions were
recorded as “NA”. Any participant answering at least one of the
ten ACE questions was included in this study; i.e., participants
were excluded if all ACE questions were left unanswered. Exactly
526 (0.32%) of the questions were missing/blank, stemming from
384 participants, yielding a very small degree of missingness. The
ACE score was computed as the sum of affirmative responses a
participant reported (Gilbert et al., 2015; Park et al., 2020; Tsai
et al., 2020). A participant with two ACEs, for example,
encountered two different types of adverse childhood events at
least one time each by the age of 18. The number of ACEs was
used as a main and interactive effect in linear regression analyses
as a whole number between zero and ten.

Other Environmental Exposures
Available responses for alcohol consumption in the questionnaire
are: “Never”, “Monthly or less”, “2-4 times a month”, “2-3 times a
week”, “4 or more times a week”, and used as factors in linear
regressions. Cigarette smoking was recorded as a whole number
denoting the number of cigarettes smoked per day and used as
such in regression analyses. Education level was collected as one
of these responses: “No High School Diploma”, “High School
Diploma”, “GED”, “Some College”, “Associate Degree”,
“Bachelor’s Degree”, “Graduate Degree”. These seven
responses were used as a seven-element factor in the linear
regression. We use these environmental factors to replicate
other published genotype-environment (GxE) interactions in
Europeans.

Other Statistical Tests
A simple linear regression between the dependent variable BMI
and the independent variable ACEs was performed, with age and
sex as covariates. ACEs were represented as a whole number
between zero and ten. BMI measures were transformed to BMIT
as described above. Fisher exact tests were used to compute and
examine odds ratios between disease case and control groups
(e.g., obesity) as well as ACE case and control groups.

Sequencing
Sequencing was performed at Helix (CLIA #05D2117342, CAP#
9382893) using a proprietary exome platform called Helix
Exome+. This platform combines a medical-grade exome
platform with hundreds of thousands additional genomic
regions of interest, resembling a microarray backbone (Helix,
2019; Cirulli et al., 2020; Read et al., 2021). Full base pair level
coverage histograms demonstrate that more than 90% of the
bases have greater than or equal to 20x coverage for popular
reference panels including ACMG-73. This assay has also been
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validated with high reproducibility using high confidence calls
from the Platinum genomes (Eberle et al., 2017) and the National
Institute of Standards and Technology (NIST) Genome in a Bottle
(GIAB) (Zook et al., 2014). All sequencing reads were aligned to
GRCh38 and variant calls were made using Sentieon (Helix, 2019;
Kendig et al., 2019) following established sequencing-specific
quality control metrics and GATK best practices (Helix, 2019;
Cirulli et al., 2020; Read et al., 2021).

Genotype Annotation
Variants were annotated similar to previous HNP studies (Read
et al., 2021), using dbSNP build 153 (ftp.ncbi.nlm.nih.gov/snp)
and PhenoScanner V2 (Staley et al., 2016; Kamat et al., 2019).
Additionally, the Ensembl Variant Effect Predictor v.101 and
ClinVar were used for functional characterization. Any variant
that was near a gene (within 200 kb base pairs) rather than in it,
was referenced with an asterisk in the tables, following results by
Thorleiffson and Speliotes (Thorleifsson et al., 2009; Speliotes
et al., 2010). Associations not published in these databases are
denoted in this manuscript as “not published to the best of our
knowledge”.

Quality Control Processing of Sequencing
Data
Rare and common variant calls were processed for quality control
similar to previous studies (Anderson et al., 2010;
Panoutsopoulou and Walter, 2018; Cirulli et al., 2020; Read
et al., 2021). Relationship interference was performed using
KING to define first-degree relatives as described previously
(Manichaikul et al., 2010; Read et al., 2021). The relative with
highest genotyping rate was retained in each relative group
(Anderson et al., 2010). Any variants out of Hardy-Weinberg
equilibrium (p < 1 × 10−15) were excluded (Van Hout et al., 2020).
Variants with call rate greater than 90%were deemed high quality
and retained; only individuals with call rates greater than 70%
were included in the analysis (Read et al., 2021). As an additional
quality control metric, variants with less than 10 copies of the
minor allele were removed (Read et al., 2021). This left 4,876,698
variants of high quality in the HNPEU. Variants were not
excluded based on ontology type; i.e., all sequencing ontologies
(i.e. missense, nonsense, synonymous, indels, frameshifts, etc.)
were included. Standard principal component analysis was
applied to pruned variants to correct for any population
substructure. Statistical models were adjusted by the first five
principal components, similar to Read et al., 2021, which yielded a
genomic inflation factor of λ ≤ 1.07 for all models. (Read et al.,
2021).

