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A polygenic risk score estimates the genetic risk of an individual for some disease or trait,
calculated by aggregating the effect of many common variants associated with the
condition. With the increasing availability of genetic data in large cohort studies such
as the UK Biobank, inclusion of this genetic risk as a covariate in statistical analyses is
becoming more widespread. Previously this required specialist knowledge, but as tooling
and data availability have improved it has become more feasible for statisticians and
epidemiologists to calculate existing scores themselves for use in analyses. While tutorial
resources exist for conducting genome-wide association studies and generating of new
polygenic risk scores, fewer guides exist for the simple calculation and application of
existing genetic scores. This guide outlines the key steps of this process: selection of
suitable polygenic risk scores from the literature, extraction of relevant genetic variants and
verification of their quality, calculation of the risk score and key considerations of its
inclusion in statistical models, using the UK Biobank imputed data as a model data set.
Many of the techniques in this guide will generalize to other datasets, however we also
focus on some of the specific techniques required for using data in the formats UK Biobank
have selected. This includes some of the challenges faced when working with large
numbers of variants, where the computation time required by some tools is impractical.
While we have focused on only a couple of tools, which may not be the best ones for every
given aspect of the process, one barrier to working with genetic data is the sheer volume of
tools available, and the difficulty for a novice to assess their viability. By discussing in depth
a couple of tools that are adequate for the calculation even at large scale, we hope to make
polygenic risk scores more accessible to a wider range of researchers.
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1 INTRODUCTION

A polygenic risk score (PRS), sometimes called polygenic score (PGS) or genetic risk score (GRS), is
an estimate of an individual’s genetic risk for some trait, obtained by aggregating and quantifying the
effect of many common variants (usually defined as minor allele frequency ≥1%) in the genome, each
of which can have a small effect on a person’s genetic risk for a given disease or condition. A PRS is
typically constructed as the weighted sum of a collection of genetic variants, usually single nucleotide
polymorphisms (SNPs) defined as single base-pair variations from the reference genome. The

Edited by:
Hugues Aschard,

Institut Pasteur, France

Reviewed by:
Vincent Frouin,

Neurospin, France
Wei-Min Chen,

University of Virginia, United States

*Correspondence:
Jennifer A. Collister

Jennifer.collister@ndph.ox.ac.uk

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 19 November 2021
Accepted: 12 January 2022

Published: 18 February 2022

Citation:
Collister JA, Liu X and Clifton L (2022)

Calculating Polygenic Risk Scores
(PRS) in UK Biobank: A Practical Guide

for Epidemiologists.
Front. Genet. 13:818574.

doi: 10.3389/fgene.2022.818574

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8185741

TECHNOLOGY AND CODE
published: 18 February 2022

doi: 10.3389/fgene.2022.818574

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.818574&domain=pdf&date_stamp=2022-02-18
https://www.frontiersin.org/articles/10.3389/fgene.2022.818574/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.818574/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.818574/full
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2022.818574
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.818574


resulting score is approximately normally distributed in the
general population, with higher scores indicating higher risk
(Figure 1).

The basic equation for the PRS of an individual j is:
Eq. (1): Standard equation to calculate a weighted polygenic

risk score

FIGURE 1 | Distribution of a polygenic risk score for breast cancer among individuals with and without registry-verified breast cancer events in UK Biobank (4,789
cases). Score used was 313-SNP PRS from (Mavaddat et al., 2019).

TABLE 1 | Glossary.

Term Meaning

Allele An alternative form of a genetic variant
Alternate id In the UK Biobank multi-allelic SNPs are represented as multiple SNPs with different alleles but the same rsID and same

position on the chromosome. In order to have a unique identifier for each SNP, an “alternate_id”was created that is typically
the rsID, chr:pos or Affymetrix identifier followed by the reference and alternate alleles

Base data Typically GWAS summary statistics containing SNP identifiers, risk alleles and effect sizes
Genome Build The genome build is a common “reference genome” developed by combining the sequences most commonly observed

across available individual genomes to create a representative genome against which individual genomes can be compared
Genotype data Genotyping is the identification of the genetic variants in the DNA of an individual. This is typically done using arrays or chips,

which contain probes that target specific locations in the DNA. These locations contain known variants of interest—so
genotyping is good at identifying which known variants a person has, but not at finding new variants

Genotype Imputation Genotype imputation uses a reference panel to estimate genotypes at locations that were not directly called by statistical
inference

Heritability Heritability is the amount of observable (phenotypic) variation among individuals of a population that is due to genetic
variation between the individuals

Linkage Disequilibrium (LD) Linkage disequilibrium (LD) is a measure of the correlation between neighbouring genetic variants that are more likely to be
inherited together because of their physical proximity, leading to association within a population

Locus Physical location of a gene or DNA polymorphism on a chromosome (plural “loci”)
Multi-allelic SNPs When there is more than one possible variant nucleotide (in addition to the reference) at a location, then we say this location is

“multi-allelic”
Next generation sequencing Sequencing enables the exact sequence of bases in a length of DNA to be determined. This technique can be used on

targeted areas such as the exome, although it is becoming increasingly cost effective to do whole genome sequencing
Phenotype The phenotype of an organism is its observable characteristics, for example its physical appearance
rsID The rsID for a SNP is the unique RefSNP ID number identifying the “reference SNP cluster” containing this SNP in dbSNP.

This cluster contains all SNPs that map to the same location on the genome
Since genome assemblies are still a work in progress, occasionally there will be changes that alter our understanding of
where a refSNP is located, so that it may co-locate with another existing refSNP. In these cases, the higher refSNP number is
retired and all SNPs are reassigned to the refSNP with the lower number

Single Nucleotide Polymorphism (SNP) A single nucleotide polymorphism (or single nucleotide variant) is a location on the genome where a single DNA nucleotide
that differs from that in the reference genome has been identified

Target data The data in which the PRS is developed, using effect sizes from the base data. Multiple PRS may be calculated, using
different thresholds for association, and the one with best performance is selected

Validation data The data in which the PRS is calculated and used in analyses. These analyses may validate the association between the PRS
and the trait of interest
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PRSj � ∑
N

i

βi pdosageij

where N is the number of SNPs in the score, βi is the effect size (or
beta) of variant i and dosageij is the number of copies of SNP i in
the genotype of individual j.

The effect sizes, or betas, are often obtained from a genome-
wide association study (GWAS) known as the “base” data (see
Table 1: Glossary), wherein each genetic marker in turn is tested
for association with the trait/disease of interest, and effect sizes
are estimated.

In more advanced methods of PRS development, “target”
data might be used to tune parameters or perform model
selection (Ma and Zhou, 2021). These approaches include the
construction of multiple PRS based on different threshold
values for SNP association with the trait of interest, the
shrinkage of betas, and adjustment for linkage
disequilibrium using techniques such as pruning and
clumping (Choi et al., 2020).

Once a PRS has been developed, it is important for the
association between the PRS and the trait of interest to be
replicated in an independent sample, referred to as
“validation” data. This is done to guard against overfitting,
which can lead to inflated estimates. The PRS can then be
calculated in other data-sets and used for a wide range of
analyses (Lewis and Vassos, 2020; Wray et al., 2021).

There is particular interest in adding PRS to existing risk
prediction models (Elliott et al., 2020; Inouye et al., 2018; Lee
et al., 2019; Sun et al., 2021), which could allow them to be
incorporated into clinical guidelines, enabling clinicians to
identify individuals who may be at higher risk of a given
condition, or who may benefit from more aggressive treatment
to manage the condition.

