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Background: Gastric carcinoma (GC) is a carcinoma with a high incidence rate, and it is a
deadly carcinoma globally. An effective tool, that is, able to predict different survival
outcomes for GC patients receiving individualized treatments is deeply needed.

Methods: In total, data from 975 GC patients were collected from TCGA-STAD, GSE15459,
and GSE84437. Then, we performed a comprehensive unsupervised clustering analysis
based on 54 TGFβ-pathway-related genes and correlated these patterns with tumor
microenvironment (TME) cell-infiltrating characteristics. WGCNA was then applied to find
the module that had the closest relation with these patterns. The least absolute shrinkage and
selection operator (LASSO) algorithm was combined with cross validation to narrow down
variables and random survival forest (RSF) was used to create a risk score.

Results: We identified two different TGFβ regulation patterns and named them as TGFβ
Cluster 1 and Cluster 2. TGFβCluster 1 was linked to significantly poorer survival outcomes
and represented an inflamed TME subtype of GC. Using WGCNA, a module (magenta)
with the closest association with the TGFβ clusters was identified. After narrowing down
the gene list by univariate Cox regression analysis, the LASSO algorithm and cross
validation, four of the 243 genes in the magenta module were applied to build a risk score.
The group with a higher risk score exhibited a considerably poorer survival outcome with
high predictive accuracy. The risk score remained an independent risk factor in multivariate
Cox analysis. Moreover, we validated this risk score using GSE15459 and GSE84437.
Furthermore, we found that the group with a higher risk score represented an inflamed
TME according to the evidence that the risk score was remarkably correlated with several
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steps of cancer immunity cycles and amajority of the infiltrating immune cells. Consistently,
the risk score was significantly related to immune checkpoint genes and T cell–inflamed
gene expression profiles (GEPs), indicating the value of predicting immunotherapy.

Conclusions: We have developed and validated a TGFβ-associated signature, that is,
capable of predicting the survival outcome as well as depicting the TME immune
characteristics of GC. In summary, this signature may contribute to precision medicine
for GC.

Keywords: TGFβ, prognosis, tumor microenvironment, gastric carcinoma, immunotherapy

INTRODUCTION

Gastric carcinoma (GC) has the fifth highest incidence rate of
cancer and the third highest fatality rate globally, causing
approximately 723,000 deaths in 2012 (Smyth et al., 2020).
Although classic therapies such as chemotherapy and even
biological agents are utilized, patients with advanced gastric
carcinoma still face an unsatisfactory prognosis. Immune
checkpoint inhibitors (ICIs) especially programmed cell death-
1 (PD-1) together with its ligand (PD-L1 or B7-H1), have been
shown to be essential for the progression of several solid cancers
and are likely to become a promising therapeutic target in gastric
carcinoma treatment (Coutzac et al., 2019). Several clinical tests
evaluating anti-PD-1/PD-L1-based curative methods as both first
and later-line treatments have already produced inspiring results
(Kang et al., 2017; Fuchs et al., 2018; Janjigian et al., 2018).
However, not all patients in this cohort responded to ICI
treatment. The primary predictors for immunotherapy
effectiveness are likely to be PD-L1 expression together with
defects in mismatch repair genes resulting in a microsatellite
instability (MSI-H) phenotype (Vrána et al., 2018). All these
biomarkers have failed for widespread clinical application
because of unsatisfactory predictive accuracy or complex
detection methods (Crispen and Kusmartsev, 2020; Hu et al.,
2021). There is an urgent need to find robust biomarkers that
could provide clues regarding the prognosis and immunotherapy
response in GC.

