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A common application of differential expression analysis is finding genes that are
differentially expressed upon treatment in only one out of several groups of samples.
One of the approaches is to test for significant difference in expression between treatment
and control separately in the two groups, and then select genes that show statistical
significance in one group only. This approach is then often combined with a gene set
enrichment analysis to find pathways and gene sets regulated by treatment in only this
group. Here we show that this procedure is statistically incorrect and that the interaction
between treatment and group should be tested instead. Moreover, we show that gene set
enrichment analysis applied to such incorrectly defined genes group-specific genes may
result in misleading artifacts. Due to the presence of false negatives, genes significant in
one, but not the other group are enriched in gene sets which correspond to the overall
effect of the treatment. Thus, the results appear related to the problem at hand, but do not
reflect the group-specific effect of a treatment. A literature search revealed that more than a
quarter of papers which used a Venn diagram to illustrate the results of separate differential
analysis have also applied this incorrect reasoning.
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INTRODUCTION

Experimental designs for transcriptomic analyses frequently include more than one factor. Often, the
question asked is whether there is a difference between groups (first factor) with respect to reaction to
a particular treatment (second factor). For example, we may ask whether there are differentially
expressed genes (DEGs) which are specific to a particular group of patients, e.g., interferon response
elicited by a virus in one group, but absent in another group of patients. In other words, we ask
whether the difference between the control group (healthy subjects) and the treatment group
(infected patients) is different between two groups of individuals. This “difference of differences” is
known in statistics as an interaction (Blalock, 1965). To find out whether it is statistically significant,
an appropriate statistical test for interaction should be employed.

However, another approach is widely spread (Nieuwenhuis, Forstmann, and Wagenmakers
2011). Instead of testing the interaction, the effect of the treatment is tested separately in both groups.
Next, a difference between groups is inferred if the effect of treatment is significant in one
comparison, but not significant in the other. This approach is not correct from statistical point
of view, as “the difference between significant and not significant is not itself statistically significant”
(Gelman and Stern 2006). For example, the p-value in the first comparison may be 0.009, and in the
other comparison 0.011. At an alpha level of 0.01 the difference will be statistically significant in the
first, but not significant in the other comparison.
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In transcriptomics, statistical tests are performed for
thousands of genes. As in the general case, the inference of
differences between the groups should correctly be done by
testing the significance of interaction between the group and the
treatment. In practice, the differences between treatment and
control are frequently tested in the two groups separately. This
can be visualized using a Venn diagram (VD, Figure 1) showing
the overall number of DEGs significant in both comparisons
(the intersection in the VD) or significant in only one
comparison (the remaining two fields on a VD). The genes
which are significant in only one comparison are sometimes
incorrectly considered as specific for the corresponding group.
Following this, gene set enrichment analysis may be used in an
attempt to test which pathways are specific to one, but not the
other group.

In this paper, we show that under reasonable assumptions this
approach may result in apparent enrichments even if there are no
real statistically significant differences between the groups. To
this end, we randomly split a cohort into two groups, compared
the treatment (viral infection) with controls in each of the groups
separately and then applied gene set enrichment to the sets of
genes significantly different in one, but not the other group.
Moreover, we show that the resulting gene set enrichments
correspond to the differential expression between treatment
and control. Thus, the enriched terms are relevant to the
biological question at hand, yet while they do reflect real
processes linked to viral infection, they do not correspond to
the differences between the study groups. Finally, we use
literature search to show that this incorrect approach to study
group-specific treatment effects is not uncommon. In fact, while
VDs are a useful visualization tool also in transcriptomics, in
more than quarter of the papers where VDs were used, group-
specific genes were defined as significant in one, but not other

groups, and in 19% of the papers a gene set enrichment was
performed.

RESULTS

Transcriptomic Changes due to Sars-Cov-2
Infection
Consider two group of patients, G1 and G2 (Table 1). Each group
contains 40 individuals. In both groups, there is an equal number
of healthy individuals (labeled “Ctrl” on figures below) or patients
infected with Sars-Cov-2 (labeled “SC2”). Our aim is to
understand the differences between G1 and G2 in the
response to infection. For example, we ask which genes or
pathways are specifically upregulated by SC2 infection in G1
as compared to G2, and vice versa. In the following, we used the
data set GSE156063 (Mick et al., 2020) in two approaches (an
incorrect and the correct one) to arrive at opposite conclusions.