There has also been increasing use of PRS in Mendelian
Randomisation to establish the causal effect of risk factors on
clinical outcomes, mainly due to simplicity of use, increased
power and avoidance of weak instrument bias (MV et al.,
2015; Gajendragadkar et al., 2021; Zekavat et al., 2021).

As increasingly many PRS are developed, initiatives such as
the Polygenic Score Catalog1 and Cancer PRS-Web2 have
begun to host and curate the metadata required to calculate
the scores, making them more accessible for future research
(Fritsche et al., 2020; Lambert et al., 2021). Despite this, it
seems more common for new scores to be developed, offering
only minimal improvements in population level risk
prediction, than for existing scores to be used in further
analyses.

In this paper, we outline the necessary considerations when
selecting an existing PRS from the literature for use in new
analyses, including discussion of the information required for
the calculation to be reproducible. We provide a step-by-step
walkthrough of how to calculate an existing PRS in an
independent dataset, from extracting SNPs to the necessary

quality control (QC) checks that should be performed prior to
calculating the PRS. We focus in particular on imputed data,
using UK Biobank v3 imputed data (March 2018) as an example,
and we consider only SNPs on autosomes.

After discussing the various steps required to obtain and
calculate a PRS, we present a worked example using a PRS for
LDL-Cholesterol (LDL-C) and a brief discussion of the statistical
considerations when including a PRS in a model. Detailed code
examples are provided in the online materials3 on GitHub, along
with notes on technical considerations.

2 MATERIALS AND METHODS

2.1 Software Considerations
Genetic data can be stored in a range of different formats, and
due to the large size of the data it is often compressed to save
space, resulting in files that are not directly human-readable
and require dedicated software tools or packages. Many such
genetic software are designed to run on Linux and in this
paper we will assume access to a Linux system with adequate
storage space for the data.

Our example data, the UK Biobank v3 imputed data, is
made available in BGEN v1.2 format (Band and Marchini,
2018) which is the format output by the IMPUTE imputation
software (Marchini and Howie, 2010). There are a range of
software tools that can be used to read and manipulate this
data, and deciding which to use is a combination of
computation time, software compatibility and personal
preference. In this paper we will focus on three: bgenix,4

QCTOOL v25 and PLINK 26 (Chang et al., 2015; Band and
Marchini, 2018), summarized in Table 2.

Bgenix is a utility that was developed alongside the BGEN file
format to index and retrieve subsets from the .bgen data files. The
accompanying cat-bgen utility can be used to concatenate
BGEN files.

QCTOOL v2 was the tool used by UK Biobank to generate the
minor allele frequency and imputation information metrics
released alongside the imputed data. It can be used to produce
per-SNP and per-sample summary statistics, and perform
filtering of the dataset. However, it can be slow to run for
larger datasets.

A more scalable alternative is PLINK 2 (Chang et al., 2015),
which we recommend for the routine quality control (QC)
process described in this paper. A selection of PLINK 2
commands useful for such QC are summarized in Table 3.
While PLINK 1.9 has a similar feature set and could also be
used, it does not directly support the BGEN v1.2 file format, and
so an interim conversion step would be required.

In this paper we demonstrate the actual calculation of the PRS
in PLINK 2, but it is numerically straightforward and can be

1https://www.pgscatalog.org/
2https://prsweb.sph.umich.edu:8443/

3https://2cjenn.github.io/PRS_Pipeline/
4https://enkre.net/cgi-bin/code/bgen/doc/trunk/doc/wiki/bgenix.md
5https://www.well.ox.ac.uk/~gav/qctool_v2/
6https://www.cog-genomics.org/plink/2.0/
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computed in any scripting language such as R if sufficient
computer memory is available. Dedicated PRS tools like
PRSice-2 (Choi and O’Reilly, 2019) can also be used, but these
were designed for those wishing to develop a new PRS from
scratch, offering more complex functionalities and assuming a
level of domain expertise that may be off-putting for a beginner/
casual user.

2.2 Choosing a Polygenic Risk Score
In order to include a polygenic risk score in analyses, the first step
is to select an existing PRS for the phenotypic trait or outcome of
interest. PRS are sometimes made available in the supplementary
materials of the papers where they are derived, but are
increasingly being made available in online repositories such
as the PGS Catalog (Lambert et al., 2021), which improve
discoverability with the intention of improving the
reproducibility of genetic research.

2.2.1 Outcome
The research objective is the first consideration when choosing a
PRS. Since any given PRS is associated with a single phenotypic
trait (e.g., height, blood pressure) or medical condition/outcome
(e.g., breast cancer), when choosing a PRS for use in analysis it is
important to select a score that has been derived for an
appropriate trait or condition.

When attempting to replicate (or validate) the association
found between some given PRS and a trait/outcome then it is
important to understand exactly how this trait/outcome was
defined in the development of the PRS, as it will need to be
defined as similarly as possible within the validation dataset. For
measured traits (e.g., cholesterol), attention to units (e.g., mg/dL

or mmol/L) and whether adjustments have been made for
subgroups (e.g., correcting cholesterol for statin users) are
typically required to produce reliable results.

An alternative objective could be to investigate whether a PRS
for a trait (for example a measured biomarker such as cholesterol)
is associated with an outcome linked with that trait (such as heart
disease).

2.2.2 Performance
When going to the trouble of including a PRS in analyses, ideally
it should be one that provides as much additional information as
possible. The performance of a PRS can be measured in a variety
of ways - for example, one could consider the risk ratios between
top and bottom percentiles of the PRS and the outcome of
interest—and its stated performance should be evaluated in
the context of the research goals.

Metrics commonly used to evaluate a PRS include the pseudo-
R2, which indicates the amount of phenotypic variance explained
by the PRS (Lee et al., 2012), the Brier score, and the area under
the ROC curve (AUC). Some PRS repositories are starting to
make this information available alongside the scores to facilitate
comparison (Fritsche et al., 2020; Becker et al., 2021).

Larger base/target datasets give more power to detect
association of SNPs with the trait of interest, and have been
shown to yield scores with higher predictive capability (Lello
et al., 2019). In addition, it has been found that aggregating SNPs
that are not themselves associated with a trait at a statistically
significant p-value threshold can still result in a significantly
associated score (Agerbo et al., 2015), meaning that PRS are
getting larger—some contain hundreds of thousands, or even
millions of SNPs. While a large PRS including many SNPs

TABLE 2 | Comparison between genetic software for various usages.

Genetic software

Usage bgenix QCTOOL PLINK

Extract
SNPs

Yes, very quickly, although can only specify up
to 9,980 SNPs by chromosome and position
identifier

Yes, and has useful wildcard feature to extract from
all chromosome files in one step, but slow

Yes, have to extract per chromosome, slow for
BGEN data as it has to auto-convert the entire file not
just the required SNPs

Conduct
QC

No Yes, it computes summary statistics but filtering has
to be done in a separate step, and with additional
tools (such as awk or R)

Yes, fast, it can compute summary statistics and
apply filtering. Not all commands are suitable for use
on imputed data

Compute
PRS

No Yes but poorly documented Yes, with many options

TABLE 3 | PLINK 2 commands for summary statistics and filtering.