Genome-wide by Environment Interaction
Study (GWEIS)
Linear regression under the additive genetic model was used to
identify and examine GxE interactions on BMI in the HNPEU
cohort of every individual variant. Here, the variable E represents
ACEs as a whole number between zero and ten. In specific cases

to validate other gene-environment interactions, E represents an
environmental factor as defined above.

BMIT � β0 + βGG + βEE + βGxEGxE + β1age + β2sex + β3bx

+ β4PC1 + β5PC2 + β6PC3 + β7PC4 + β8PC5 + ε

(1)
The GWEIS was performed in PLINK v2.0 using a glm with the
inclusion of an interaction modifier to include genotype ×
covariate interaction terms (Chang et al., 2015). The null
hypothesis H0: βGxE = 0 was tested for each of the five million
high-quality variants. The covariate bx represents the specific
bioinformatic pipeline used for variant calling. Variants of
interest were examined further with lm and glm functions in
R. Results are presented as raw p-values in Supplementary Table
S2. A QQ plot of the results can be found in Supplementary
Figure S1.

GWAS
In the SupplementaryMaterials, we present a GWAS to replicate
previously published genome-wide associations with BMI. A
canonical linear regression equation under the assumption of
the additive genetic model was used:

BMIT � β0 + βGG + β1age + β2sex + β3bx + β4PC1 + β5PC2

+ β6PC3 + β7PC4 + β8PC5 + ε

(2)
Additionally presented in the Supplementary Materials, to
measure the effect of ACEs in the presence of genetics, the
same linear model was used with the inclusion of ACEs as a
covariate:

BMIT � β0 + βEE + β1age + β2sex + β3bx + β4PC1 + β5PC2

+ β6PC3 + β7PC4 + β8PC5 + ε

(3)
Both GWAS were performed using PLINK v2.0 (Chang et al.,
2015). Models of specific variants of interest were examined with
lm and glm functions in R. Results are presented with raw
p-values in Supplementary Tables S3, S4, respectively. QQ
plots for the results of each GWAS can be found in
Supplementary Figures S2, S3.

P-Values and Statistical Significance of
GWAS Replication
All results are reported as raw p-values. A conventional
Bonferroni family-wise error rate control for the significance
level α = 0.05 yields a significance threshold of 1 × 10−8 (0.05/
5,000,000) for five million tested variants. This provides a very
conservative multiple testing correction guide. A second standard
correction method is the Benjamini-Hochberg correction, that,
for Eq. 2 (G-only), yields a false discovery rate (FDR) threshold of
FDR = 4.60 × 10−6 (Benjamini and Hochberg, 1995). Similarly, a
Benjamini-Hochberg FDR threshold for Eq. 3 (G+E) is 6.09 ×
10−7 (Benjamini and Hochberg, 1995).
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Statistical Power of GWAS and GWEIS in
HNPEU
QUANTO (Gauderman, 2002) was used to estimate sample sizes
needed to attain at least 80% statistical power for a range of MAFs
and main genetic effect sizes in (Eq. 2) under the additive genetic
model and a two-sided Type I error at 5% significance in a
standard genome-wide association analysis. Power calculations
are based on normally distributed values; thus, power and effect
sizes were based on BMIT, with µBMIT = 0 and σBMIT = 1. Tests of
association with variants of MAF of 35% or greater were able to
detect effect sizes of 0.04 BMIT units with power of 83.7% using
N = 11,880 participants (Gauderman, 2002). Tests of association
with variants of MAF ≥ 3.5% detected effect sizes of 0.1 BMIT
units with power greater than 80% using N = 11,615 participants.
(The effect size of 0.04 BMIT units represents the change between
29.01 and 29.24 kg/m2 or between 50.16 and 50.91 kg/m2.
Similarly, an effect size of 0.1 BMIT units represents changes
between raw BMI values 16.14 kg/m2 and 16.31 kg/m2; 24.17 kg/
m2 and 24.59 kg/m2; or 33.57 kg/m2 and 34.34 kg/m2. Examples
can be seen in Supplementary Table S1). Power to detect
interactive effect sizes was also performed with QUANTO. As
power calculations for the effect size βGxE depend on the values of
βG and βE (Gauderman, 2002), these calculations were performed
post-hoc. Sample sizes to attain at least 80% statistical power to
detect βGxE values for the 55 variants identified in the GWEIS are
included in Supplementary Table S2, following similar analyses
of Winham, Yang, and Zhao (Yang et al., 2010; Winham and
Biernacka, 2013; Zhao et al., 2016). Statistical power was
computed in the same manner using Quanto for the smaller
cohorts in the Supplementary Materials.

