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Background: Left ventricular noncompaction (LVNC) is a rare cardiomyopathy, long QT
syndrome (LQTS) is a rare ion channel disease, and simultaneous occurrence of both is
even rarer. Further clinical reports and studies are needed to identify the association
between LVNC and LQTS and the underlying mechanism.

Methods and Results: A 26-year-old primigravida was referred at 25 weeks gestation for
prenatal echocardiography due to fetal bradycardia detected during the routine ultrasound
examination. The echocardiographic findings were consistent with biventricular
noncompaction cardiomyopathy (BVNC) with pulmonary stenosis and suspected
LQTS. After detailed counseling, the couple decided to terminate the pregnancy, and
subsequent postmortem examination confirmed BVNC and pulmonary stenosis. Then, A
trio (fetus and the parents) whole-exome sequencing (WES) and copy number variation
sequencing (CNV-seq) were performed. CNV-seq identified no aneuploidy or pathogenic
CNV. A de novo missense variant in KCNH2 (NM_000238.3:c.1847A > G,p.Tyr616Cys)
was identified by WES. This KCNH2 missense mutation was classified as pathogenic
according to the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology variant interpretation guidelines.

Conclusion: We report the first prenatal case of KCNH2 mutation presenting with LVNC
combined with bradycardia and second-degree 2:1 atrioventricular block. Importantly, this
case reminds clinicians to systematically search ion channel gene mutations in patients
with LVNC and arrhythmia.
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gene mutation

INTRODUCTION

Left ventricular noncompaction (LVNC) is rare genetic cardiomyopathy (Towbin et al., 2015). Genes
associated with LVNC usually include those encoding sarcomere, ion channels, nuclear envelope,
and chaperone proteins. Many ion-channel genes, such as SCN5A, RYR2, KCNQ1, and HCN4, have
been associated with LVNC, but the underlying molecular mechanisms are unknown (Milano et al.,
2014; Nakashima et al., 2013; Schweizer et al., 2014; Towbin, 2014). KCNH2, and an ion-channel
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gene, encodes the pore-forming subunit of a rapidly activating-
delayed rectifier potassium channel that plays a critical role in the
final repolarization of the ventricular action potential (Gianulis
and Trudeau, 2011). Mutations in the KCNH2 gene cause long
QT syndrome type 2 (LQTS2, MIM:613688) (Amin et al., 2008).
The combination of LVNC with LQTS is scarce, and clinical
reports of KCNH2 variants in such cases are even rarer. Due to
the scarcity of clinical reports, LVNC has not been recognized as a
feature of LQTS2. Here we report the first fetal case, to our
knowledge, with KCNH2 mutation presenting with LVNC,
LQTS, and sinus bradycardia. We also reviewed the literature
to identify additional cases of KCNH2 mutation with LVNC-
LQTS combined phenotype.

MATERIALS AND METHODS

Editorial Policies and Ethical
Considerations
This study was approved by the Ethics Committee of Beijing
Anzhen Hospital, Capital Medical University and adhered to the
tenets of the Declaration of Helsinki. Informed written consent
was obtained from the parents of the fetus.

Fetal Ultrasound and Echocardiography
Examination
A complete fetal echocardiographic examination, including
twodimensional (2D), M-mode, color, and pulse Doppler
echocardiography, was performed using the General Electric
Voluson E8 ultrasound system with transabdominal 2- to 4-
MHz curvilinear transducers (GE Healthcare Ultrasound,
Milwaukee, WI, United States) according to the American
Society of Echocardiography guidelines and standards for
performance of the fetal echocardiogram (Rychik et al., 2004).

Copy Number Variation Sequencing
(CNV-Seq) and Whole-Exome
Sequencing (WES)
Both CNV-seq and WES were done in the setting of a purely
research-based protocol, and performed using methods as
previously described on genomic DNA from the deceased
fetus and the parents (Sun et al., 2019). Briefly, genomic DNA
was extracted, hybridized and enriched for whole-exome
sequencing. The captured libraries were sequenced using
Illumina NovaSeq 6,000 (Illumina, Inc., San Diego, CA,
United States). Then, the sequencing data were aligned to the
human reference genome (hg38/GRCh38) using BWA (http://
bio-bwa.sourceforge.net/) and PCR duplicates were removed by
using Picard v1.57 (http://picard.sourceforge.net/). GATK
(https://software.broadinstitute.org/gatk/) was applied for
variant calling. ANNOVAR (http://wannovar.wglab.org/) was
used for variant annotation and interpretation. We determined
the frequency of each variant in the dbSNP150 (https://www.ncbi.
nlm.nih.gov/snp/), 1,000 Genomes Project (http://www.