The tumor microenvironment (TME) includes various cell types
(fibroblasts, endothelial cells, immune cells, etc.) together with
extracellular elements (growth factors, cytokines, extracellular
matrix, hormones, etc.) that surround tumor cells and are
nourished by a microvascular network (Wu and Dai, 2017). The
TME can be generally divided into cold (non-T cell inflamed) and hot
(T cell inflamed) conditions, which are mainly based on the
production levels of proinflammatory cytokines and the
infiltration degree of T cells (Gajewski, 2015). Hot tumors are
characterized by T cell infiltration together with immune activated
molecular signatures, whereas cold tumors are characterized by T cell
exclusion or absence. Generally, more patients in the hot tumor
subgroup will respond to immunotherapy, such as ICI therapy (Liu
et al., 2020a). Transforming growth factor β (TGFβ) is a crucial
enforcer of immune homeostasis and tolerance and plays an essential
role in the formation of the immune suppression TME (Batlle and
Massagué, 2019). In melanoma, the TGFβ pathway was reported to
play an important role in the formation of ICI resistance (Hugo et al.,

2016). In metastatic urothelial cancer, TGFβ signaling was associated
with lower response rates to anti-PD-L1 (atezolizumab) therapy
(Mariathasan et al., 2018). In GC, TGFβ was shown to increase
themigration, adhesion and invasion of someGC cell lines but not all
(Veen et al., 2021). Therefore, it is necessary to distinguish which
patients could respond to therapy. There is no study correlating the
TGFβ-associated signature with the TME in GC. In this study, we
developed a TGFβ regulation patterns and risk scores that could
predict individual patient survival outcomes and TME characteristics.

MATERIALS AND METHODS

Data Retrieval and Preprocessing
We downloaded the RNA sequencing (RNA-seq) and survival
data of TCGA-STAD (stomach adenocarcinoma) from the data
portal of UCSC Xena (https://xenabrowser.net/) (Goldman et al.,
2020). Then, we transformed the fragments per kilobase per
million mapped fragments (FPKM) value into transcripts per
kilobase million (TPM) value. We included 350 GC patients for
further analysis after moving duplicates and patients without
clinical information. For Gene Expression Omnibus (GEO)
databases, we downloaded the expression matrices and
platforms of the GSE15459 (GPL570) and GSE84437
(GPL6947) using the “GEOquery” R package. The clinical
information originating from the databases that we included is
summarized in Supplementary Table S1.

Consensus Clustering
We systematically identified 54 TGFβ-pathway-related genes from
the Molecular Signatures Database (MSigDB) (Supplementary
Table S2). We then performed unsupervised clustering analysis
to comprehensively identify two distinct TGFβ related patterns using
the k-means method implemented in the “ConsensuClusterPlus” R
package.We conducted 1,000 repetitions to guarantee the stability of
our classification (Wilkerson and Hayes, 2010).

Gene Set Variation Analysis
“Limma” R package was used to filtered out the differentially
expressed genes (DEGs) between different TGFβ regulation
patterns and then the genes were ordered by fold change (FC).
The gene sets of “c5.all.v7.1.symbolsGO” and
“c2.cp.kegg.v7.1.symbolsKEGG” were downloaded from
MSigDB database for running GSVA analysis. Adjusted p with
value less than 0.05 was considered as statistically significance.
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Tumor Microenvironment Cell Infiltration
The activated levels of the anticancer immune response were all
downloaded from http://biocc.hrbmu.edu.cn/TIP/using the TPM
value of TCGA-STAD (Chen and Mellman, 2013; Xu et al., 2018).
Then, we quantified the levels of tumor-infiltrating immune cells
(TIICs) using the single-sample gene-set enrichment analysis
(ssGSEA) algorithm. The gene sets for calculating specific immune
cells were collected from the study reported by Charoentong et al.
(2017) (Supplementary Table S3) (Charoentong et al., 2017).