First, we have performed differential gene expression analysis
for each of the groups G1 and G2 separately using standard
bioinformatic tools. For each comparison, we defined DEGs as
genes for which the false discovery rate (FDR) was lower than
0.05 and absolute log2 fold change (LFC) was higher than 1. There

FIGURE 1 | Results of differential gene expression analysis and gene set enrichment analysis using an incorrect approach. (A), Venn diagram showing numbers of
differentially expressed genes (DEG) in each of the two groups, G1 and G2; (B), Venn diagram showing numbers of significantly enriched GO terms in each of the two
groups; (C) results of gene set enrichment analysis for genes “specific” to groupG1; (D), results of gene set enrichment analysis for genes “specific” to groupG2 (only top
10 terms are shown).

TABLE 1 | Overall design in the case study: transcriptomic changes due to Sars-
Cov-2 infection. The table shows number of patients in each combination of
study group/disease status.

Study Group

Group 1 (G1) Group 2 (G2)

Disease status Sars-Cov-2 infection 20 20
Another infection 20 20
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were 563 DEGs in the G1 group, and 410 in the G2 group. In total,
132 DEGs were common for G1 and G2, 431 DEGs were
significant in G1 only (“specific” for G1), and 278 were
significant in G2 only (see Figure 1A). A naive interpretation
of these results implies that there is a substantial difference
between these two groups of individuals, as evidenced by a
small overlap in commonly regulated genes. The majority of
DEGs is significant in one comparison only.

To understand which pathways are upregulated in each of the
two groups, we used a standard generation I gene set enrichment
analysis—a hypergeometric test—on the DEGs in each group.
Gene sets for the gene set enrichment analysis were taken from
the Gene Ontology (GO) database. Gene sets with more than 50
or fewer than 10 genes were removed. For each group, we have
selected only genes which are DEGs in that group, but not the
other, mimicking a naive approach for finding pathways
regulated in one patient group only. Here, a similar picture
emerged. Overall, 16 gene sets were significantly enriched in
G1, and 18 gene sets were significantly enriched in G2. Both the
Venn diagram (Figure 1B) and the results of enrichments
(Figures 1C,D) suggest that there is a fundamental difference
between the groups, and that the groups have little in common in
their response to the virus.

Importantly, the different GO terms enriched in the two
groups were related to infection, and may tempt to speculate
about the underlying biological differences between these two

groups. For example, the significance of Toll like receptor 4
pathway in G1, but not G2; and, vice versa, significance of
response to interleukin 7 in G2, but not in G1 may be
considered as evidence of altered immune response to the
virus in G2 as compared to G1.

However, the groups G1 and G2 were randomly sampled from
the same data set. In fact, repeated re-sampling always results in
some genes being found to be significantly different in one group,
but not the other, despite the fact that one does not expect any
major differences between sets of individuals randomly drawn
from a single population. Thus, the conclusions drawn from a
Venn diagram-driven gene set enrichment analysis are based on
artifacts. Closer inspection of genes which are DEGs in one group,
but not the other reveals the underlying statistical fallacy (Figures
2A–D), that is, that difference between significant and non-
significant is, in itself, not statistically significant (Gelman and
Stern 2006). This does not necessarily mean that there are no
differences at all between these two groups, but that lack of
significance in one group and significance in the other group does
not correctly identify differences between groups.

