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Genomic prediction tools support crop breeding based on statistical methods, such as the
genomic best linear unbiased prediction (GBLUP). However, these tools are not designed
to capture non-linear relationships within multi-dimensional datasets, or deal with high
dimension datasets such as imagery collected by unmanned aerial vehicles. Machine
learning (ML) algorithms have the potential to surpass the prediction accuracy of current
tools used for genotype to phenotype prediction, due to their capacity to autonomously
extract data features and represent their relationships at multiple levels of abstraction. This
review addresses the challenges of applying statistical and machine learning methods for
predicting phenotypic traits based on genetic markers, environment data, and imagery for
crop breeding. We present the advantages and disadvantages of explainable model
structures, discuss the potential of machine learning models for genotype to phenotype
prediction in crop breeding, and the challenges, including the scarcity of high-quality
datasets, inconsistent metadata annotation and the requirements of ML models.
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INTRODUCTION

The expansion of genome sequencing technology has led to a rapid growth in plant genomic
resources, including advanced genome and pangenome assemblies, providing a better understanding
of plant genetic variation. Genotyping methods including genome resequencing (Morrell et al., 2011;
Hu et al., 2018; Juliana et al., 2018) and single nucleotide polymorphism (SNP) arrays (Wang et al.,
2014; Mason et al., 2017) have supported the expansion of crop genomic resources, assisting the
identification of genetic variations related to agronomic traits. The emergence of plant pangenomes
as a reference better represents the genomic variability within a species (Bayer et al., 2020; Danilevicz
et al,, 2020; Golicz et al., 2020), allowing researchers to expand genotypes from SNPs and indels to
include gene presence absence variation, a structural variation that has been associated with crop
disease resistance and stress tolerance (Golicz et al., 2016; Montenegro et al., 2017). Plant breeders
now have a wide variety of tools available to assess genetic variation, however the most efficient way
to apply these for crop improvement is often unclear (Heffner et al., 2009; Scheben et al., 2017;
Nuccio et al,, 2018). Genomic selection (GS) using best linear unbiased prediction (BLUP) was
developed for livestock breeding (Meuwissen et al., 2001), but has seen success in plant breeding

Abbreviations: DL, Deep Learning; GBLUP, Genomic Best Linear Unbiased Predictions; GS, Genomic Selection; GWAS,
Genome-Wide Association Study; LASSO, Least Absolute Shrinkage and Selection Operator; LIME, Local Interpretable Model-
agnostic Explanations; MIAPPE, Minimum Information About a Plant Phenotype Experiment; ML, Machine Learning; SHAP,
SHapley Additive exPlanations; SNP, Single Nucleotide Polymorphism; RR, Ridge Regression; QTL, Quantitative Trait Loci.

Frontiers in Genetics | www.frontiersin.org

1 May 2022 | Volume 13 | Article 822173


http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.822173&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/articles/10.3389/fgene.2022.822173/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.822173/full
http://creativecommons.org/licenses/by/4.0/
mailto:dave.edwards@uwa.edu.au
https://doi.org/10.3389/fgene.2022.822173
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.822173

Danilevicz et al.

Plant Genotype to Phenotype Prediction

Genomic Variation

‘ p In‘puts —’

|— n Samples —l

Training
dataset

Validation I 1 I 1 | [ T

Split samples into train, validation and test datasets

Phenotype Data

Trait Labels

TN

ML .
> Adjust Model

dataset | [ [ [ | [

Test
dataset

unseen input data.

l j—Test Model

..

FIGURE 1| Scheme representing training a deep learning model for phenotype prediction based on genomic variation data. In the top, the genomic variation data
of p samples is used as input whereas the phenotypic trait (e.g., yield) is used as a label for training the model. The genomic and phenotypic data is split into training,
validation, and test datasets, with the first two employed for model development, and the last used last for testing the trained model capacity to predict a target trait from

(Cooper et al.,, 2014; Gaffney et al., 2015; Crossa et al., 2017;
Lebedev et al., 2020; Ukrainetz and Mansfield, 2020). This
approach takes a subpopulation of breeding material, and
through linear modelling, estimates the contribution of each
SNP to phenotypes of interest. Due to the simplicity of the
modelling, BLUP is straightforward to implement, and the
contribution of each SNP to the phenotype is relatively easy to
calculate. However, compared to animal breeding, genomic
selection in plants has to account for the greater genotype by
environment interactions, and requires the addition of
appropriate multi-environment trial data (Voss-Fels et al., 2019).