RESULTS

ACEs and Adult Obesity in the HNP
Results of the ACE questionnaire when applied to the HNP
closely followed those of the original Center for Disease Control-
Kaiser Permanente ACE Study (Centers for Disease Control and
Prevention, 2019). The HNP survey recorded that 65.8% adults
experienced at least one type of ACE in childhood, and that 24.1%
have endured four or more different types of ACEs. Table 1

presents the distribution of ACEs in the 15,886 HNP participants
who also have cross-referenced BMI values in the EHR; Table 2
presents the distribution for the European HNP participants.
Supplementary Table S5 further breaks down this distribution
by specific ethnicity. A simple linear regression using only age
and sex as covariates shows that the number of ACEs (zero - ten)
is a statistically significant predictor of BMI in the HNP
irrespective of ethnicity (p << 1 × 10−16). With each 0.37 ACE
encounter, the BMI level of HNP participants increases by 1 kg/
m2 unit. Including ethnicity as a covariate lowers the ACE effect
to 0.35, and the p-value is again notably small (p << 1 × 10−16).
This relationship can be seen in Figure 1 and Supplementary
Table S6. Odds ratios in Table 3 and Table 4 show that
participants who experienced one or more ACEs were
1.5 times more likely to become obese adults and even greater
likelihood of becoming severely obese. Additionally, participants
in any ethnicity with four or more ACEs were more than twice as
likely to become severely obese.

GxE Interactions in Europeans
Using Eq. 1 resulted in 55 variants with evidence of a genome-
wide genotype-ACE interaction effect (p < 1 × 10−5). This is
similar to the suggestive p-value threshold utilized by Wu et al.
and others in GxE studies (Wu et al., 2014; Biernacka et al., 2016;
Dahlin et al., 2020). Results are presented in Figure 2.

Two variants rs12777434 (p-value = 1.24 × 10−7) and
rs71477259 (p-value = 1.73 × 10−7) in CAMK1D showed the
strongest GxE association. BMI levels of individuals with one or
two copies of the minor allele are affected (positively) at a notably
greater rate with increase in ACE events than those with zero
copies of the minor allele as shown in Figure 3. The rate of
increase is 0.24 kg/m2 with each adverse childhood encounter in a
participant with no minor alleles; 0.48 kg/m2 per ACE with one
minor allele; 0.57 kg/m2 with two minor alleles. Thus, the rate of
BMI increase across ACEs doubles in heterozygotes.
Interestingly, the minor allele of rs12777434 in CAM1KD is
also statistically significantly associated with notably higher
BMI levels in HNPEU Never Drinkers (p = 0.03), whereas the
variant has no effect on BMI in any other group of drinkers. These
interactions are shown in Supplementary Figure S4.

Another interactive effect is observed by variant rs62398950
(p-value = 8.05 × 10−6) in a non-coding region on chromosome 5.

TABLE 1 | Distributions of ACEs in the HNP of all ethnicities.

Num ACEs Mean BMI N (%)

0 27.90 5,434 34.25
1 28.44 2,999 18.90
2 28.90 2054 12.95
3 29.35 1,564 9.86
4 29.58 1,224 7.71
5 28.92 884 5.57
6 30.12 713 4.49
7 30.27 465 2.93
8 30.26 325 2.05
9 30.76 150 0.95
10 32.18 54 0.34

TABLE 2 | Distributions of ACEs in the European HNP only.