Function Summary statistics As exclusion criteria

Option Meaning

Allele frequency --freq --maf [threshold] Include SNPs with MAF above [threshold] (default = 0.01)
SNP call rate --missing --geno [threshold] Exclude SNPs with missing call rates exceeding the [threshold]

(default = 0.1)
Filter SNPs --exclude [file] Exclude SNPs listed in [file]
Filter samples --keep [file] Retains only the samples listed in [file], all others are excluded
HWE --hardy --hwe [threshold] Exclude SNPs with p-values below [threshold]
Linkage Disequilibrium (LD) --r2* --indep-pairwise

[window][step][threshold]
Pruning with a [window] size, sliding across the genome with [step]
size at a time and filter out any SNPs with LD r2 higher than [threshold]

* Command in PLINK 1.9.
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contains more information and is likely to have better
performance than a smaller PRS, there are diminishing returns
here and access to computational resources may impose a
practical limit on the size of PRS used.

PRS will perform best in populations of the same ancestry as
those in which they were derived (Duncan et al., 2019). This is
particularly important if the analysis data contains primarily non-
White individuals, as although there is ongoing effort to increase
the diversity of genetic data, currently most available PRSs are for
individuals of White ethnicity. If the analysis population contains
a mixture of ancestries we recommend a sensitivity analysis in a
subpopulation with genetic ancestry as similar as possible to that
in which the PRS was derived.

2.2.3 Technical Considerations
It is important to avoid sample overlap between the data in which
the PRS was developed (base and target), and the data in which
the PRS will be used in analyses. If the same individuals are
present across these datasets this can inflate the observed
association between the PRS and the trait of interest—this can
also occur if the datasets contain closely related individuals.

Since it may not be possible to access raw genetic data from the
base/target datasets to check for duplicate or related individuals
directly, we recommend that the datasets in which potential
scores were developed are reviewed in order to select one
where there are unlikely to be duplicated or related individuals
in the intended validation data.

Finally, if the genomic positions in the GWAS where the SNPs
were identified were not assigned on the same genomic build as the
intended analysis data then additional software tools, such as
LiftOver (Hinrichs et al., 2006),may be required to standardise this.

2.2.4 Information Needed From the Original Polygenic
Risk Score
At a minimum, the information needed to replicate a PRS is:

• The list of SNPs included in the score. These may be given as
“dbSNP Reference SNP numbers” (refSNP or rsID), or as
base-pair positions on a chromosome.

• The effect (and preferably also the non-effect) allele for
each SNP.

• The effect size (weighting) for each SNP for the condition of
interest.

• The genome build

These could be the raw results from a GWAS filtered to SNPs
of interest, or may have had further PRS development techniques
applied.

The effect size may be given as a beta (weighting) or as an Odds
Ratio (OR) or Hazard Ratio (HR), depending on the original
analysis and how the authors chose to present the score. It is
important to understand the form the weights are provided in to
know if any transformation is necessary, and how to interpret the
resulting PRS—for example, OR and HR will need to be log-
transformed to obtain the weights for use in the PRS calculation.

Sometimes additional information such as the effect allele
frequency (EAF) is also provided. Ensuring that the allele

frequencies in the validation data are consistent with those
observed in the base/target data is a good check to perform
when such data are available, and it can give greater confidence
when dealing with ambiguous SNPs. We will discuss this further
in Section 2.4.

When accessing a PRS through an online repository such as
PGS Catalog then they may have a schema7 detailing the possible
columns of information available about the score, and will have
ensured uniform headings across scores.

2.3 Extracting SNPs
As wementioned briefly in Section 2.1, the data we are discussing
in this paper is UKB v3 imputed data, which contains ~93M
autosomal variants for ~500,000 samples. The data is made
available in BGEN v1.2 files, a binary version of the “Oxford”
.gen and .sample file format, where trios of genotype probabilities
for each SNP are stored in the .bgen file with a corresponding
.bgen.bgi index file, and data about the individuals is stored in a
.sample file providing participant IDs unique to each application.
The genetic data is split by chromosome in files ranging from 40
to 200 GB.

When choosing which software tool to use to extract specific
SNPs from the bulk genetic data, two main considerations are
speed and compatibility with the data format. While PLINK 2 has
support for BGEN v1.2 format, in order to extract a given list of
SNPs, it will first auto-convert the entire data file to PLINK 2
binary format (.pgen, .pvar, .psam). This can be time-consuming
considering the large size of UKB imputed data and is not
lossless—PLINK 2 collapses the trios of raw genotype
probabilities into single dosages according to a given threshold
value (see Section 2.6.2 for more information).

For this reason we recommend bgenix, which was designed for
use on BGEN format data and makes use of a SQLITE index file
(.bgen.bgi) to quickly filter the required SNPs from the raw UKB
imputed data files. Unfortunately one current limitation of bgenix
is that while any number of SNPs can be specified by rsID, it is
only possible to specify up to 9,980 distinct SNPs by chromosome
and position in one command.

Due to differences in genotyping arrays, sometimes some of
the SNPs included in the PRS may not be available in the
validation data. In this case, it is important to report what
proportion were available—and if a high proportion are
missing it may be worth looking for proxies or considering a
different PRS.

2.4 Aligning SNPs Between Base and
Validation Data
We have previously mentioned that it is important to be aware of
the genome build used in both the validation data and in the data
within which the PRS was developed. There are a few other
differences that are possible between genetic data-sets—they
could have been typed using different genotyping platforms or

7https://www.pgscatalog.org/downloads/#scoring_columns
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arrays, with different strand orientations, or imputed using
different software tools.

All of these things can result in slight differences in the way
each SNP is labelled and presented, and it is important to ensure
that the correct variants have been identified for inclusion in
the PRS.

2.4.1 Strand-Flipping
Since the betas of our PRS are an estimate of the effect of one
allele (the “effect” or “risk” allele) of the SNP compared to the
other (“non-effect” allele), it is important that the dosages we
calculate are the number of copies of that effect allele. However,
the alleles of any given SNP are not always given consistently
between datasets. We illustrate five different situations in
Table 4, and describe the methods needed to align or
“harmonise” the data.

One convention is for the less frequently occurring allele
(minor allele) to be considered the effect allele, since it is a
change from the population norm—under this labelling, an effect
allele could be inversely associated with the condition of interest.
An alternative approach is to label the alleles that increase risk of a
condition as the effect alleles. Where two datasets have taken
different approaches to this labelling, or when the less frequent
allele changes between populations, the labels could be inverted
between our data sets (see Row 2, Table 4).

When the effect and non-effect allele are inverted between
datasets then this can be resolved automatically by some software
(e.g., PLINK 2) or manually by relabelling the effect and non-
effect allele in the PRS summary data, and inverting the effect size
accordingly (since the effect size is the additive effect of each copy
of the effect allele compared to the baseline of homozygous non-
effect allele, we would multiply by -1 to obtain the inverse effect
size).

A more complex situation arises when the datasets were
genotyped using different DNA strand conventions. Although
recent GWAS reports are almost always in reference to the
forward strand as a consequence of imputation to a common
reference panel, this is not always the case, and we may need to
ensure that our datasets are harmonised prior to analyses
(Hartwig et al., 2016).

If one dataset was genotyped in reference to the forward strand
and the other in reference to the backward strand then the
“backward” data would list the nucleotides that paired with
the bases on the forward stand. Any instance of “A” on the
forward strand would be “T” on the backward, “C” on forward

would be “G” on backward and vice versa (see Rows 3 and 4,
Table 4).

Some software (e.g., PRSice-2) can handle strand flips
automatically, for others (eg PLINK 2) these will need to be
identified and resolved manually.

2.4.2 Ambiguous SNPs
Ambiguity arises when the SNP is palindromic (i.e., its alleles are
nucleotides that pair with each other in a DNA molecule, such as
A/T, see Row 5, Table 4). If the effect allele frequencies (EAFs)
from the base data are available then we can compare them to the
frequencies in our data and identify the alleles accordingly, but
when the EAFs are close to 50% we cannot tell whether the effect
and non-effect allele have been inverted, or whether the DNA
strand is flipped. In these cases, or when allele frequencies in the
base data are not available, then we cannot be certain about
applying our weighting in the correct direction and should
therefore exclude the SNP.