Machine Learning (ML) and Deep Learning (DL) algorithms
are more complex than linear prediction models and can discover

non-linear relationships within datasets. The use of complex ML
and DL models to associate plant genotypes with phenotypes is
gaining popularity, with an increasing number of publications
predicting a wide variety of agronomic traits, including yield, days
to heading and thousand kernel weight (Montesinos-Lopez A.
et al., 2018, Montesinos-Lopez et al., 2018 O. A; Ma et al., 2018;
Crossa et al., 2019; Khaki et al., 2019; Grinberg et al., 2020).
Random forests, support vector machines and artificial neural
networks may more easily capture the complex relationships
between genotype, phenotype and environment compared with
previous methods due to their non-linearity, and ML and DL
have significant potential to support plant breeding. Here we
review the progress that has been made applying ML and DL
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methods, and how to interpret their results within a biological
context.

MACHINE LEARNING METHODS FOR
GENOTYPE TO PHENOTYPE PREDICTION

Genotype to phenotype prediction has expanded with the
application of GS. Genomic Best Linear Unbiased Prediction
(GBLUP), a linear based modelling system has been used
extensively in GS (Meuwissen et al., 2001), as have Bayesian
systems (Pérez et al,, 2010). Despite the successes of linear
methods in GS, they can run into challenges due to the high
dimensionality of marker data versus the number of individuals,
and the presence of complex relationships that are difficult to
account for (Crossa et al., 2017).

To improve on linear models in GS, there has been an
increased use of nonlinear methods such as ML and
DLmodels to predict plant phenotypes (Montesinos-Lopez
et al, 2021a). Nonlinear methods have been theorised to be
better able to capture small interactions between markers,
account for environment interactions and generate predictions
with higher accuracy for data with high dimensionality (Pérez-
Rodriguez et al., 2012; Cuevas et al, 2016). The ML and DL
architectures can also include multimodal data and data types
that are not suited to simple tabular formats (Figure 1). For
example, the ML method random forest can capture patterns in
high dimensional data to deliver accurate predictions and can also
take into account non-additive effects (Heslot et al., 2012). Its use
as a model for genomic selection has also demonstrated superior
performance in comparison to linear models such as Bayesian
Least Absolute Shrinkage and Selection Operator (LASSO)
(Ornella et al., 2014) and Ridge Regression BLUP (RR-BLUP),
depending on the genetic architecture of the predicted trait
(Spindel et al., 2015). Other ML models that have shown
potential for genomic selection include convolutional neural
networks and feed forward deep neural networks that can
outperform linear methods with correct optimisation of
hyperparameters (Ma et al., 2018; Sandhu et al., 2020). Multi-
trait DL models can help understand the relationship between
related traits for improved prediction (Montesinos-Lopez O. A.
et al., 2018), and ensemble models that are a powerful way of
combining multiple ML methods that may produce weaker
predictions by themselves (Jubair and Domaratzki, 2019;
Banerjee et al., 2020).

Whether ML and DL approaches improve prediction
compared to traditional GBLUP for genomic selection is still
unclear. Several publications compare DL models with linear ML
models, but not with GBLUP directly, and many breeding
methods use BLUP values, whereas ML and DL studies tend
to predict single traits. In an example where GBLUP was
compared to DL methods for multi-trait prediction, when the
genotype by environment interaction term was included in the
GBLUP modelling, it outperformed DL across 8 of the 9 datasets,
whereas when it was not included, the DL model outperformed
GBLUP in 6 of the 9 datasets (Montesinos-Lopez A. et al., 2018).
Another study observed that their DL model outperformed linear
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and Bayesian prediction models when predicting under strong
epistatic interactions, using SNPs from octoploid strawberry and
tetraploid blueberry (Zingaretti et al., 2020). As with many
problems that involve algorithm choice, the no free lunch
theorem suggests that no one algorithm will perform the best
across all problems, and this seems to be the case for genomic
prediction (Azodi et al, 2019). DL is an efficient method to
extract representative features from large datasets, with the
capacity to account for feature interaction effects. However,
conventional ML methods and mixed linear models are still
well suited to deal with limited datasets, in many cases
generating more accurate predictions than DL models. We
propose that phenotype prediction should be expanded
beyond GBLUP methods to ensure sufficient models are
evaluated for each genomic selection problem.

GENETIC VARIATION REPRESENTATION

The most common form of encoding whole genome SNP data for
ML and DL, is to use one hot encoding, where each SNP position
is represented by four columns, each one representing the four
bases of DNA: A, T, C, and G. Presence of the base at each
position is indicated by a 1 in this column, whereas absence is
indicated by 0 (Zou et al,, 2019). In this way a letter can be
encoded as a binary representation, suitable for ML and DL
processes, that only accept numeric input. SNP one hot encoding
is one of the most common data representations for DNA
sequence data in phenotype prediction (Montesinos-Lopez A.
et al., 2018, Montesinos-Lopez et al., 2018 O. A; Ma et al., 2018;
Khaki et al., 2019; Grinberg et al., 2020).