Num ACEs Mean BMI N (%)

0 27.86 4,539 35.35
1 28.37 2,451 19.09
2 28.75 1,652 12.87
3 29.32 1,252 9.75
4 29.53 962 7.49
5 29.78 673 5.24
6 30.23 557 4.33
7 29.97 374 2.91
8 30.43 236 1.84
9 31.10 114 0.89
10 31.70 29 0.22
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Alone, its protective effect (−0.51 kg/m2 for each copy of the
minor allele), is not significant (p = 0.41). When considered with
the covariate ACEs, its effect size does not change, nor does the
p-value of the hypothesis test for the βG coefficient. However,
when examining the interaction of this variant with ACEs, the
protective effect of the variant becomes clear in the minor allele
carriers (MAF = 0.84%). The difference in slopes between
individuals with one minor allele and those with no minor

alleles is 1.24 kg/m2: thus minor allele carriers will, in general,
have 1.24 BMI points less per each number of ACE endured than
those with no minor allele (Supplementary Figure S5). The
minor allele shows a notable and statistically significant protective
effect against obesity in HNPEU participants with greater ACEs
endured in childhood.

FIGURE 1 | ACE Relationship vs. BMI. This figure shows the relationship between the number of ACEs experienced and average BMI in each ACEs group,
irrespective of age, sex, or ethnicity. The black line depicts the simple linear regression with slope 0.36 (p << 2 × 10−16) and y-intercept 28.03. Additionally, a simply one-
way ANOVA shows a statistically significant difference in the BMI index between the ACE groups (p < 2 × 10−16).

TABLE 3 | Odds ratios between the ACEs and obesity in the HNP across all
ethnicities.

≥1 ACEs ≥4 ACEs

Obese 1.52; [1.42, 1.64] 1.85; [1.69, 2.02]
Severely Obese 1.63; [1.48,1.80] 2.12; [1.90, 2.38]

Presents the odds ratios and 95% confidence intervals computed by Fisher Exact Tests
between the HNP across all ethnicities.

TABLE 4 | Odds ratios between ACEs and obesity in the European HNP.

≥1 ACEs ≥4 ACEs

Obese 1.51; [1.40, 1.64] 1.64; [1.67, 2.03]
Severely Obese 1.62; [1.45,1.81] 2.16; [1.90, 2.46]

Presents the odds ratios and 95% confidence intervals computed by Fisher Exact Tests
between Europeans in the HNP. These tables demonstrate associations between the
ACE score of ≥1 and ≥4 and obese and severe obese HNP participants. ACE controls
were those participants with zero ACEs. Obese controls were participants with BMI ≤
25 kg/m2).
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Additionally, variant rs76806574 (p-value = 9.98 × 10−7) in a
non-coding region on chromosome 2, displays a similar
protective effect. The most notable differences and statistically
significant differences are for participants with N = 8 ACEs,
where BMI differences between the participants carrying no
alternative allele and one alternative allele is 5.7 BMI index
points, and this difference is significant at the α = 0.05 level.
The variant rs142517237 in HIF31 shows one of the greatest
interactive effects: although it has no previous link to BMI, its

minor allele carriers show a decrease of 2.9 kg/m2 for each ACE
encountered, compared to an increase of 0.36 kg/m2 for its non-
carriers.

Variant rs145351074 (p-value = 5.55 × 10−7) on chromosome
15 also showed prominent differences in effects based on
genotype. It is slightly upstream of the gene LOC105376730,
which produces a long non-coding RNA (lncRNA). For
participants with no alternative alleles, BMI increases slowly
with the number of reported ACEs. However, for those

FIGURE 2 |Manhattan plot of significant GWEIS results. Each point in this figure represents a result of a single variant’s genotype-environment analysis. The x-axis
represents the genomic position of each of 4,876,698 variants. The y-axis represents −log10-transformed raw p-values of each genotypic association. For ease of
viewing, only variants in genes above the horizontal line α = 1 × 10−5 are annotated.
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participants with one or more alternative alleles, BMI levels
increase at a much faster rate, similar to what is seen in Figure 3.

GxE Results of Smaller Cohorts
The GWEIS results presented in this manuscript focus on HNPEU
participants due to its large cohort size. As we recognize the
importance of multi-ethnic studies, we also examine variants with
suggestive evidence of interaction in both the HNPAA cohort
(Supplementary Figure S6) and the HNPLX (Supplementary
Figure S7) cohorts, both of which have notably smaller sample
sizes. Although underpowered statistically, we observed variants of
interest, such as rs544101 and rs8004002, that presented suggestive
evidence of interaction not only in theHNPEU, but also in theHNPAA

andHNPLX cohorts, respectively. Both of these variants associate with
different rates of BMI across genotypes and across the number of
ACEs in all three ethnic cohorts. Furthermore, PhenoScanner
demonstrates that rs8004002 is found in a known schizophrenia-
related gene similar to European GWEIS results (Staley et al., 2016;
Kamat et al., 2019). Additional results from the smaller cohorts are
presented in the Supplementary Material.