Coexpression Module Networks
We conducted a network of gene coexpression to identify the TGFβ
cluster-related module using the “WGCNA” R package (Langfelder
and Horvath, 2008). First, we filtered out bad genes and samples
using TPM data from TCGA-STAD. Then, we calculated the
connection strength and developed a scale-free network using the
filtered data. We examined the scale independence and modules’
average connectivity degree using the gradient method and chose the
most suitable power valuewhen setting the degree of independence as
0.85 (Chen et al., 2017). Next, using the selected power value, we
generated scale-free gene coexpression networks. We regarded TGFβ
clusters as a clinical factor and showed the relationship between
different modules and clinical factors using heatmap. Finally, we
selected the module with the closest relationship with TGFβ clusters
for further analysis (Li et al., 2021).

Creation and Validation of the Risk Score
First, we performed univariate Cox analysis on genes of the module
with the closest relationship with the TGFβ clusters to screen genes
having prognostic value. Then, the least absolute shrinkage and
selector operation (LASSO) algorithm was used for the screened
genes. Finally, using the rfsrc function in the “randomForestSRC” R
package, a TGFβ-associated risk score was constructed based on the
genes filtered by the LASSO algorithm. Using themedian value of the
risk score, GC patients were divided into high- and low-risk score
groups. We developed a Kaplan-Meier survival curve, and the
prognostic significance of the risk score was compared using the
log-rank test. The sensitivity and specificity of the risk score for
predicting survival outcome were tested by receiver operating
characteristic curve (ROC) analysis using the tROC R package.
The role of predicting the survival outcome of the risk score was
further validated in the GSE15459 and GSE84437 databases.
Univariate Cox analysis was applied to filter prognostic factors
including age, sex, tumor grade, tumor stage, and risk score, and
multivariate Cox analysis was further applied to filter independent
prognostic factors. Moreover, a systematic nomogram was
constructed based on those factors with independent prognostic
values in multivariate Cox analysis.

Statistical Analysis
Correlation coefficients between variables were computed using
Pearson or Spearman correlation analyses. A t test or Mann-
Whitney U test was applied to calculate the differences in
continuous variables. We applied the LASSO algorithm to filter
the optimal TGFβ associated genes with the best discriminative
capability. Then a Kaplan-Meier survival curve was constructed
and the prognostic significance of the risk score was compared

using the log-rank test. The sensitivity and specificity of the risk
score for predicting survival outcome were tested by ROC-curve
analysis using the tROC R package. All statistical analyses were
conductedwith R software (version 4.0.3), and two-sided p< 0.05was
set as the significance criterion.

RESULTS

Depicting Transforming Growth Factor β
Clusters and Correlating Them With Tumor
Microenvironment Infiltration
As shown in Figure 1A, most of the 54 TGFβ-pathway-related
genes were prognostic factors and correlated closely with each
other. We demonstrate the comprehensive landscape of gene
interactions, connections, and prognostic values. Inspired by
these results, we performed a comprehensive unsupervised
clustering analysis based on these 54 TGFβ-pathway-related
genes and two different TGFβ regulation patterns named TGFβ
Cluster 1 and Cluster 2 were identified (Figure 1B, Supplementary
Figures S1A–E). A total of 182 patients divided into TGFβ Cluster
1 exhibited significantly poorer survival outcomes than the other
168 patients divided into Cluster 2 (p = 0.032, Figure 1C).