In PLINK 2, this can be achieved by first computing EAFs
using the --freq command then filtering the output (.afreq)
using awk to get a list of ambiguous SNPs [e.g., palindromic SNPs
with EAF in the range 40 and 60% (Chen et al., 2018)]. Finally, the
PLINK 2 command --exclude can be used to filter out the
listed SNPs.

2.4.3 Multi-Allelic SNPs
Multi-allelic SNPs have multiple possible alternate alleles for one
reference allele, and these can be represented and identified in
different ways in different data formats. In the UKB imputed data,
these multi-allelic SNPs have been stored as a series of bi-allelic
variants, sharing the same rsID and chromosome position and
with the same listed reference allele but different alternate alleles.

The rsID and “chr:pos” identifiers are therefore not sufficient
to uniquely identify one SNP, and allele information must be
incorporated. This can be important during SNP extraction and
PRS calculation, since we wish to ensure that we are including the
correct alleles in our PRS calculation. In addition, many software
tools require a unique identifier for each SNP. We discuss this
further in the Online Materials.

2.4.4 Compare Allele Frequencies
When the source data for the PRS makes effect allele frequencies
available, then a good check is to compare the frequencies of these
alleles in the validation data. This can be helpful not only for
dealing with palindromic SNPs but also as a general sanity check.

TABLE 4 | Five examples of possible disagreements between PRS and validation data, when data harmonisation may be required. We illustrate five different situations in the
table: Perfect agreement, labelling disagreement, strand flip, strand flip and labelling disagreement, palindromic (ambiguous) SNP.

PRS summary data file Validation data

Effect allele Non-effect allele Effect allele Non-effect allele

1 Expected scenario - perfect agreement A C A C
2 PRS and validation data disagree on labelling of effect allele A C C A
3 “Strand flip” A C T G
4 Strand flip and labelling disagreement A C G T
5 Palindromic A T T A
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While allele frequencies are unlikely to be identical between
datasets, as the population will contain a different group of
individuals and may be of different ancestries, it is reassuring
if the frequencies are similar.

2.5 Quality Control
When using an existing PRS, it is important to first ensure that it
is of good quality and is appropriate for the analysis data. Errors
in genotype data can have many causes, including mix-ups or
contamination of the samples, and malfunctions of the genotype
probes. Without removing these errors, the resulting analyses
may have reduced power and validity.

There are a range of quality control considerations for genetic
data that aim to identify and exclude potential data errors. In this
section we will discuss these checks and indicate which may be
relevant when calculating an existing PRS, outlined in Figure 2.
The threshold values for many of these checks can be arbitrary
and will vary depending on the purpose of the analysis, but we
will give some examples from the literature.

The authors who developed the PRS should have provided
documentation detailing the quality control (QC) performed on
the base and target data, and being able to identify the steps taken
is useful for determining if the PRS is suitable for the intended
analyses. Since PRS are normally derived from GWAS summary
statistics, the data will most likely have been subject to the typical
GWAS QC checks, described in detail elsewhere (Reed et al.,
2015; Marees et al., 2018; Choi et al., 2020).

Both the genetic variants included in the analysis (SNPs) and
the individuals in the analysis population (samples) should have
undergone these quality checks. A standard process could involve
filtering at the SNP level first, followed by sample level filtering,
and finally filtering SNPs based on Hardy-Weinberg equilibrium
(HWE), as suggested by (Reed et al., 2015). The rationale for this
is that HWE can be influenced by the population structure of the
sample, and we will discuss this further in Section 2.5.3.
Alternatively, sometimes SNP and sample filtering are
iteratively applied with increasingly stringent thresholds
(Marees et al., 2018).

In the case of imputed genotyping data these QC checks are
typically performed on the directly called data prior to
imputation, which means both that the imputation is
conducted using high quality data, and that any lower quality
data that was excluded may then be imputed. After imputation,
the quality of each imputed variant is calculated, and those that
were poorly imputed may then be excluded from further analyses.
When using data that has already been imputed it may still be
worth running further checks on the data, for example to use
more stringent thresholds than were applied prior to imputation,
depending on the intended analysis.

The focus of our discussion, the UK Biobank data, was
genotyped by Affymetrix, who only provided genotype calls
for SNPs and samples that satisfied their QC8. UK Biobank
then applied a QC pipeline designed to accommodate both the
large-scale, diverse population and the broad range of research
questions the data would be used for, and made summary
statistics available in the Data Showcase to facilitate further
QC by researchers (Bycroft et al., 2018). These include
variant-level statistics computed in QCTOOL for the imputed
data (“Imputation MAF + info” files9) and downloadable
variables (Category 100313, Genotyping process and sample
QC10) which indicate lower quality samples.

2.5.1 SNP QC
The SNP QC required during the development of a PRS is
described in detail elsewhere (Reed et al., 2015; Marees et al.,
2018; Choi et al., 2020), but we provide a brief overview to give a
rough understanding of the rationale behind each check.

It is also important to ensure that the SNPs required for our
chosen PRS are of sufficient quality in our intended analysis data.
Any variants that were poorly genotyped in this data may warrant

FIGURE 2 | Summary of quality control and alignment steps.

8https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/affy_data_generation2017.pdf
9https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukb_genetic_data_
description.txt
10https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100313
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exclusion so they do not compromise the power of the score. We
indicate which quality control metrics should be inspected when
calculating an existing PRS, with examples for some that may be
of situational interest.

2.5.1.1 Linkage Disequilibrium
Linkage disequilibrium (LD) is a measure of the correlation
between neighbouring genetic variants that are more likely to
be inherited together because of their physical proximity, leading
to association within a population. As in classic statistical
modelling, multicollinearity can lead to problems with the
model, and so any SNPs in high LD will typically have been
identified and removed during the development of the PRS by
methods such as “pruning” or “clumping” (Privé et al., 2019).

Since patterns of LD may vary among populations,
particularly those of different ancestries, it may be of interest
to verify that the SNPs in the PRS remain independent in the
analysis data (Sawyer et al., 2005).

In addition, when calculating a PRS for a condition such as
Alzheimer’s disease that has established high-risk variants (APOE
e4), one may wish to exclude such variants from the polygenic
score in order to consider them separately in the statistical
modelling. In this case, we advise checking that no variants in
the score are in LD with the high risk variant(s).

Details of how to investigate and filter on LD statistics using
PLINK 2 can be found in the appendix of our online materials.11

2.5.1.2 Imputation Information
Genotype imputation is the estimation of missing genotype calls
by statistical inference. Increasingly, imputation is being used not
only to fill in missing data caused by genotyping errors, but also to
estimate the genotypes of variants that were not directly assayed,
in order to increase the number of SNPs available in the data.

The “imputation information” statistic is a measure of
imputation quality which typically takes values between 0 and
1, where 0 indicates complete uncertainty and 1 represents
complete certainty about the imputed genotype. Depending on
the software used, there are a different few information metrics
that can be used to assess the quality of imputed data, but they are
generally highly correlated (Marchini and Howie, 2010).