In ML and DL, the number of features is usually lower than the
number of samples, however it is common in trait association
studies that the number of features significantly outnumbers the
samples. Genotyping usually generates large numbers of genetic
markers and phenotyping large cohorts of plants can be
prohibitively expensive, restricting the number of samples.
Feature selection, minor allele frequency and genome wide
association study (GWAS) can be applied to reduce the
dimensionality of datasets and remove excess information,
presenting varying degrees of popularity in plant breeding. In
human research, some studies have used minor allele frequency,
position within promoter regions (Yin et al., 2019), selective SNP
number reduction, and integrated transcription data (Zhou et al.,
2019), where previous association results are used to strategically
reduce SNP numbers. Other strategies to reduce SNP numbers
include a focus on rare variants, where loss of function variants
have been noted for their influence in phenotype (Monroe et al.,
2020) and using GWAS to select regions of interest, though this
has had mixed results (Spindel et al., 2016; Rice and Lipka, 2019;
Jeong et al., 2020).

Genotype encoding in plants has been mostly limited to SNP
encoding, however there are other forms of genomic variation,
and different ways of encoding genetic variation data that could
be employed for phenotype prediction. A recent article used
methylation at cytosine positions to predict traits in Populus
balsamifera, input cytosines were encoded using variable
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importance scores and individual methylation intensity, The
results show that biomass and physiochemical wood traits can
be modelled using methylation data and DL (Champigny et al.,
2020). Outside of plant research, genomic k-mers were used to
encode genomic variability and employed to predict antibiotic
resistance in multiple species of pathogenic bacteria, using
classification and regression trees and set covering machines
algorithms for interpretability (Pérez et al., 2010; Drouin et al.,
2019). In Chen et al. (2019), rare genetic variants from a
Mpycobacterium tuberculosis dataset were grouped by locus,
using binary encoding to account for mutation presence/
absence and feature labelling to encode the type of mutation
(e.g., SNP, insertion/deletion, change in frameshift within a
coding region). The dataset was used to predict antibiotic
resistance in the pathogen. improving prediction for both
logistic regression models and neural networks. The expansion
of plant pangenome assemblies provides an opportunity to
include gene presence/absence variation in trait prediction,
encoded in a similar way to SNPs (Golicz et al, 2016; Jin
et al, 2016; Hurgobin and Edwards, 2017; Gao et al., 2019).
The way researchers choose to encode the genomic information
and use the associated data (environmental or gene expression
data) is an important aspect of trait association analysis, and a
wider variety of encoding methods should be explored.

INTEGRATING HIGH THROUGHPUT
PHENOTYPING INTO GENOTYPE TO
PHENOTYPE MODELS

Genotype to phenotype models are commonly applied to sparsely
collected phenotypic traits such as plant height and germination
rate, and these traits are often hand-collected, potentially
introducing bias and increasing experimental cost. In contrast,
high throughput phenotyping allows monitoring hundreds or
thousands of plants under field and greenhouse conditions
(Tattaris et al., 2016; Shakoor et al, 2017), performing non-
destructive measurement of traits such as biomass (Quirds Vargas
et al., 2019; Marino and Alvino, 2020), plant height (Anderson
et al., 2020), wheat spike count (Hasan et al., 2018; Xiong et al.,
2019), and disease (De Castro et al., 2015; Nagasubramanian
et al.,, 2018). The increased density of phenotypic data produced
by high throughput phenotyping enables researchers to
dynamically measure changes in plant growth, evaluating the
impact of genomic variation at different developmental stages.
For example, a study using images collected weekly by an
unmanned aerial vehicle observed that two SNPs related to
maize height had a larger effect during early growth
(10-25cm), with their contribution to this phenotype
decreasing towards the end of the season (Adak et al.,, 2021).
In rice, high throughput imagery was used to calculate six
vegetation indexes that were used as input traits for the
identification of eight quantitative trait loci (QTLs), one of
which was corroborated by another analysis using ground-
truth agronomic data (Naito et al., 2017). Similarly, vegetation
indices and canopy temperature were employed in the
identification of QTLs related to abscisic acid concentration
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and other physiological traits in cotton using inclusive
composite interval mapping for multi-environment trials
(Pauli et al., 2016). Vegetation indices and temperature were
also used to support genomic selection for grain yield in wheat
(Rutkoski et al., 2016). These studies show the potential of
incorporating raw or extracted features from image data to
detect genomic variation associated with desirable traits.
Intermediate phenotypes such as transcriptome, proteome or
metabolome data can also be associated in a multidimensional
dataset, providing a more detailed description of the plant
response to environmental conditions, and potentially
increasing phenotype prediction accuracy (de Abreu E Lima
et al., 2018; Voss-Fels et al., 2019; Scossa et al., 2021).