Considering the vital role of TGFβ in shaping the immune
suppression TME, we comprehensively correlated the clusters with
immune phenotypes (Batlle and Massagué, 2019). The anticancer
immune cycles include the following seven steps: tumor antigen
release and presentation (steps 1 and 2), immune system priming
and activation (step 3), transferring and invasion of immune cells to
tumors (steps 4 and 5), and effector immune cells recognizing and
killing cancer cells (steps 6 and 7) (Chen and Mellman, 2013). First,
the relationship between TGFβ clusters and activities of anticancer
immunity cycles enters our field of vision. The activities of cancer cell
antigen release, T cell, CD8 T cell, T helper 1 (Th1) cell andmonocyte
recruitment, and infiltration of immune cells into tumors were
significantly higher in TGFβ Cluster 1 than Cluster 2. These results
indicate that TGFβ Cluster 1 might represent an inflamed TME
subtype of GC, while TGFβ Cluster 2 represents a non-inflamed
subtype (Figure 1D). Furthermore, we directly calculated the
infiltration of immune cells into the TME by the ssGSEA
algorithm. Consistent with the anticancer immune response, the
majority of immune cells, including activated dendritic cells (DCs),
effector memory CD4 T cells, effector memory CD8 T cells,
macrophages, natural killer (NK) cells, had significantly higher
numbers in TGFβ Cluster 1 than in Cluster 2 (Figure 1E). In
addition, we found that all angiogenesis related pathways were
significantly enriched in TGFβ Cluster 1, indicating a more active
tumor angiogenesis in Cluster 1 (Supplementary Figure S1F,
Supplementary Table S4).

Key Modules and Hub Genes Related to
Transforming Growth Factor β Clusters
Identified by WGCNA
We developed TGFβ based patterns that could predict survival
outcomes and TME infiltration in the previous step. To predict
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the survival outcomes and TME infiltration of individual patients, we
aimed to develop a TGFβ-based risk score.WGCNA is amethod that
can generate modules by similar gene expression patterns and
correlate these modules with specific features, generally, clinical
information (Langfelder and Horvath, 2008). In this study, we
treated TGFβ clusters as clinical information and performed

WGCNA combined with other clinical information including, age,
sex, grade, T stage, N stage, and M stage to find the module with the
closest relationship with TGFβ clusters (Figure 2A). Then, we selected
8 as the soft threshold to perform further analysis by setting the scale-
free R2 = 0.85 (Figure 2B). Twenty-three modules were filtered
according to average hierarchical clustering and dynamic tree

FIGURE 1 | TGFβ patterns and corresponding tumor microenvironment infiltration characterization. (A) Fifty-four TGFβ pathway-related genes correlated with GC.
Green and purple dots represent favorable and risk factors for overall survival respectively. The prognosis of each gene is expressed by the size of the circle. Curves
between linked dots show the negative (blue) and positive (red) correlation between TGF pathway-related genes. (B) The consensus score matrix shows that all samples
were grouped into clusters by the value of consensus score groups in different iterations (k = 2 in TCGA-STAD). (C) Survival analysis based on the TCGA-STAD
dataset of TGFβ Cluster1 (red) and TGFβ Cluster 2 (blue). (D) Different activities of cancer immunity cycles between TGFβ Cluster 1 (red) and TGFβ Cluster 2 (blue). (E)
TME immune cell infiltration scores between TGFβ Cluster 1 (red) and TGFβ Cluster 2 (blue). Ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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clipping (Figure 2C). The modules with the closest association with
clinical information possessed the greatest biological meanings. The
magenta module had the closest association with the TGFβ clusters (r
= -0.70, p < 0.0001) (Figure 2D). In addition, the magenta module
also had a close relationshipwith tumor grade (r = 0.16, p< 0.002) and
T stage (r = 0.21, p < 0.0001) (Figure 2D). Further analysis showed
that the genes in the magenta module were significantly coexpressed
(cor = 0.75, p < 0.0001, Figure 2E, Supplementary Table S5). KEGG

analysis revealed that genes could be enriched in the TGFβ pathway in
the magenta module, which confirmed from another perspective that
this module had a close relationship with the TGFβ pathway
(Supplementary Figure S2, Supplementary Table S6).
Additionally, extracellular matrix (ECM) organization, extracellular
structure organization, collagen−containing extracellular matrix and
ECM−receptor interaction pathways were outstanding in GO and
KEGG analysis. These results indicated that the genes in the magenta