Replication of Previously Published BMI
Associations
To the best of our knowledge, this study is unique in its genome-
wide examination of gene-environment effects of ACEs and BMI.

FIGURE 3 |GWEIS identification of rs12777434 interaction with ACEs. This figure shows the interactive effect of variant rs12777434 inCAMK1D.Homozygotes in
the reference allele show a substantial increase in BMI for each number of ACEs encountered (0.24 kg/m2). However, with each copy of the minor allele, participants
show much greater changes: 0.48 kg/m2 and 0.57 kg/m2, respectively. Differences in BMI between the three genotypes are shown to be statistically significant at ACEs
N = 0, 5, 9 at significance level α = 0.05, and at N = 6 and 7 ACEs at significance level α = 0.10, using simple one-way ANOVA analysis.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8166608

Schlauch et al. Genotype-Environment Interactions of BMI

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


For this reason, we validate our approach based on current
published BMI GWAS studies. We perform a GWAS (Eq. 2)
on the HNPEU to replicate the variant and gene effects that have
previously been published (Supplemental Material;
Supplementary Table S3). Additionally, we use Eq. 3 and the
HNPEU cohort to examine associations with BMI including ACEs
as a covariate to examine G+E associations. (Supplemental
Material; Supplementary Table S4; Supplementary Figure
S8). The GWAS results using Eq. 2 show that we replicate
many of the expected canonical BMI associations
(Supplemental Material). Further, using Eq. 3, which includes
ACEs as a main effect covariate, we observed that all significant
associations fall solely within the FTO gene (Supplemental
Material).

GxE Validation With Alternative
Environmental Exposures
Several other published BMI interactions, based on different
environmental factors, were also replicated in order to provide
additional evidence that the HNPEU cohort and our methods are
suitable for determining the interactive effects between genotype
and ACEs on BMI. We found that the FTO variant rs1558902
exhibited a significant interaction effect with alcohol intake to
modify BMI levels, similar to previous observations (Young et al.,
2016; Rask-Andersen et al., 2017). Moreover, both rs9939609 and
rs10517309 produced significant interaction effects on BMI using
education level and cigarette smoking respectively (Freathy et al.,
2011; Corella et al., 2012).

DISCUSSION

Standard GWEIS analyses often target a handful of variants that
are known to have a genetic effect on the phenotype of interest.
Here, we perform a genotype-environment interaction analysis
on each of the five million variants on our HNP exome platform
to capture all interaction effects that might not be identified in a
standard targeted analysis. An interaction of statistical
significance implies that a participant having experienced
ACEs carrying a minor allele of a variant reacts differently
with respect to BMI levels than an individual not carrying the
minor allele. For example, in certain cases, a minor allele of a
variant may protect an adult who experienced ACEs from
increased BMI, whereas the reference allele will increase the
likelihood of that person experiencing increased BMI levels. In
other cases, the opposite trend may occur, in which the minor
allele could increase the risk of elevated BMI for someone who has
experienced an ACE.

ACEs and Adult Obesity in the HNP
Here we study a multi-ethnic cohort of notable size (15,866) and
first observe its incidence of ACEs: 65.7% of participants have
experienced at least one type of adverse event in childhood, and
24.0% have experienced four or more ACEs. Although study
populations are difficult to compare, based on different socio-
demographic characteristics, we do see a greater incidence in

ACEs in the HNP than in other cohorts. For example, the
Behavioral Risk Factor Surveillance System (BRFSS) is a
telephone-based survey of adults during 2015–2017 across 27
states that includes ACE questions with responses of 144,000
adults (Merrick et al., 2019). The study reported 60.9% of its
adults had experienced at least one and 15.6% had endured more
than four ACEs in their lifetime (Merrick et al., 2019; Jones et al.,
2020). Felitti’s original 1998 study of 8,056 individuals reported
that 50% of its participants had experienced at least one ACE;
Godoy reported that at least 50% of US adults had experienced
one type or more of ACEs (Jones et al., 2020; Godoy et al., 2021).