To find genes which are differentially regulated in the two
groups, the correct statistical approach is to calculate interaction
between groups (G1, G2) and disease status (no disease vs.
COVID). While it may be argued that a test for interaction
has lower power than a test for a simple contrast, no genes show a
significant interaction even at FDR <0.1. In fact, this is not

FIGURE 2 |Genes which are significant in one comparison, but not the other do not show a statistically significant interaction. (A–D), examples of genes which are
DEG in one group, but are not significantly different in the other group. “Ctrl,” healthy individuals; “SC2,” Sars-Cov-2 infected patients. Values above the plot indicate FDR
(p-values corrected for multiple testing). (E), correlation between log2 fold changes in G1 and G2. Color indicates genes which are significant in one, but not significant in
the other comparison; red indicates genes significant in G1, blue indicates genes significant in G2. The overall Pearson correlation coefficient between log2 fold
changes is 0.55.
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surprising. The log2 fold changes for comparisons withing G1 and
G2 are strongly correlated (Figure 2E). For all significant genes,
the Pearson correlation coefficient is 0.72, while for genes
exclusively significant in G1 or G2 (genes “specific” to G1 or
G2), it is 0.7 and 0.73, respectively. Thus, genes which are
significant in one, but not in the other comparison tend to
have similar log2 fold changes in both groups (e.g., Figures
2A,C,D).

Consequently, it is not possible to calculate gene set
enrichment for the interaction using a hypergeometric test, as
there are no DEGs for the interaction contrast. Gene set
enrichment using a second generation algorithm (CERNO),
relying on the ordering of genes according to their raw
p-values from the interaction contrast rather than selecting a
set of DEGs (Zyla et al., 2019), does not show any significant
enrichment.

Artifacts Arise Because of False Negatives
It is worth noting that in the gene set enrichment analysis of the
genes “specific” for a given comparison—i.e., genes which are
significant in that comparison, but not significant in others—we
have observed a number of terms associated with immune
response. It is a crucial point of this manuscript to note that
the spurious enrichments not only show significant p-values, but
also that the terms or pathways which appear in them are relevant
to the research hypothesis being tested. Below, we will show why
these terms (rather than random terms which have no obvious
relevance to an infectious disease) appear in the results.

To understand how significant results appear in a gene set
enrichment analysis in randomly generated groups despite
absence of genes with significant interaction, it is first
necessary to consider the definition of a differentially
expressed gene in this context. More often than not, DEGs are
defined by a threshold in p-value adjusted for multiple testing,
possibly combined with a threshold in log2 fold change. The
commonly used Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995) ensures that among genes for which FDR <0.05
there are at most 5% false positives irrespective of the sample size.

This way, we can exert control over the false positive rate (FPR,
type I errors), keeping it at a relatively low level. However, we do
not control the false negative rate (FNR, type II errors). In a
powerful statistical test (such as a t-test), the test power in a
typical application will rarely achieve more than 80%. For
example, even for large effects (Cohen’s d > 0.8) and type I
error rate of 0.05, a t-test only achieves 80% power with at least 25
samples per group. For small effects (Cohen’s d > 0.2), the
required number of samples is at least 393 per group. Even
assuming a test power of 80%, the FNR is 20%. Clearly, false
negatives (FNs) occur at much higher rates than false positives
(FPs). In the case of high throughput data sets, where the FPR is
controlled by Bejnamini-Hochberg procedure or a similar
technique, the FNR may be even as high as 80% (White,
Ende, and Nichols 2019).

These FNs occur at a much higher rate within the sets of DEGs
defined by the non-overlapping areas of the VDs, that is DEGs
considered to be “specific” for one group or other in a naive
approach. To illustrate this phenomenon, we have analyzed the

full data set from which G1 and G2 were drawn (Figure 3),
comparing the 100 healthy controls to 93 COVID-19 patients. Of
the 431 genes significant in G1, but not in G2, 199 (46%) are
significant in the full data set; of the 278 genes significant in G2,
but not in G1, 99 (36%) are significant in the full data set. Given
that G1 and G2 were sampled from the total population, and since
the FDR was set to 0.05, we do not expect more than 30 FPs in the
full data set, which implicates that at least 268 out of the
709 “specific” DEGs are true positives in the full data set.
Thus, we can assume that at least a third of the genes that
appeared to be “specific” in the initial analysis were, in fact, false
negatives in one of the comparisons.