FIGURE 2 | TGFβ-related modules detected by WGCNA. (A) Clustering dendrogram and heatmaps of clinical characteristics (age, sex, tumor stage, tumor grade,
and cluster) based on 350 samples in the TCGA-STAD dataset. (B) Scale independence analysis by the scale-free topologymodel of different soft-threshold powers. (C)
Cluster dendrogram of differentially expressed genes based on the topological overlap. (D) Heatmap of the correlation between various gene modules and clinical
characteristics (age, sex, tumor stage, tumor grade, and cluster). Red and green represent a positive and negative correlations, respectively. (E) The Scatter plot
shows the correlation between gene memberships in the magenta module.
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module might play a critical role in the TME of GC by regulating the
ECM (Supplementary Figure S2, Supplementary Table S7).

Risk Score Development and External
Validation
The 243 genes in the magenta module were selected to develop a
TGFβ associated risk score. First, we filtered 101 genes with

prognostic values by performing univariate Cox regression analysis
(Supplementary Table S8) and identified 4 optimal candidates with
minimal lambda (0.077) to generate the risk score by using random
survival forest analysis (Figures 3A,B). Then we determined the
prognostic values of the 4 identified genes (Figure 3C and
Supplementary Table S9). By defining the median value of the
risk score, we grouped the risk score into high and low risk score
groups and found that high risk score group represented TGFβ

FIGURE 3 | Development and external validation of a TGFβ risk score. (A) Least absolute shrinkage and selection operator (LASSO) coefficient curves show the log
(lambda) sequence of 101 prognostic genes in the TCGA-STAD cohort. (B) Cross-validation for the selection of turning parameter selection by minimum criteria in the
LASSO regression model. Two dotted vertical lines using the minimum criteria were plotted at the optimal values. Four genes with the best discriminative capability were
selected to develop the risk score. (C) Univariate Cox analysis of 4 predictor genes. (D) The relationship between the risk score and TGFβ clusters. (E–J)
Development and validation of the risk score in TCGA-STAD, GSE15459, and GSE84437 databases respectively and the predictive accuracy of the risk score for
survival.
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Cluster1 while low risk score group represented TGFβ Cluster2
(Figure 3D). Consistent with our previous results, the higher risk
score group revealed significantly poorer survival outcomes than the
lower risk score group (p < 0.0001, Figure 3E). The predictive
accuracy of the risk score for 12, 36 and 60months was 0.72,
0.75, and 0.84 respectively (Figure 3F). Notably, we validated this
risk score in external databases. Patients in the high-risk score group
exhibited significantly poorer survival outcomes (p = 0.0014), and the
predictive accuracies for 12, 36 and 60months were 0.66, 0.66, and
0.69, respectively, in the GSE15459 cohort (Figures 3G,H).
Meanwhile, in the GSE84437 cohort, a higher risk score was
significantly related to poorer survival outcomes (p = 0.017), and
the predictive accuracies for 12, 36 and 60monthswere 0.60, 059, and
0.58 respectively (Figures 3I,J).

To investigate the correlation between risk score and clinical
information, including age, sex, tumor grade, and TNM stage, we
used univariate Cox analysis and the results showed that age, tumor
stage, and risk score were all risk factors for GC (Figure 4A,
Supplementary Table S10). Further multivariate Cox analysis
revealed that age, tumor stage and risk score were still
independent prognostic factors (Figure 4B, Supplementary Table
S10). These analyses indicated that the risk scoremight be a potential
predictive marker for the prognosis of GC. Moreover, to determine
the clinical value of our findings, a nomogram was further developed
by integrating the risk score, age, and tumor stage (Figure 4C).
Importantly, the calibration curves showed that the predicted OS was
highly consistent with the actual OS, which indicates the integrated
clinical significance of this nomogram (Figure 4D).