internationalgenome.org/) and gnomAD (https://gnomad.
broadinstitute.org/) to remove common SNPs (minor allele
frequency >0.1%). Then, non-synonymous, splicing, frameshift
and non-frameshift variants, as well as variants located in splice
sites within 20 base pairs of an exon, were prioritized for
evaluation. SIFT (http://sift.jcvi.org), PolyPhen-2 (http://
genetics.bwh. harvard. edu/pph2), MutationTaster (http://www.
mutation taster.org) and CADD (http://cadd.gs.washington.edu)
were used to predict the pathogenicity of missense variants, while
HSF (http://www.umd.be/HSF3/), and MatEntScan (Yeo and
Burge, 2004) were used to evaluate the effects on splicing.
Missense variants not presenting damaging results in any
protein function prediction from SIFT, Polyphen2,
MutationTaster, and CADD were excluded. Intronic variants
not presenting damaging results in any prediction from HSF
and MatEntScan were excluded. Pathogenicity of variants was
determined according to current ACMG guidelines that
recommend classifying variants into five categories:
pathogenic, likely pathogenic, uncertain significance, likely
benign or benign (Richards et al., 2015). Sanger sequencing
was used to validate the presence of positive genetic results.

RESULTS

Clinical Phenotypes
A 26-year-old primigravida was referred at 25 weeks’ gestation
for prenatal echocardiography due to fetal bradycardia detected
during the routine ultrasound examination. The woman was
healthy with no significant family history and did not take any
medication. Her anti-Ro/SSA and anti-La/SSB antibody status
were both negative. She and her partner were non-
consanguineous.

The fetal echocardiography identified noncompacted layers in
both ventricles. An extensive trabeculated layer, with multiple
deep intratrabecular recesses filled with blood directly from the
ventricular cavity, was seen (Figure 1A). Moreover, a thickened,
stenotic pulmonary valve was noted with a peak velocity of
158 cm/s shown by spectral Doppler (Figure 1B). There was
fetal bradycardia; second-degree 2:1 atrioventricular block was
seen by spectral Doppler and M-mode Echocardiography
(Figures 1C,D). The fetal echocardiographic findings were
consistent with biventricular noncompaction cardiomyopathy
(BVNC) with pulmonary stenosis, second-degree 2:1
atrioventricular block, and sinus bradycardia.

At the time of the fetal diagnosis, the family was counseled
about the potential overall poor prognosis for this fetus related to
the BVNC with the second-degree atrioventricular block and
pulmonary stenosis. Finally, the family decided to terminate the
pregnancy and undergo genetic testing. The pregnancy was
terminated at 26 weeks’ gestation. Subsequent postmortem
examination confirmed BVNC and pulmonary stenosis
(Figure 1E).

Molecular Findings
A trio (fetus and the parents) CNV-seq andWES were performed
to determine the underlying genetic cause of the fetal cardiac
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phenotype. CNV-seq analysis identified no chromosomal
abnormalities. The WES analysis initially identified 83,186
initial variants. The filtering cascades for WES data are listed
in Supplementary Table S1. After four filters of the variants data
for WES data, 91 variants were kept (Supplementary Table S2).
Finally, we identified a de novo missense variant in KCNH2
(NM_000238.3:c.1847A > G,p.Tyr616Cys) in the fetus
(Figure 1F), while no pathogenic variants in other known
genes associated with cardiomyopathy or arrhythmias were
identified. This KCHN2 variant was not found in the biggest
general population database (gnomAD, https://gnomad.
broadinstitute.org) and in-house control database and showed
a deleterious effect by multiple in silico algorithms. The variant
has been reported previously in several individuals with LQTS
(Kapplinger et al., 2009; Ware et al., 2012), and ClinVar database
(http://www.ncbi.nlm.nih.gov/clinvar) contains an entry for this
variant (Variation ID: 67295). In addition, the Tyr616 is located
in the intramembrane pore-forming H5 domain of KCNH2, and
mutations at surrounding codons (Leu615Phe, Leu615Val,
Ala614Val, and Thr613Met) have also been reported in
association with LQTS, supporting the functional importance
of this region of the protein. Furthermore, functional studies
carried out by Anderson et al. (2014) demonstrate Tyr616Cys
generated minimal current, suggesting altered channel
permeability as a mechanism that leads to Prolonged QT
interval. In conclusion, the variant is classified as pathogenic

according to the 2015 American College of Medical Genetics and
Genomics guidelines (Richards et al., 2015).

DISCUSSION

In this report we present the first fetal case with KCNH2 mutation
presenting with BVNC, pulmonary stenosis, second-degree 2:1
atrioventricular block, and sinus bradycardia. LVNC is an
increasingly recognized type of cardiomyopathy characterized by
excessive trabeculation of the ventricles with deep intertrabecular
recesses. While LVNC was classified as distinct cardiomyopathy by
the American Heart Association (Maron et al., 2006), the European
Society of Cardiology categorizes it as unclassified cardiomyopathy
(Elliott et al., 2007). In the early fetal period, about 12 weeks, the
myocardium is widely formed by trabeculae. These trabeculations
undergo a compaction process, mainly finished before the
16–18 weeks of pregnancy (Faber et al., 2021; Finsterer et al.,
2017). According to the non-compaction theory, LVNC results
from the arrest of endomyocardial morphogenesis, leading to
trabecular compaction failure (Hussein et al., 2015).