Danese presents no less than 38 studies that examine possible
links between childhood adversity and obesity, again, with a
variety of demographics (Danese and Tan, 2014). Here, we
show that a multi-ethnic cohort with a high rate of some
college education (88%) and a higher-than-average median
income ($72,303) shows a definitive association between the
number of different ACEs experienced in childhood and
adulthood BMI. It has been previously determined that lower
educational level and lower income are both linked to higher BMI
and a greater number of ACEs (Hajian-Tilaki and Heidari, 2010;
Hermann et al., 2011; Cohen et al., 2013; Ogden et al., 2017;
Hardcastle et al., 2018; Blair et al., 2019; Giano et al., 2021;
Hansen et al., 2021; Haugland et al., 2021), which suggests that we
may be underestimating the factors that impact BMI in the HNP.
Via linear regression, we show that each 0.37 ACE experienced
increases adult BMI levels by 1 kg/m2. Odds ratios showed first
that HNP participants experiencing one or more ACEs were
1.5 times more likely to become obese adults and an even greater
likelihood of becoming severely obese. In comparison to the
review of Wiss in 2020, the trend in the HNP is greater (Wiss
and Brewerton, 2020). Additionally, HNP participants of any
ethnicity with four or more ACEs were 2.16 times more likely to
become severely obese; again, in comparison with other studies,
this trend is also higher. Anda’s study (75% European cohort),
reported a ratio of 1.9 in this same comparison (Anda et al., 2006),
and Fuemmeler reported a two-fold odds ratio (Fuemmeler et al.,
2009).

GWEIS of HNPEU
The GWEIS identified 55 variants with strong interactive effects.
It is of interest that none of these variants lie in the FTO gene, nor
on chromosome 16. Many of our GWEIS findings have similar
outcomes as those in the study by Young et al., in which the
effects of FTO on BMI are diminished by environmental
variables. In Young’s study, the variables alcohol consumption,
sleep duration, and overall diet over-rode and decreased the
canonical effect of FTO variants on BMI (Young et al., 2016).
Here we see a similar phenomenon with the ACE environmental
variable; genetic variants alone may have little or no effect on
BMI, but when paired with an environmental variable, their
effects are notable and significant.

The variant rs12777434 exhibited the most significant
interactive effect, yet the variant alone did not associate with
levels of BMI and would have been missed in a conventional
GWAS (p = 0.92, with an effect size of 0.01 kg/m2). In
combination with the environmental effect, however, the
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variant significantly and notably increased the BMI levels with
each ACE endured, indicating that the genetic effect on BMI of
this variant is modified by the number of ACEs encountered. This
variant is in CAMK1D, a gene which codes for a Calcium/
calmodulin-dependent protein kinase and has broad
expression in the brain according to the protein atlas (Uhlén
et al., 2017). CAMK1D is associated with schizophrenia according
to the Neale lab and PhenoScanner [http://www.nealelab.is/uk-
biobank/] (Staley et al., 2016; Kamat et al., 2019). The association
to schizophrenia is of interest, as it may play a part in some of the
association between BMI and ACEs: participants with
schizophrenic symptoms in study by Prokopez et al. were
more likely to have experienced an ACE, and those with
multiple ACEs have poorer overall outcomes and more severe
schizophrenic symptomatology (Vallejos et al., 2017; Prokopez
et al., 2020).

Indeed, the HNP follows these trends as well. When compared
to clinical controls (with exclusionary criteria incorporated), we
see an extraordinary relationship between ACEs and
schizophrenia: individuals with schizophrenia are 18.5-fold
more likely to have experienced one or more ACEs in their
childhood (p < 1 × 10−10), and participants with schizophrenia
are 31.7 times more likely to have experienced four or more ACEs
(p < 1 × 10−14). HNP patients with schizophrenia have an average
BMI of 31.3 kg/m2, while their controls have a mean BMI of
28.8 kg/m2.

The direct molecular mechanism through which rs12777434
acts on BMI and schizophrenia is currently unclear; however,
variants within CAMK1D have been shown to affect its gene
expression, leading to altered glucose processing through
decreased gluconeogenesis and increased glycogen storage.
Increased glycogen storage will directly alter BMI as obesity is
associated with larger glycogen stores in adipose tissue
(Ceperuelo-Mallafré et al., 2016). Additionally, increasing
evidence shows that altered glucose processing is an early
biomarker in schizophrenic patients as it can affect signaling
and dysregulate astrocyte-neuron compartments (Zhang et al.,
2015; Roosterman and Cottrell, 2021). Furthermore, patients
suffering from schizophrenia may have additional triggers on
their BMI. It has been established that participants diagnosed
with schizophrenia have notably increased levels of BMI due to
SDOH including lower socioeconomic status, lower education
level, lack of access to healthcare, and lower physical activity, in
addition to the effect of antipsychotic drugs (Coodin, 2001;
Annamalai et al., 2017).