In other words, a substantial fraction of the “specific” genes are
genes that are in reality differentially expressed in both groups
alike. Therefore, if one is to perform a gene set enrichment
analysis on one of these “specific” groups of genes, then the
enriched functions will be related to the pathways and processes
up- or downregulated in both groups due to the common factor
(in this example, the COVID-19 disease), but which are not
related to differences between the two groups.

Influence of Sample Size and Cut-Off
Thresholds on Number of Artifacts
In the example above, the groups have been randomly sampled
from a larger data set only once. Arguably, the observations might
differ if the groups were to be resampled. Furthermore, we have
chosen a group size of 40 (20 per group/treatment combination).
Larger sample sizes are known to increase robustness of gene set
enrichment analysis, and group size of 20 has been shown to be
relatively robust (Maleki et al., 2019). However, a smaller or larger
group size might change the proportion of FNs in the results and

FIGURE 3 | Area-proportional Venn diagram showing overlaps in DEGs
between G1, G2 and the full data set. The majority of genes which have been
labeled as DEGs in only one of the groups G1, G2 are DEGs when all data
were analyzed.
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thus influence the results of gene set enrichment. Finally, we have
used a log2 fold change threshold of 1, because raising it would
increase the fraction of FNs. However, filtering for biologically
relevant genes with a substantially higher effect size may influence
the observed enrichments. On the other hand, raising the log2
fold change threshold or lowering the sample size may lead to a
smaller number of defined DEGs, thus making the
hypergeometric test less powerful and lead to fewer gene set
enrichment.

To investigate whether the sampling had an impact on the
artifacts, we have repeated the above procedure for 100 replicates,
each containing a different set of samples randomly assigned to
the two groups. Furthermore, we tested whether the selection of
the log2 fold change threshold or different sample size might have
an impact on the extent of the arising artifacts. To this end, we
have tested 7 different threshold values for the log2 fold changes
and three sample sizes: 20, 40 or 80 samples per group
(corresponding to 10, 20 or 40 samples per group/treatment
combination).

Setting a higher log2 fold change threshold reduces the number
of DEGs as well as of the observed artifactual gene set
enrichments (Figures 4A,B). However, even for log2 threshold
of 3 (DEGs defined by 8-fold change and FDR <0.05) the number
of replicates in which artifacts can be observed is 78 (out of 100),
and in at least 31 replicates, 5 or more gene sets were significantly
enriched. Thus, setting a more conservative threshold while
retaining the incorrect procedure cannot fully protect from the

arising artifacts. The number of artifacts rose with sample size
(Figures 4C,D). For total sample size of 160 (40 samples per
group/treatment combination) the number of artifacts was
almost 2 times higher than for total sample size of 80.

Incorrect Analysis of Interactions is
Common in Transcriptomics
Nieuwenhuis, Forstmann, and Wagenmakers (2011) observed
incorrect analyses of interactions in about half of the analyzed
papers from top neuroscience journals where the authors
considered an experimental design allowing for a test for
interaction. We wanted to know if this problem is common in
transcriptomics, too. To this end, we have searched three
journals—from broad to specialized—for the occurrence of the
terms “differential expression” with “venn diagrams” (Table 2).
Next, we analyzed the selected papers from year 2020 (and years
2015–2020 in one case) to decide whether the VD was described
or referred to as showing genes “specific” or “unique” to a
particular group or whether a test for interaction was
performed. Finally, we checked whether gene set enrichment
analysis was applied to genes significant in one, but not the other
group in order to find group-specific differences.

We found that of the 282 analyzed articles which used the
terms “venn diagram” and “differential expression,” at least 88
(31%) were using Venn diagrams to compare statistical
significance with lack thereof by referring to “unique,”

FIGURE 4 | Influence of log2 fold change treshold (A,C) and the sample size (B,D) on the number of genes significant in one, but not in the other group (A,B) and the
number of significant gene sets found in one group, but not the other (C,D). Top row shows the influence of log2 fold change threshold for sample size of 40 per group (20
per group/treatment combination), bottom row shows the influence of sample size for a log2 fold change threshold set to 1.
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“specific,” “solely regulated” or “exclusive”DEGs. Out of these, at
least 53 coupled the VDs with some form of gene set enrichment
analysis on the set of supposedly “specific”DEGs. In summary, in
at least a quarter of the papers on differential expression in which
a Venn diagram was used, it was illustrating an incorrect
statistical procedure which may result in artifactual gene set
enrichments.