The UK Biobank carried out imputation on the genotype data
using SHAPEIT3 and IMPUTE4 to statistically infer the
genotypes of variants that had not been directly called in the
genotyping array, and those which were missing or had been set
to missing in central UKB quality control. They used QCTOOL
(-snp-stats) to calculate the imputation information, and made it
available to researchers in the “MAF + Info” files (UKB Resource
196712). Bycroft et al. advise that “An information score of α in a
sample of M individuals indicates that the amount of data at the
imputed marker is approximately equivalent to a set of perfectly
observed genotype data in a sample size of αM” and note that an
information measure of 0.3 should yield good power to detect

association given the large sample size of UKB (Bycroft et al.,
2018).

If the PRS was developed on imputed data then the authors
will normally have set a threshold imputation information score
at which SNPs were eligible for inclusion, however it is possible
that a variant that was well imputed in the base/target data was
poorly imputed in the intended analysis data, so it is worth
checking that all imputed SNPs in the score are good quality.

2.5.1.3 Minor Allele Frequency
For a given SNP, the allele which is most common in the
population is known as the “major” allele and the less
common allele(s) are “minor.” The minor allele frequency
(MAF) indicates how rare a variant is—typically a minor allele
with frequency >5% is considered “common” while those
between 1 and 5% are “low frequency” and MAF <1% is said
to be “rare.”

If the frequency of the minor allele of a SNP is too low then we
will not have adequate power to make meaningful statistical
statements. Similarly when using imputed genotyping data, the
imputation information of a SNP is likely to be correlated with its
MAF, since there is less power available for imputing rare SNPs.

It is therefore common for SNPs with MAF below a certain
threshold to have been excluded during GWAS and the
development of PRS. The threshold for such exclusion varies
depending on the aims of the original analysis and the size of the
dataset - larger datasets give more power, and allow for the
analysis of rarer variants.

Note however that the allele frequency is dependent on the
population under study - for example some alleles are more
common in individuals of particular ancestry. It is possible some
SNPs will be rarer in the intended analysis data than in the data
where the PRS was developed, in which case a decision must be
made on whether to include them.

2.5.1.4 SNP Call Rate
The call rate for a SNP is the proportion of individuals with non-
missing data for that SNP. If a SNP has a low call rate then it may
have been poorly assayed, and including it may result in spurious
data (Turner et al., 2011). SNPs with a low call rate are therefore
often excluded.

In the case of imputed genotype data, any assayed SNPs with
call rate below a chosen threshold are generally considered poor
quality and excluded prior to imputation. These excluded SNPs
may then have their genotypes imputed, along with any missing
calls in other SNPs, resulting in a complete data set.

2.5.2 Sample QC
The word “sample” in this context refers to the individuals whose
genetic data we are working with (like sample size in statistics). As
with the genetic variants, the goal is to make sure that all
individuals included in the study have high quality data, and
the criteria considered during the calculation of the PRS are
typically those used in GWAS.

When calculating an existing PRS, the QC again depends on
the aims of the analysis. If it is an association analysis for example,
evaluating the strength of association between the PRS and some

11https://2cjenn.github.io/PRS_Pipeline/#Appendices
12https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=1967
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trait or outcome of interest, then the focus is on the data at a
population level, and exclusion of related individuals and
restriction to a single ethnic group may be desirable, or
included in sensitivity analyses. Alternatively, if the goal is to
model how the PRS would perform if incorporated into clinical
guidance, perhaps simulating a theoretical intervention to be
offered at a given risk threshold, then one might wish to calculate
the PRS for all individuals except those for whom there is reason
to believe there were errors in genotyping.

Within the UK Biobank data, QC was performed to identify a
subset of high quality, unrelated samples for use in the calculation
of principal components. The details of the principal components
analysis (PCA) are beyond the scope of this paper, and are
described elsewhere (Bycroft et al., 2018). In short, UK
Biobank used them to supplement the ethnic groups self-
reported by participants and identify a group of individuals
considered to be genetically of “White British ancestry” This
White British ancestry subset is made available to researchers in
UKB Data Field 22006.13

In addition, a directly downloadable variable (UKB Data Field
2202014) is provided which indicates whether a participant’s
genetic data met the quality control checks required to be
used in the calculation of these principal components (Bycroft
et al., 2018). These checks comprised:

• Exclude individuals who were outliers for heterozygosity or
missing rates.

• Exclude individuals with a missing rate >0.02 on autosomes.
• Exclude individuals with sex discordance (between the
phenotypic and genetically inferred sex), or for whom
genetic sex could not be determined.

• Exclude individuals who are not in a maximal set of
unrelated individuals up to 3rd degree.

We will go through the rationale for each of these exclusions in
the following sections.

2.5.2.1 Heterozygosity
Heterozygosity is when an individual has two different alleles at a
locus—an individual with the same allele on both chromosomes
is homozygous at that locus. Heterozygosity is typically higher in
individuals from mixed ethnic backgrounds, and lower in
individuals whose parents are closely related. Extreme
heterozygosity can indicate poor sample quality, and thus
outliers are typically excluded.

The UK Biobank has done central checks and identified
individuals which extreme heterozygosity that is not explained
by ancestry. These outlying individuals, alongside those who were
outliers for missing data (see “Sample call rate”) are listed in UKB
Data Field 22027.15

2.5.2.2 Sample Call Rate
The sample call rate is defined as the proportion of SNPs with
non-missing data for this sample. This is analogous to the SNP
call rate, but for individuals instead of SNPs. Individuals with a
low call rate have a high proportion of missing genetic data, which
could indicate poor quality.

In the UK Biobank central checks, individuals who were
outliers for missingness prior to imputation were identified.
These individuals, along with those who were outliers for
heterozygosity are listed in UKB Data Field 22027.

2.5.2.3 Sex Discordance
When the genotype inferred from the X and Y chromosomes
doesn’t match that reported by the participant then this is known
as sex discordance. Although it could be due to gender
reassignment or sex-chromosome aneuploidy it could also
indicate unreliable data and individuals with sex discordance
are therefore generally excluded. The genetically determined sex
of individuals in UK Biobank is made available in UKBData Field
2200116 and can be compared to the gender reported at baseline,
UKB Data Field 3117.

2.5.2.4 Relatedness
If the data contains participants who are closely related then their
genomes would be more similar than those of unrelated
individuals, which can lead to biased estimations in
population-level analyses. In the UK Biobank, kinship
coefficients were estimated for all pair of individuals using
KING software (Manichaikul et al., 2010), and a rough
categorisation of relatedness is available in UKBData Field 22021.

When excluding related individuals, note that only n-1 from
every cluster of n related individuals needs to be removed in order
for the remaining population to be unrelated. The UK Biobank
Data Field 22020 restricts to a maximal subset of unrelated (to the
3rd degree) individuals who were not sex discordant or outliers
for missingness or heterozygosity. This is the subset of
participants that was used by UK Biobank to calculate the
genetic principal components, and the algorithm by which
they were selected is discussed in detail in (Bycroft et al., 2018).

Note that while for many analyses the subset identified by UK
Biobank is adequate and convenient, it did not take disease status
into account when removing related individuals. For rare
outcomes it may be advisable to construct a new maximal
unrelated subpopulation that preferentially retains individuals
with the condition of interest.

2.5.3 Hardy-Weinberg Equilibrium
The Hardy-Weinberg Equilibrium (HWE) is a principle that
states that allele and genotype frequencies in a stable
population without evolutionary influences will stay constant
between generations. Deviation from HWE indicates that
genotype frequencies differ significantly from their expected
values which could indicate genotyping errors, such variants

13https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22006
14https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22020
15https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22027

16https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=22001
17https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=31
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are therefore often excluded from analyses (Marees et al., 2018;
Zhao et al., 2018). Note that HWE is sensitive to population
structure if allele frequencies differ between subpopulations, so
the population should be stratified by ethnicity prior to
testing HWE.