Additional points of evidence linking schizophrenia and BMI
in HNPEU were observed in variants within eleven genes: SORT1,
SLC35F3, ZNP212, PDCD1LG2, CTNNA3, LHPP, DLG2,
SMUG1, STOML3, AKAP6, HIF3A (Buttenschøn et al., 2015;
Corvin, 2010; Gardiner et al., 2013; Grove et al., 2014; Li et al.,
2016; 2017; MacLaren et al., 2011; Neff et al., 2009; O’Connell and
Coombes, 2021; Shao and Vawter, 2008; Smeland et al., 2017;
Thippeswamy and Davies, 2021). A complete analysis of the
molecular mechanisms by which the variants in these genes
influence schizophrenia and BMI is outside the scope of this
paper; we briefly highlight a few variants in genes previously
linked to schizophrenia. We observed four variants (rs71026101,

rs36096707, rs11245311, rs12771611) within the schizophrenia-
related LHPP gene [http://www.nealelab.is/uk-biobank/] (Staley
et al., 2016; Kamat et al., 2019) that presented evidence of
significant interactive effects (Supplementary Table S2). LHPP
shows broad expression in the brain and could alter cellular signal
transduction in patients suffering frommajor depressive disorder
(MDD); although, its exact function has yet to be elucidated (Neff
et al., 2009). Furthermore rs77744003, a variant within the
schizophrenia-related STOML3 gene, showed an interactive
effect. Similar to LHPP, this gene has broad expression in the
brain, including the hypothalamus and hippocampus, and
functions to maintain acid-sensing cation channels by the
binding of cholesterol (Conrard and Tyteca, 2019;
Thippeswamy and Davies, 2021). In addition to schizophrenia,
the genomic region around STOML3 has been associated with
autism spectrum disorders as well as psychotic depression
(Thippeswamy and Davies, 2021).

The interaction between genetics, schizophrenia, and ACEs
highlights the complex and multifactorial interactions that
drive common traits such as BMI. For example, a recent
BMI study with approximately 700,000 individuals observed
that 750 BMI-associated variants accounted for only
approximately 6% of variation in BMI (Yengo et al., 2018;
Loos and Yeo, 2021). This shows that a large amount of BMI
variability is still unaccounted for using standard genetic
analysis. However, the observed BMI interaction effects in
this study imply that history of life events and disease state
are also important in the genetic associations with BMI, and
could identify new targets as well as uncover some of the
missing variability of these complex traits for those who
have experienced childhood maltreatment in the past.

Two other variants demonstrating significant GxE effects with
BMI include rs145351074 and rs76806574. These variants are
located in LOC105376730 on chromosome 15 and
ENSG00000286481 on chromosome 2, respectively, and code
for long non-coding RNA (lncRNAs). Again, neither variant is
a predictor of BMI when considered as a main effect (p = 0.42 and
p = 0.84, respectively). Previous research found that the
expression of several lncRNAs become dysregulated in obese
patients (Sun et al., 2016). Furthermore, other cell and animal
studies on lncRNAs show that they respond to external
environmental exposures and stimuli, such as ultraviolet
radiation, smoke, and chemical exposures (Zhou et al., 2015;
Karlsson and Baccarelli, 2016; Prokopez et al., 2020). We
hypothesize that one or more ACEs could present an external
stimulus that possibly overrides the effect of these variants, and
those with the alternative allele may undergo dysregulation of this
lncRNA. This dysregulation may be what causes a notable
decrease in the BMI for these participants carrying the minor
allele, but only for those who have also experienced at least one
type of ACE.