The addition of multidimensional datasets can increase the
complexity of analysis exponentially, requiring algorithms that
are able to uncover the relationships between the data types and
the target trait. DL models have shown success in dealing with
complex multimodal datasets, being effectively applied to
generate image descriptions (Hossain et al, 2021), predict
injuries in sports (Song et al., 2021) and disease detection
from medical datasets (Khan et al, 2020; McKenzie et al.,
2020; Fan et al, 2021). Recently, several studies were
published using DL for trait prediction using high throughput
plant phenotyping images as input. These take advantage of
convolutional neural networks for extracting the spectral
features of the leaf reflectance for disease classification (Picon
et al, 2018; Nagasubramanian et al, 2019), wheat spike
segmentation and counting (Misra et al, 2020), and QTLs
related to root architecture traits (Pound et al., 2017). A wide
diversity of DL architectures that have been developed to address
problems in other areas of research can be adapted for use in crop
breeding. For example, multimodal DL models are composed of
multiple models, each trained using a single input type (e.g.
rainfall, soil measurements, genetic data, hyperspectral imagery),
or a single model trained on concatenated multimodal data
(Figure 2). The different modalities contribute to enrich the
available features for model learning, contributing to an
improved final prediction (Baltrusaitis et al., 2019; Khaki et al,,
2019; Gadiraju et al, 2020; Hoang Trong et al, 2020;
Maimaitijiang et al., 2020). The use of multimodal models and
other DL architectures, such as recurrent neural networks and
graph neural networks, are still largely unexplored in genotype to
phenotype predictions, but present a powerful alternative to
traditional statistical methods.

Challenges in deploying DL models emerge mainly from
plant phenotypic plasticity, as plants present a wide range of
phenotypes depending on the environmental conditions
(Nicotra et al., 2010). The effectiveness of ML/DL models
also depends on appropriately tuning the model
hyperparameters to the target task, with many packages
designed to assist tuning such as Optuna and HyperOpt
(Bergstra et al., 2013; Akiba et al., 2019). Nonetheless, tuning
hyperparameters for DL models tends to be more
computationally intensive than conventional ML. Below we
list some challenges that arise from phenotype variability that
may need to be addressed to effectively use ML for genotype to
phenotype prediction (Figure 3).
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FIGURE 2 | Multimodal DL models can use a variety of inputs as training data, as shown in “data modalities” at the top. The different data types can be fused early in
the training process by using a concatenation layer that integrates the multiple data types in a single file per sample, called early fusion. Alternatively, the concatenation
step may be deployed at the final layers of the model, merging the weights from each specialised module before outputting a prediction.

i) Consistent protocol for data collection and processing during
training and model deployment (Hagiwara et al, 2020;
Martensson et al., 2020). Because DL models learn directly
from the dataset, varying the methods for data collection and
processing can add noise causing the model to underperform.
It is important to maintain a consistent protocol for data
handling, as well as regular assessment to ensure that the
model remains suitable for the task;

ii) Avoid the curse of dimensionality (Altman and Krzywinski,
2018). High  throughput phenotyping platforms,
hyperspectral cameras and pangenome assemblies can
generate massive amounts of data, making it harder for
the model to define which data points are representative
of the trait. Feature selection algorithms can assist in selecting
the most representative data subset for training the DLmodel
(Cen et al.,, 2016; Khaki and Wang, 2019);

ili) Data imbalance. Scarcity of samples representing a specific
genotype or environment can introduce bias to the model.
This can be addressed by employing sampling methods such
as over and under sampling, or generative DL to build an
artificially augmented dataset (Radford et al., 2015);

iv) Changes in environmental conditions (interannual weather
variation, differences in agroecological zone and crop
management practices) may impact model performance
due to plant phenotypic plasticity. Environmental effects
on the phenotype should be considered when defining the
model validation and future applicability, and can be
addressed by collecting data that mimic the conditions
that the model will see when predicting the phenotype
(Montesinos-Lopez O. A. et al., 2018; Khaki et al., 2019;
Shook et al., 2021).