In the UK Biobank genotyping data, variants were tested for
HWE within each genotyping batch among individuals of
homogeneous European ancestry (computed via PCA), and
were set to missing at a threshold of p < 10−12 prior to imputation.

It is important to be aware that HWE is an assumption of
many genotype imputation methods, including the IMPUTE2
program (Howie et al., 2009). If such methods have been used, it
may then not be appropriate to test whether the resulting imputed
variants conform to HWE.

The PLINK 2 command --hwe will filter out variants which
deviate from HWE with a p-value beyond the given threshold
(Wigginton et al., 2005; Graffelman andMoreno, 2013). Note that
the HWE test used in PLINK 2 does not appropriately account for
the uncertainty in imputed data (Shriner, 2011, 2013).

2.6 Calculating Dosages
Imputed genotypes are generally given probabilistically,
rather than as discrete values. For example, for a particular
SNP with alleles A and B, is represented in. bgen as the trio of
genotype probabilities P(AA), P(AB) and P(BB) for each
individual.

A directly genotyped SNP will have probability 1 of one
genotype and 0 for the others, but at an imputed SNP an
individual might have, for example, a 90% probability of being
homozygous for allele A (genotype AA) and a 10% probability of
being heterozygous (genotype AB).

To calculate a PRS, we want to convert this information on
genotype probabilities into a single number per SNP giving the
“dosage” of the effect allele. We are assuming additive genetic
effects, where the phenotypic expression increases for each copy
of the effect allele.

There are two main ways of doing this - allelic or hard-call
dosages. The method used should be reported to allow for
replication of the PRS and any results.

2.6.1 Allelic Dosages
The allelic dosages are real numbers, dosageij ∈ [0, 2] calculated
as the expected number of copies of the effect allele

allelic dosage � 2P(BB) + P(AB)
where A is the non-effect allele and B is the effect allele.

Although it is obviously not biologically plausible for an
individual to actually have fractional copies of a variant, this
provides a dosage value that incorporates some of the uncertainty
of the imputed genotype calls.

See the PLINK 2 command --export A for exporting allelic
dosage into a separate file, which can be read in R for easy
inspection.

2.6.2 Hard-Called Dosages
Hard-called, or thresholded, dosages are integer values,
dosageij ∈ {0, 1, 2} for SNP i in individual j, that are

obtained by choosing a threshold value at which to round the
expected (allelic) dosage to a whole number.

For example, if we set threshold as 0.1 in PLINK 2 using
--hard-call-threshold 0.1, the hard-call dosage will be
assigned as follows:

hardcall dosage �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if allelic dosage ∈ [0.0, 0.1]
1 if allelic dosage ∈ [0.9, 1.1]
2 if allelic dosage ∈ [1.9, 2.0]

Missing otherwise

While this provides us with data that looks the same as directly
called genotypes, and can be stored in the same file formats, it is
also losing information, and if we convert our entire dataset to
hard-calls under a given threshold then we would not be able to
recover our original information or change the hard-call
threshold used.

Note also that once the genotype probabilities have been
collapsed into a single expected dosage, we can get the same
hard-call dosage value for two genotype probability trios that
convey very different certainty about the underlying genotype
(see Table 5).

In this example, the individual has an allelic dosage of 1.06
copies of allele B for both SNPs, which would result in them being
categorised as heterozygous when using hard-call dosages with a
threshold of 0.1. However, their imputed probability of having the
heterozygous genotype for SNP1 is much lower than it is
for SNP2.

See the PLINK 2 command --import-dosage-
certainty to use hard-called dosages and discard the values
with low certainty.

2.7 Calculating the Polygenic Risk Score
While occasionally a risk score may be computed as the
unweighted sum of effect allele dosages (“allele count model”),
the most common approach is to weight each allele dosage by its
effect size, as described in Eq. (1), and that is the method we will
focus on here.

The actual calculation of a PRS is numerically straightforward
and can be computed directly in any standard scripting language,
such as R or SAS, as a matrix multiplication of SNP dosages per
individual by betas per SNP. Recall that if the effect sizes in the
PRS were given as odds ratios or hazard ratios, they will need to be
log-transformed at this point.

However, for large scores it can be more convenient to use
genetics tools such as PLINK 2, which uses the --score
command to calculate linear risk scores for each individual
and has some configuration options built in to handle missing
data and standardisation of the score.

TABLE 5 | Hard-call vs. allelic dosages: genotype probability trios and allelic and
hard-called dosages for 2 SNPs of a theoretical individual.

P (AA) P (AB) P(BB) Allelic Dosage
(B)

Hard-call Dosage
(B)

SNP1 0.22 0.50 0.28 1.06 1
SNP2 0.02 0.90 0.08 1.06 1
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2.7.1 Missing Genotype Data
Although this guide primarily deals with imputed genotype data
and advocates the use of allelic dosages, we will briefly outline
some of the techniques used to handle missing data in the
calculation of a PRS.

Directly genotyped data, or imputed data that has been hard-
called, may contain missing data and although individuals and
SNPs with a high proportion of missingness are typically
excluded as part of the quality control, there can still be some
genotypes missing for some individuals.

One common approach to dealing with missing data for a SNP is
to use the effect allele frequency in the population in place of the
missing dosage for the individual (analogous to mean imputation in
statistical analyses). This is the default approach in PLINK 2, but can
be disabled by using the --no-mean-imputation modifier.

Alternatively missing genotypes can be ignored, and any SNPs
for which an individual is missing a dosage value will not
contribute to the score. In this case, it is advisable to find the
average PRS per individual by dividing by the number of non-
missing SNP dosages. This prevents scores of individuals with
missing genetic data from being consistently lower than scores of
individuals with complete data, which would result in bias
towards lower risk.

Since each individual (i.e., sample) could be missing a different
number of SNPs, each participant’s total PRS should be divided
by their number of non-missing alleles; our averaged PRS is
calculated as

PRSj � ∑N
i βi pdosageij

P pMj

where P is the ploidy of the individual (2 in this case since human
autosomes are diploid), and Mj is the number of non-missing
variants observed for individual j.

This averaging approach is also the default in PLINK 2, and
the resulting averaged PRS is output in the “<Score
name>_AVG” column of a PLINK format sample score file
(.sscore). If a non-averaged PRS is preferred, then the cols =
scoresums modifier can be specified.

2.7.2 Transforming the Polygenic Risk Score for Use in
Analyses
Once the PRS has been computed, there are a variety of
transformations that can be applied for either comparison to
other scores or to produce easily interpretable results in analyses.

As the number of SNPs included in a PRS increases, so does
the theoretical range of the score. For example, a hypothetical
individual who was homozygous for all risk alleles (dosage = 2)
could have a score of 20 for a 100 SNP PRS where all betas were
0.1, but a score of 200,000 for a 1,000,000 SNP PRS with betas of
0.1. This means we cannot directly compare the scores for PRS
containing different numbers of SNPs.

In order to compare such scores we may therefore wish to
average the total PRS by the number of SNPs which ensures a
similar scale regardless of the number of SNPs used. Be aware,
however, that by discarding the absolute value of the PRS, we
compromise our ability to identify outliers, compare the PRS

across samples, or detect the effect of natural selection (Choi et al.,
2020).

For use in association studies, one common approach is to
categorise PRS into percentiles for ease of interpretation. Often
tertiles, quartiles, quintiles, or deciles are used, or the top 1% are
compared to the middle quintile. This allows easy comparison of
“high risk” individuals to “average” ones—especially given that
there’s currently no well-established cut-off threshold to define a
“high PRS” (Cupido et al., 2021).