DISCUSSION

Drawing conclusions from comparing significance with lack
thereof is a common statistical fallacy (Gelman and Stern
2006). Just as absence of evidence is not evidence of
absence, the failure to reject the null hypothesis does not
constitute the same level of evidence as rejecting it.
However, when such an incorrect analysis is combined with
downstream functional analysis, the resulting pathways or
gene ontologies are misleadingly relevant. For example, the
identified gene sets are associated with immune response for a
research hypotheses involving an infectious disease, or cancer
pathways if the underlying research hypothesis involved
cancer treatment. Such results may appear reasonable in the
given context, especially if the correct analysis of interactions
does not show any significant differences. This effect is
persistent or even exacerbated for larger sample sizes
(Figure 4).

We found that this type of incorrect analysis occurs in more
than a quarter of papers where the procedure was illustrated with
a VD. That is not to say that VDs are not a useful tool, even in the
context of transcriptomics and gene set enrichments, if used
correctly. For example, gene set enrichment analysis of an
intersection of DEGs (i.e., by considering genes from the
overlap in a VD) is not an incorrect procedure. Genes in the
overlapping part of a VD are significant in both (or all)
comparisons, hence no comparison between significance and
non-significance is made.

While VDs appear to be frequently associated with an
incorrect statistical reasoning, the use of VDs is not the cause.
In the absence of a VD illustrating the DEGs common and unique
to the different study groups, two incorrect approaches may still
be found. Firstly, the direct comparison of gene set enrichment
results: that is, drawing conclusions from the fact that a gene set
enrichment result was significant in one comparison only.
Second, while VDs are often used to illustrate the numbers of

“specific” DEGs and so present a mean to find examples of this
fallacy in scientific literature, researches test for enrichment these
“specific” genes without using the phrase “Venn diagram” or even
clearly stating how the lists of “specific” genes were derived. In all
these cases, the analysis boils down to comparing results
significant in one, but not in another comparison.

As an alternative to Venn diagrams and the downstream
gene set enrichment analysis, two approaches can be
considered. The correct statistical approach, as shown
above, involves a test for interaction which can reveal genes
for which the impact of treatment significantly differ between
the groups. The results can then be plugged into a gene set
enrichment analysis the usual way. Unfortunately, this has two
major drawbacks. Firstly, effect sizes (log2 fold changes) of the
interaction term are harder to interpret than log2 fold changes
in a direct, group vs. group comparison. The effect size in an
interaction is negative if the log2 fold change in the first
comparison is larger than the log2 fold change in the
second comparison; this is, however, irrespective of whether
the differences in the individual comparisons are negative or
positive, which makes it harder to separate the differences in
genes upregulated in one or both groups.

The second problem may arise if the changes are similar in
both comparisons, but of larger magnitude in one of them. For
example, in a time series context, the changes may be more
pronounced at a later time point. In this case, the analysis will
show that the processes enriched for the interaction term are the
same as those enriched in each of the comparisons individually.
While the results of the gene set enrichment analysis in this
context are correct, the result may not be what the researchers
intended—processes which qualitatively (rather than
quantitatively) differ between the comparisons.

An alternative approach, discordance/concordance analysis,
has been proposed by Domaszewska et al. (2017), aiming at
identifying processes which qualitatively differ between the two
comparisons. Here, a heuristic score (“disco score”) has been
defined which depends on the effect sizes and p-values in both
comparisons. The sign of the score depends on whether the effects
have the same sign (concordant; genes upregulated in both
comparisons or downregulated in both comparisons) or
opposite signs (discordant; genes upregulated in one, but
downregulated in the other comparison, and genes
downregulated in one, but upregulated in the other
comparison). While the score does not allow the calculation of
a p-value and does not present an alternative to an analysis of

TABLE 2 | Results of the informal literature survey. We searched for papers using Google Scholar and the keywords “venn diagram” and “differential expression.” Journal,
journal title; Years, publication dates; Total, total number of papers found using the search phrase; Analyzed, total number of papers which have been analyzed for
correctness; Incorrect, total number (percentage) of papers in which the Venn diagram was combined with comparing significance to non-significance; Enrichment, total
number (percentage) of papers which combined the Venn diagram with a gene set enrichment analysis.