In the absence of a known family history, the diagnosis of fetal
LQTS is based on the correct recognize of the signature rhythms,
such as second-degree AVB, and sinus bradycardia. Second-degree
AVB is the signature rhythm of LQTS in the perinatal period, and
have been reported in about 25% of fetal LQTS cases (Horigome

FIGURE 1 | Clinical phenotypes and molecular findings of the fetus. (A–D): Echocardiography of the fetus at 25 weeks’ gestation. The phenotype includes
biventricular noncompaction cardiomyopathy (A), pulmonary stenosis (B), sinus bradycardia (C) and second-degree 2:1 atrioventricular block (D). A. The area between
the white arrows indicate numerous ventricular trabeculae (C). Sinus bradycardia was seen with ventricular rate of 113 bpm by umbilical artery blood flow spectrum (D).
Mitral inflow and left ventricular outflow spectrum shows a 2:1 second-degree atrioventricular block (E): Pathological anatomy shows that the noncompaction
myocardium below the level of the left ventricular papillary muscle is obvious. The white arrows indicate the noncompaction myocardium (F): Sanger sequencing shows
that the mutation is heterozygous in the fetus. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.
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et al., 2010;Mitchell et al., 2012). Sinus bradycardia is also a common
manifestation of fetal LQTS, and has been reported in as many as
44–66% of fetuses diagnosed with LQTS (Cuneo et al., 2013; Greene
et al., 2013; Horigome et al., 2010; Mitchell et al., 2012). In this fetus,
a prenatal LQTS was highly suspected based on the following:
second-degree AVB(Cuneo et al., 2013; Greene et al., 2013), sinus
bradycardia (Cuneo et al., 2013; Greene et al., 2013; Mitchell et al.,
2012), and the report of the same KCNH2 in several individuals with
LQTS (Kapplinger et al., 2009; Ware et al., 2012). However, we were
unable tomake a definitive diagnosis because aQT prolongationwas
not proven.

Through systematic literature review, we identified several
additional cases of KCNH2 mutation with LVNC-LQTS
combined phenotype (AlSenaidi et al., 2014; Ogawa et al., 2009;
Rammes et al., 2017). The first association between LVNC and
KCNH2mutations was described by Ogawa et al. (2009) reporting 2
unrelated individuals with isolated LVNC and LQTS carrying
missense mutations in KCNH2. Subsequent AlSenaidi et al.
(2014) reported a 5-year-old girl of consanguineous Oman
parents carrying a KCNH2 homozygous frameshift mutation in
association with phenotypes including LVNC, dilated ascending
aorta and LQTS. Interestingly, both the parents of the girl carried this
KCNH2 heterozygous mutation but neither presented with LVNC,
indicating that LVNC is incomplete in LQTS patients with KCNH2
mutations. Recently, Rammes et al. (2017) also reported a familial
case, in which both the proband and her son presented with LVNC,
and LQTS carrying a published pathogenic variant in KCNH2.
These increasing reports suggest that the coexistence of LVNC and
arrhythmia may not be rare, significantly, as the detection rate of
LVNC is gradually increasing with the advances of
echocardiography and MRI.

Interestingly, KCNH2 mutations have also been reported in
patients with isolated LVNC. Recent works of LVNC by the
groups of Miszalski-Jamka and Wang have reported several
individuals carrying KCNH2 mutations in association with
LVNC(Miszalski-Jamka et al., 2017; Wang et al., 2017). Notably,
no arrhythmia has been reported in these subjects. In addition, in the
study by Wang et al. (2017), the number of rare variants in KCNH2
was significantly enriched in LVNC patients compared with the
control group, further supporting the association between LVNC
and KCNH2 mutation. In several recent independent LVNC
cohorts, the variation burden of ion channel genes were as high
as 8.8–14.7 (Hirono et al., 2020; Cambon-Viala et al., 2021;
Miszalski-Jamka et al., 2017; Wang et al., 2017), significantly
higher than in the general population. This suggests that ion-
channel dysfunction may play a role in the pathogenesis of
LVNC(Milano et al., 2014; Nakashima et al., 2013; Shan et al.,
2008; Towbin, 2014). Although the exact mechanism is unclear,
several hypotheses have been proposed. They suggest that direct
protein-protein interaction between the ion channel gene products
and the sarcomere may induce ventricular noncompaction or that
ventricular noncompaction is an acquired adaptive remodeling
feature in response to impaired conduction (Ergul et al., 2011;
Brescia et al., 2013; Caliskan et al., 2012; Steffel and Duru, 2011;
Zhang et al., 2013).

CONCLUSION

In summary, we present the first fetus with LVNC-LQTS
combined phenotype and KCNH2 mutation. This case
reminds clinicians that ion channel gene variants should be
searched systematically in LVNC patients, especially in the
arrhythmia phenotype.
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