In order to include a PRS as a continuous variable in regression
models, it is often standardised to a normal distribution withmean =
0 and SD= 1, so that the effect in themodel can be given in units of 1
SD of the PRS. This transformation also serves as a pre-processing
step when combining multiple PRS into one. For example, we might
wish to average PRS for similar traits (e.g., systolic blood pressure,
diastolic blood pressure and pulse pressure) into one combined
“blood pressure” risk score for analysis as demonstrated in (Pazoki
et al., 2018), or construct a “meta” PRS combining multiple PRS for
one trait across studies (Inouye et al., 2018).

The PRS is also generally kept as a continuous variable when it
is incorporated in risk prediction models, as we see in (Elliott
et al., 2020) (A. Lee et al., 2019). It is still necessary to assess the
linearity assumption in the model building stage (i.e., linear
association between PRS and outcome), as outlined in (Sun
et al., 2021).

Each transformation has its own limitations, we advise readers
to carefully choose one based on their analysis objective.

2.8 PRS in Statistical Models
One of the general statistical considerations when incorporating
PRS in a model is to account for population genetic structures to
avoid bias, which can be achieved by adjusting for genetic
principal components (PC) in the model (Price et al., 2006) or
by more advanced methods such as mixed models (Price et al.,
2010). Typically, the first 10 genetic PCs are considered as
possible confounders, this number is routine but arbitrary
(Reed et al., 2015). Even when the analysis population is
restricted to a single ethnic group, the genetic PCs can capture
population structure that is not available in self-reported
ethnicity. In UKB, the first 40 PCs are available for researchers
to download under (Data Field 2200918) (Bycroft et al., 2018).

Similarly, bias can arise when the data was genotyped using
different arrays or across multiple batches—which is increasingly
common as the size of studies increases (Turner et al., 2011). It is
therefore standard practice to adjust for genotyping array (Inouye
et al., 2018). In UK Biobank the first ~50,000 people were
genotyped using the UK BiLEVE Axiom Array, while the rest
of the cohort were genotyped using the UK BioBank Axiom
Array. Genotyping was performed in 106 batches of about 4,700
individuals, using a custom genotype calling pipeline developed
by Affymetrix. Information on both the array and batch number
for each participant is made available for researchers (Data Field
2200019), and UK Biobank internal quality control of the data was

18https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22009
19https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22000
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performed within batches to account for any batch-level
discrepancies.

3 RESULTS

We have developed a pipeline that, when supplied with a list of
SNPs and betas, can extract required SNPs, apply chosen QC and
calculate a PRS using bgenix and PLINK 2. For the full code, and
additional documentation of technical aspects, see Online
Materials: PRS Pipeline on GitHub.20

3.1 Worked Example
We chose the PRS for low-density lipoprotein cholesterol developed
by Klarin et al. (2018) in the Million Veteran Program data, because
it is a relatively recent PRS that provides a comprehensive selection
of SNPs in the context of the current literature. It consists of
223 lipid-associated SNPs with weights derived in the 2017
Global Lipids Genetics Consortium (GLGC) exome array analysis
(Liu et al., 2017), in association analyses that were adjusted for sex,
age, age squared and up to four principal components.

In addition, previous work has already been done applying this
PRS within the UK Biobank (Trinder et al., 2020a; Trinder et al.,
2020b) and these results have been returned to the UKB and
made available, so we are able to validate our results against theirs.

The SNP list and betas for LDL-C were obtained from
Supplementary Table 11 of Klarin et al., and were labelled under
genome build GRCh37.75. The PRS is also available from the PGS
Catalog with polygenic score ID PGS00011521 (Lambert et al., 2021).

3.1.1 Validation Data
Our validation dataset is the UK Biobank (UKB), a prospective
cohort study of ~500,000 volunteers of middle and old age
(40–69 years) in the UK. All UKB participants were genotyped,
yielding directly called data for around 850,000 genetic variants.
Variants that failed quality control were excluded, and data for a
further ~9 million genetic variants was then imputed. Variant IDs
were assigned according to the Genome Reference Consortium
Human Build 37 (GRCh37) reference genome (Bycroft et al.,
2018), and the data was aligned such that the first allele given
in the. bgen files is the reference allele on the forward strand (UK
Biobank Resource 53122).

Note that individuals who have withdrawn from the UKB cohort
have had their IDs replaced with negative numbers in the sample file.
This maintains the order of the remaining IDs, so they still line up
with the genetic data, but enforces exclusion of withdrawn
participants, as they can no longer be joined to the phenotypic data.

In the GLGC exome array analysis where the weights for the
LDL-C PRS were derived, LDL-cholesterol was measured in mg/dL,
and therefore the weights βi represent the increase of LDL-C in mg/
dL for each unit increase in dosage of SNPi. In the UK Biobank,
LDL-cholesterol in mmol/L was measured in each participant at

baseline, by blood samples taken for assays.We therefore convert the
LDL-C measurements from mmol/L to mg/dL by multiplying
by 38.67.

3.1.2 SNP Extraction and Review of QC
We used bgenix (Band and Marchini, 2018) to extract SNPs for the
PRS from UKB imputation data. All 223 variants were available in
the UKB imputed genetic data, and there were no multi-allelic or
ambiguous SNPs. We verified that the allele frequencies of the SNPs
were similar (within 0.1 percentage point) in our data to those
reported in the supplementary materials of (Klarin et al., 2018).

In the GLGC analysis where the weights were derived, the
quality control conducted centrally across 73 contributing studies
included removal of ambiguous variants, exclusion of variants
with call rate <0.9 or HWE p value <1 × 10−7 (Liu et al., 2017). In
the MVP data where the PRS was developed, the threshold values
used for imputation information and minor allele frequency were
0.3 and 0.0003 respectively (Klarin et al., 2018).

We chose to exclude SNPs with an imputation information
<0.4 within the UK Biobank data (n = 1), since this is a common
threshold used in literature (Zheng et al., 2012). We also excluded
rare SNPs with MAF <0.005 (n = 4). After these exclusions, we
had 228 SNPs remaining (Figure 3).

When investigating the impact of these exclusions (Figure 4),
we saw that the SNPs we excluded due toMAF included the SNPs
with the lowest remaining imputation information - this is
unsurprising since SNPs with lower MAF are generally less
well imputed. In addition, we observed that these SNPs had
some of the larger absolute effect sizes.

We excluded participants (n = 80,296) according to UK
Biobank Data Field 22020, which indicates the subset of
participants that met quality control for use in the calculation
of principal components.

3.1.3 Polygenic Risk Score Calculation and Validation
We calculated the PRS using allelic dosages in PLINK 2 with the
cols = scoresums option to get the raw (non-averaged) values.

FIGURE 3 | Flowchart showing quality control exclusions in worked
example of LDL-C PRS in UK Biobank data.

20https://2cjenn.github.io/PRS_Pipeline/
21https://www.pgscatalog.org/score/PGS000115/
22https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/ukb_genetic_data_description.txt
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Since the PRS was developed among primarily White
individuals, we restricted our validation population to
UK Biobank participants of genetically White British ancestry
(using UKB Data Field 22006). Among this population the PRS
was approximately normally distributed (Figure 5).

Plotting the PRS against baseline LDL-C (Figure 6) we saw
good association between the PRS and the measured LDL-C
(R2 = 0.27).