Associations Between Risk Score and
Tumor Microenvironment Infiltration
The tumor immune microenvironment state plays a critical role
in the fate of cancer cells and immunotherapy efficacy. Thus, the
correlations between the risk score and the activities of cancer
immunity cycles were analyzed. The release of cancer cell
antigens, T cell and macrophage recruitment, infiltration of
immune cells and several activities of anticancer immune
responses were positively correlated with the risk score
(Figure 5A, left; Supplementary Table S11). Furthermore, the
infiltration of the 28 immune cells calculated using the ssGSEA
algorithm, including activated DCs, central and effector memory
CD4 T cells, central and effector memory CD8 T cells, NK cells
and Th1 helper cells, was significantly positively correlated with
the risk score (Figure 5A, right; Supplementary Table S12).
Then, we divided GC patients into the high-risk score and low-
risk score groups by setting the median value of the risk score as
the cutoff. We determined that the higher risk score group was
characterized by higher expression of CD8 T cells, DCs,
macrophages, NK cells, and Th1 cells (Figure 5B).
Consequently, we proposed that the inflamed phenotype in
the high-risk score group may indicate a higher sensitivity to
ICI treatment. Furthermore, the risk score was positively related
to the expression of a majority of immune checkpoints (such as
CD200, CD276, CD86, and LAIR1) (Figure 5C, Supplementary
Table S13) and T cell–inflamed gene expression profiles (GEPs)
(Figure 5D, Supplementary Table S14), which may indicate
better ICI efficacy in GC.

FIGURE 4 | A nomogram in the TCGA-STAD cohort combined with risk score and clinicopathological characteristics. (A,B) Univariate and multivariate Cox
analyses of the risk score and clinicopathological characteristics. (C) The survival outcomes at 12-month, 36-month, and 60-month were predicted using the
nomogram. (D) Calibration curves of the nomogram were conducted using the Hosmer-Lemeshow test.
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DISCUSSION

As one of the most prominent immunosuppressive cytokines,
TGFβ can regulate the generation and functions of numerous
immune cells (Li and Flavell, 2008). TGFβ can activate Treg cells
and attenuate T cells and DCs directly. Moreover, TGFβ can
inhibit NK cells and regulate the behavior of neutrophils and

macrophages. All these effects of TGFβ indicate that it plays a
vital role in the formation of an immune suppression TME
(Sanjabi et al., 2017). TGFβ contains 32 members of the
family, which can be divided into TGFβ subfamilies and bone
morphogenetic protein (BMP) subfamilies (David and Massagué,
2018). The roles of TGFβ families in gastrointestinal cancers have
been widely reported. Pak et al. (2019) reported that TGFβ1 could

FIGURE 5 | The TGFβ risk score correlated with the immune characteristics of the TME and predicted the clinical response to ICI treatment. (A) The correlations
between the risk score and the cancer immunity cycles (left) or the infiltration of immune cells (right). (B) The differential expression patterns of effector genes in CD8
T cells, dendritic cells, macrophages, NK cells and Th1 cells between the high- and low-risk score groups. (C,D) The correlations between the risk score and immune
checkpoint or the T cell inflamed gene expression.
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induce the expression of VEGF-C and then promote the lymph-
angiogenesis of GC (Pak et al., 2019). Li et al. (2005) reported that
TGFβ1 could affect apoptosis and proliferation of GC by
regulating p15 and p21 (Li et al., 2005). However, all the
studies focused on only one or two members of the TGFβ
families, but the comprehensive effects of TGFβ family have
not been reported. In our study, we first divided GC patients
into two TGFβ regulation patterns using unsupervised clustering
analysis and then comprehensively analyzed the relationship
between all TGFβ families. In addition, we systematically
correlated these patterns with the TME of GC and developed
a TGFβ based risk score to accurately predict the survival
outcomes and TME characteristics in GC patients. To the best
of our knowledge, our work is the first to provide TGFβ-
associated prognosis and tumor infiltration characterization in
gastric carcinoma.