Journal Years Total Analyzed Incorrect Enrichment

Nature Communications 2020 127 30 9 (30%) 6 (20%)
Science Immunology 2015–2020 14 14 6 (43%) 5 (36%)
Scientific Reports 2020 238 238 73 (31%) 42 (18%)
Total 379 282 88 (31%) 53 (19%)
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interaction, it can facilitate both visualization and further analysis
using a gene set enrichment algorithm.

Visualization of interaction for individual genes is
straightforward (see for example Figures 2A–D). However, the
point of VDs is to show a grand overview of the whole analysis
summarizing thousands of results for the analyzed genes. As an
alternative of such an overview, we suggest plotting the log~2 fold
changes in one comparison against log2 fold changes in the
second comparison. This allows an intuitive assessment of the
differences between the two comparisons, in especially in
combination with color coding the genes which either are
significant in the interaction or by coloring using the disco
score (see Figure 2E for an example).

Defining group-specific genes based on significant difference
in one, but no significant difference in another comparison is thus
more than only a statistical fallacy leading to erroneous results.
When combined with gene set enrichment analysis it can lead to
potentially sound-looking, and therefore particularly misleading
results. This method of obtaining specific differences between
groups should therefore be abandoned in favor of statistically
correct approaches. Furthermore, gene set enrichment analysis
must never be applied to sets of genes defined as significant in one
comparison, but not the other.

METHODS

Methods Availability
This manuscript has been written in R markdown (Xie, Allaire,
and Grolemund 2018).All statistical calculations required to
replicate the findings and figures are contained in the source R
markdown file. The R markdown file, along with additional files
required to recreate this manuscript as well as the results of
literature survey have been uploaded to https://github.com/
bihealth/manuscript_venn_diagrams.

Data
The expression data as a count matrix has been downloaded from
GEO, accession GSE156063.

Statistical Analyses
Power calculation was done using the R package pwr, version
1.3.0. For differential gene expression, the R package DESeq2,
version 1.32.0 has been used. Gene set enrichments were done
using either hypergeometric test (where stated) or the CERNO
test using the package tmod (Zyla et al., 2019), version 0.50.1. GO

terms have been sourced from the R package msigdbr,
version 7.4.1.

Simulation Study
We have generated replicates of the example study for different
log2 fold change thresholds (0, 0.5, 1, 1.5, 2, 2.5, 3) and three
different sample sizes (40, 80 and 160, corresponding to sample
size per group/treatment combination of 10, 20 and 40). For each
replicate, the full procedure as described above was repeated, and
numbers of DEGs and significantly enriched terms were
collected.

Literature Survey
A literature survey was performed using Google Scholar to
estimate the frequency of the incorrect use of Venn diagrams.
We searched for articles including the phrases “differential
expression” and “venn diagram” in three journals: Scientific
Reports (2020), Nature Communications (2020) and Science
Immunology (2015–2020). For each of the papers identified,
we checked whether 1) the authors used the VD to show
differentially expressed transcripts significant in one
comparison, but not another, 2) the authors discussed
“unique,” “non-overlapping” or “specific” regions of the Venn
diagram and 3) whether this was coupled to gene set enrichment
analysis is any form. Articles which 1) focused only on the
intersections of the Venn diagrams (genes common to all
groups), or 2) which used the Venn diagrams for a purpose
other than to compare genes significant in one groups, but not
significant in other groups or 3) for which a clear-cut error could
not be identified past any reasonable doubt were not considered
incorrect. The results of the literature survey (including links to
papers classified as incorrectly analysing the interaction) are
included in the manuscript sources.
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