We compared our calculated PRS with the one returned to the
UK Biobank by Trinder et al. (UKB Return 214223) and found
almost perfect correlation (R2 = 0.99). However, when inspecting
a scatterplot of the scores (Figure 7) we observed differences in
the raw values.

FIGURE 4 | Imputation information against beta of each SNP in LDL-C PRS. Navy dashed line is our imputation information threshold of 0.4, and SNPs are coloured
by our MAF threshold of 0.005.

FIGURE 5 | Histogram of LDL-C PRS with overlaid density plot.

23https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2142
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• We had allowed the betas to be either positive or negative,
while in the calculation of the returned score all SNPs had
been aligned such that the betas were positive. This resulted
in our scores being consistently smaller.

• We had used allelic dosages, while the returned score had
used hard-called dosages. This led to the parallel banding
effect on the plot.

• Our quality control metrics differed slightly from those
used in Trinder et al., leading to slightly different
exclusions.

While both approaches are completely reasonable, the
resulting scores are not directly comparable. This
demonstrates the importance of carefully reading the methods
used in the initial calculation of the PRS, in particular if the intent
is to compare the performance or association in a new dataset
with the initial publication.

3.2 Time and Computation Requirements
For this 223 SNP PRS, we ran each part with each of the three
software tools discussed in this paper where possible, as a

FIGURE 6 | Association between LDL-C PRS and measured LDL-C at baseline among genetically White British UK Biobank participants.

FIGURE 7 |Comparison of PRS calculated using allelic and hard-call dosages (Pearson’s correlation coefficient = 0.99). PRS usedwas 223-SNP score from (Klarin
et al., 2018), with hard-called dosage approach from (Trinder et al., 2020b).
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comparison we also ran a 118,388 SNP PRS for breast cancer
(PGS00051124) (Fritsche et al., 2020). The computation times are
presented in Table 6, and are not intended as an overall
performance analysis of each tool, but rather as an indication
of their relative speeds and scalability to larger datasets.

Bgenix is the clear leader in terms of SNP extraction speed
from BGEN files, as it was designed for this file format and takes
advantage of the index file. While QCTOOL v2 offers a
convenient wildcard feature to read from all the chromosome
files in one command, it takes a long time to read the data and
does not scale well to larger scores. PLINK 2 can rapidly extract
data from its native. pgen file format, but in order to manipulate
BGEN files it first auto-converts them to. pgen which takes
approximately 25 min per chromosome on the full imputed data.

QCTOOL can calculate per-SNP or per-sample summary statistics
quickly for small numbers of SNPs, but this scales poorly for large
scores. In addition, some external tool (e.g., awk orR) is then needed to
filter the resulting statistics by the desired exclusion thresholds, and
then a separate extraction step must be used to apply these filters,
which has not been included in our timings.

As previously discussed, PLINK 2 needs to convert the dataset to
pgen format the first time it is read, but this only needs to be done
once for a given score. Once the data has been converted, PLINK 2
can compute summary metrics and apply quality control thresholds
in a single command, and does this rapidly even for large datasets.

Although the QCTOOL list of options includes the -risk-score
command for PRS calculation, this is poorly documented and we
have not explored it here. PLINK 2 can calculate even large PRS
within a reasonable time.

4 DISCUSSION

The continual hunt for “novel” variants associated with any given trait
means new PRS are constantly being developed, using variants and
effect sizes identified in GWAS conducted on ever-growing meta-
analyses of multiple data-sets. This results in a wide array of scores for
any given trait, with only minor improvements in predictive power
beyond some threshold number of variants included.

However, the more data sets were used to contribute to the
development of a PRS, the fewer datasets remain in which the score
can be validated and used. We argue that there is value to be gained

from using existing PRS in analyses, to validate and replicate the
association and to investigate the potential for incorporating such scores
in clinical practice. A PRS that has been incorporated in many analyses
may become an “industry standard” score, and will result in more
comparable research outputs than if many different scores were used.

Authors who develop PRS clearly hope that these scores will be
used by others, and initiatives like the PGS Catalog and the
Genetic Risk Prediction Studies (GRIPS) Statement have gone a
long way towards making this possible by homogenising the
reporting of the necessary information for replicating a PRS
(Lambert et al., 2021; Wand et al., 2021).

Indeed, recentwork (Becker et al., 2021) hasmade existing PRS even
more accessible by arranging to make a selection of pre-calculated
scores available for download within large datasets such as the UK
Biobank. However, while this may offer a simple way for non-genetics
focussed researchers to easily include PRS in their analyses, we should
be wary that convenience does not overtake the need to critically
evaluate the appropriateness of the score and the quality control applied.

In addition, even though the UK Biobank requests that all
derived outputs are returned to them to bemade available for other
researchers to download, calculated PRS are not always returned
and thus retrievable. Researchers who hope to use the same score
are thus often obliged to reproduce the calculation, since direct
sharing of UK Biobank data between studies is not permitted.

In this paper, we outlined the background concepts of PRS,
compared genetic software tools for particular usage scenarios, and
discussed the various QC metrics commonly used when working
with genetic data, highlighting ways to best utilise resources provided
by UKB. We provide our “PRS pipeline,”25 an easily modifiable and
reusable script that takes an input file of betas and calculates the PRS.

In addition, we point out details which are often neglected in
the reporting of existing literature but are crucial for reproducible
work, such as different approaches to dosage computation.
Finally, we discussed considerations of how PRS are computed
and transformed to make sure they are appropriate for the
research objective and statistical analyses.

4.1 Limitations
In this paper, we have focussed on the calculation of existing PRS for
use in statistical analyses and modelling, and have not discussed
techniques used to develop a new PRS or “real-world” applications
of PRS in a clinical context. If PRS development is of interest, we
recommend published guides for conducting GWAS and developing a
PRS such as (Choi et al., 2020) and (Marees et al., 2018). Both provide
online tutorials26,27 using either simulated or publicly available data
(e.g., HapMap). Many applications have been proposed based on the
analysis of PRS and these are discussed and showcased elsewhere, from
exploring association of PRSwith traits/outcomes, to assessing whether
PRS improves existing risk prediction models (Elliott et al., 2020;
Inouye et al., 2018; Lee et al., 2019; Sun et al., 2021), and investigating
causal inference via Mendelian Randomisation (Klarin et al., 2018;
Lewis & Vassos, 2020; Wray et al., 2021).

TABLE 6 | Comparison of times taken. Please note absolute times may vary
depending on the computation power of the system used, our interest is in the
relative performance of the tools.

bgenix QCTOOL v2 PLINK 2

223 variants
SNP extraction 53 s 2,696 s 18,403 s
QC — 795 s 7 s
PRS calculation — — 1 s

100 k variants
SNP extraction 2,681 s >108 k s (exceeded 30 h limit) 20,821 s
QC — 7,942 s 76 s
PRS calculation — — 256 s

24https://www.pgscatalog.org/score/PGS000511/

25https://2cjenn.github.io/PRS_Pipeline/
26https://choishingwan.github.io/PRS-Tutorial/
27https://github.com/MareesAT/GWA_tutorial/
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We also concentrated on the UK Biobank imputed data; while
the methods we outlined are more generally applicable our
assessment of the available software tools is specific to the
BGEN v1.2 format. The UK Biobank is a large-scale, widely
used cohort study, and is one of the most comprehensive
genetic and health data resources currently available.

While the UK Biobank is launching a Research Analysis
Platform (RAP) for online data access, the methods discussed in
this paper will still be applicable for users who choose to download
the data to work locally rather than incurring computation fees in
the cloud. In addition, it is possible that the tools described in this
guide may be made available on the platform.
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