ICI treatment has shown efficacy in numerous cancer types,
including GC (Rosenberg et al., 2016; Nishino et al., 2017;
Fuchs et al., 2018). However, only a minority of patients
respond to the ICI treatment and the extant biomarkers are
not precise enough to be used clinically (Roh et al., 2017; Fuchs
et al., 2018; Panda et al., 2018). Exhaustively predictive
biomarkers for ICI treatment are urgently needed to
maximize the therapeutic benefit and minimize toxic side
effects. An increasing number of studies support the
concept that the TME plays a vital role in the ICI-based
immunotherapy (Lee et al., 2014; Nishino et al., 2017). The
TME comprises various cell types (endothelial cells,
fibroblasts, immune cells, etc.) and extracellular components
(cytokines, growth factors, hormones, extracellular matrix,
etc.) that surround tumor cells and are nourished by a
vascular network (Wu and Dai, 2017). Tumors
characterized by immune activation and T cell infiltration
are called hot tumors and have a higher response to
immunotherapy (Gajewski, 2015), whereas features of T cell
absence or attenuation and lower therapy-response in patients
are shown in cold tumors (Liu et al., 2020a). Based on 54
TGFβ-pathway-related genes, we identified two different
TGFβ regulation patterns and found that these two patterns
represented inflamed and noninflamed TMEs of GC. ICI
treatment might show higher response rates in the inflamed
phenotype and these regulation patterns could guide precision
immunotherapy treatment in GC. Moreover, we developed a
TGFβ based risk score to predict an individual’s TME
characteristics. It has been reported that factors involved in
immune checkpoints, including PD-1, PD-L1, LAG-3, and
CTLA-4, are more highly expressed in inflamed phenotypes
of the TME (Gajewski et al., 2017). A majority of 28 immune
checkpoint genes collected from Auslander’s study were
positively correlated with the risk score (Auslander et al.,
2018). Additionally, Mark et al. developed a T cell–inflamed
GEP that had robust predictive value for ICI treatment (Ayers
et al., 2017). In summary, we found that almost all these genes
were positively correlated with the risk score based on TGFβ
regulation patterns, which could be a robust predictive
biomarker for the TME and might have potential value for
predicting ICI treatment.

Zhang et al. (2020) assessed patterns of an RNA modification
of N6-methyladenosine (m6A) and systematically correlated
them with the TME infiltration characterization of GC (Zhang
et al., 2020). Similar to their study and our previous study,
unsupervised clustering analysis was first used to conduct a
comprehensive analysis of multiple genes (Li et al., 2021).
These two studies then used multiple genes to perform
principal component analysis (PCA) to develop a m6A score
for individual patients. In contrast, we then used the LASSO
algorithm and cross validation to narrow down variables and
filtered only four genes to develop a risk score in this study. Our
risk score was much easier to transform to clinical application, as
fewer genes needed to be detected. There are numerous gene
signatures for risk stratification of GC, such as hypoxia-immune-
based microenvironment gene signatures (Liu et al., 2020b),
autophagy-related gene signatures (Qiu et al., 2020),
metabolism-related gene signatures (Wen et al., 2020), and
TP53-associated gene signatures (Nie et al., 2020). However,
this is the first study developing a TGFβ-associated signature
for GC. Moreover, unlike a majority of the studies reported, our
study systematically correlated the risk score with TME
infiltration characterization. It is worth mentioning that the
area under the curve (AUC) for our risk score reached 0.84,
which indicated an accurate prediction value of our risk score.

In terms of limitations, we only validated the results in several
public cohorts and the relevant mechanisms of TGFβ need to be
further explored in vivo and in vitro. In addition, we defined the
median of the risk score as the cutoff value in all the validation
cohorts, and a better cutoff value needs to be further explored for
our risk score. Finally, we did not use prospective clinical trials to
validate the clinical value of our risk score.

CONCLUSION

We developed and validated a TGFβ-associated signature that
could predict the survival outcome and TME immune
characteristics of GC. Generally, this signature may aid in
precision medicine for GC.
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