Validation of GxE With Alternative
Environmental Factors
Studies of the HNPEU previously used the United Kingdom
Biobank (UKBB) as a validation cohort (Cirulli et al., 2020;
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Read et al., 2021). There was a lack of consistency between the
childhood trauma questions in the HNP study and the UKBB
“Traumatic event questions” (Field IDs 20487, 20489, 20489,
20490, 20491): only two of the ten standard ACE questions were
similar to the UKBB’s five questions. Thus, the UKBB cohort
was inappropriate for direct GWEIS replication. To evaluate our
methods and interaction model, we replicated several other BMI
interaction effects using alternative environmental exposures.
For example, both Young and Rask-Andersen observed an
interaction effect between alcohol and FTO variant rs1558902
in the predominantly European UKBB (Young et al., 2016;
Rask-Andersen et al., 2017). In both these studies, alcohol
intake modified the effect of the FTO variant on BMI: the
effect of the minor allele on participants who drank more
frequently was much smaller than those who drank less
frequently. This result was replicated in the HNPEU (p =
0.012) and is most notable in the “Never” alcohol
consumption group (Supplementary Figure S9). Without the
consideration of alcohol intake, each copy of the minor allele
raises the HNPEU BMI by 0.66 kg/m2 in the HNP. When
considering this effect across alcohol consumption groups,
the effect of the genotype changes: in the Never drinker
category, one copy of the minor allele is associated with
changes in BMI levels of 1.19 kg/m2, whereas two copies are
associated with an increase of 1.97 kg/m2. Similarly, genotype
effects in the “>4/Week” group were much less: differences in
BMI between zero and one copies of the minor allele were
0.61 kg/m2, and differences between one and two copies of the
minor allele were 0.36 kg/m2

Furthermore, previous research has established that
educational levels are related to BMI (Corella et al., 2012).
Interactions between rs9939609 and educational levels were
examined by Corella in a modestly sized Mediterranean cohort
in 2015 (Corella et al., 2012). When grouping participants into
those with university training and those without, the interactive
effect was trending towards significance (Corella p = 0.048;
HNPEU p = 0.092), where the minor allele had a much greater
positive effect on individuals without university training (Corella
et al., 2012). Another environmental factor that is often studied in
tandem with obesity is cigarette smoking. Previously, Freathy and
Taylor examined the GxE effect of the variant rs10517309 with
smoking and BMI levels in European populations (Freathy et al.,
2011). The effect is notable in the non-smokers in both studies,
but not in the smokers. This behavior was also found in the
HNPEU cohort: the minor allele of rs10517309 was associated
with greater BMI in non-smokers and lower BMI in smokers,
which is shown in Supplementary Figure S10.

Limitations of the Study
One clear limitation of this study is the sample size of smaller
ethnic cohorts in the HNP. As such, the genetic examinations
that are provided in the Supplementary Material should be
replicated when the cohort is better populated with larger
ethnic subcohorts. Further, although this study accounted for
all ten standard ACE questions, we computed and used only
one agglomerative score in the GWAS and GWEIS
investigations. It is possible that if environmental exposure

were represented differently, such as a case vs. control model,
the findings may be observed differently. This type of
validation would provide a basis for a relevant follow-up
study. Another limitation is that the number of ACE
instances each participant encountered was not recorded.
We have determined this is true of all retrospective ACE
studies. A final issue in this study, as well as all retrospective
studies, is that recollection of childhood events may not
always be completely accurate.

CONCLUSION

ACEs have a profound impact on adult health and traits that
impact health outcomes such as BMI and schizophrenia. The
relationship between retrospectively recalled ACEs and adult
BMI in the HNP was shown to be strongly significant with a
notably large positive effect size. BMI is a well-studied
phenotype in many standard genome-wide approaches, yet
its gene-environment associations are far less known. The
GWEIS performed here identified several unknown
interactive effects based on childhood adverse events.
Surprisingly, a number of the variants that resulted in
interesting interactive effects were not, by themselves,
predictors of BMI levels. In simple terms, this
demonstrates that many conventional genes linked to BMI
(e.g., FTO) have less impact on BMI when paired with the
incidence of ACEs. Studies able to include environmental or
SDOH variables when examining complex traits may account
for some missing genetic heritability for those who are
exposed to the environmental factor of interest.

This unique examination highlights several of the
interactive effects between genetics and behavioral life
experiences, and the consequences thereof on population
health. Particularly, this study shows that the largely
preventable negative health impacts of ACEs modulate
purely genetic associations to an often detrimental effect on
health. Simply stated, poor health outcomes result from
lifestyle-driven events, and these health outcomes increase
notably with specific genetic mutations. Conversely, a number
of variants have already been shown to play a strong role in the
increase of unhealthy BMI levels; when considered in tandem
with environmental events such as ACEs, these effects can
multiply in strength, resulting in a much worse state of
disease. Thus, future emphasis in large population health
studies must be placed on the strongly negative impact of
adverse events encountered in childhood and the interactive
effects of these events with specific genetic variations.
Considering a patient’s social environment such as adverse
experiences in childhood will provide a more complete
clinical arsenal for overall better patient health.
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