As crop research advances, it is advisable that the models are
updated with new data collected. ML and DL models are under
intense research, with improvements and novel architectures
being published regularly. Selecting the most appropriate
architecture and addressing the challenges above will depend
on the goal of the project and the data availability. Some data
types benefit from complex DL models that draw complex non-
linear relationships from the data, while others can achieve high
performance using simpler tree-based models with greater
potential for interpretability of the results. Nonetheless, the
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successful implementation of ML/DL workflows in crop breeding
will require the familiarisation of breeders and other stakeholders
to the models capabilities, so they can be used appropriately.

DATA-DRIVEN BREEDING REQUIRES
STRUCTURED DATASETS

The prediction accuracy of machine learning models is
intrinsically related to the quality of the dataset employed
during development (LeCun et al., 2015). ML models calibrate
their internal weights based on the data provided, requiring a
representative dataset with accurate annotation (Sasidharan Nair
and Vihinen, 2013; Schaafsma and Vihinen, 2018). Consequently,
a frequent challenge for training robust ML models is the lack of
appropriate datasets with enough data points and sample
variability. It has been suggested that the scarcity of plant
phenotype datasets is because these are either inefficiently
shared with the community due to missing information and
difficulties to find the public repository in which it is stored

(Zamir, 2013; Lobet, 2017), or because the data is maintained in
data silos with restricted access (Bayer and Edwards, 2020). A few
international consortia such as the AgBioData (Harper et al,
2018) and Breeding API (Selby et al., 2019) are making an effort
to share and transform breeding datasets to become more
findable, accessible, interoperable and reusable (FAIR)
(Wilkinson et al., 2016). However, a centralised platform for
hosting and managing phenotypic datasets is needed to make
data more widely available, similar to approaches used to share
genomic data. Another aspect that prevents researchers from
employing previously published datasets is the lack of
standardised metadata descriptions, encompassing
experimental  design, data  collection protocol, field
management, environmental variables, and other information.
The observed plant phenotype is the result of the conditions that
the plant experiences, thus reusing previously published data
requires that all the factors influencing the target trait are
described for the user. The Minimum information about a
plant phenotype project (MIAPPE) (Papoutsoglou et al., 2020)
offers a resource to guide researchers on how to annotate
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metadata to increase the usability and interoperability of the
datasets, but the development and application of suitable
standards need to be expanded to support the growth in ML/
DL applications.

A large number of high quality phenotypic datasets are
generated each year during field trials led by industry,
government or academic groups, however these often have
controlled access to protect industry knowledge. An alternative
approach to protect sensitive information while supporting
collaboration  towards  data-driven  breeding is the
establishment of federated learning cohorts (Konecny et al,
2016). Within these, each participant institution trains the
model with its own dataset and shares the updated model peer
to peer or to a centralised server that will aggregate the models
weights (Figure 4). The updated model parameters improve the
baseline model, that is then shared among institutions (Yang
etal, 2019). Federated learning has seen increasing application in
digital health, where data sensitivity is a major issue (Brisimi et al.,
2018; Lee et al., 2018; Rieke et al., 2020).

EXPLAINABLE (INTERPRETABLE)
MACHINE LEARNING FOR GENOTYPE TO
PHENOTYPE MODELS

The increasing use of large scale data, such as genomic variation
and high throughput imagery, have produced studies with highly
accurate ML and non-ML prediction models (Montesinos-Lopez
et al,, 2021b). However, building models capable of predicting a
biological output can only be seen as one of the goals. Models
should also attempt to address biological questions, which
requires an understanding of how the models make
predictions. The use of ML as a method to ask biological

questions presents researchers with the problem of model
explainability. Explainability in prediction models is a
relatively new area for genomic prediction, as the main goal
has often been to achieve optimum prediction performance, with
model explainability less of a focus. This idea can be represented
with GBLUP, one of the most widely implemented genomic
selection methods. GBLUP offers researchers accurate
prediction of breeding values but low explainability of its
predictions, as estimating individual SNP effects can be
difficult for genomic prediction datasets due to the “large-p
little-n” problem (de Los Campos et al., 2013; Shen et al,
2013). As crop genomic prediction ability advances, it is
becoming increasingly important for researchers to explain
how a “black box” model has made predictions, to understand
the biological implications, justify further research questions and
support problem specific model improvement.

For genotype to phenotype prediction in crops, explainability
provides the ability to identify important genomic markers and then
apply these genomic markers to reduce the size of model inputs
required to make further predictions. In Khaki and Wang (2019),
analysis of feature importance determined that weather had a larger
effect on crop yield than genotype, and models trained on a reduced
selection of top ranking input features did not lead to a significant
reduction in performance (Khaki and Wang, 2019). Soybean yield
prediction models using genotype and other input data identified the
importance of features from August-September, which coincides with
crop reproduction (Shook et al., 2021). The identification of features
from explainable models provides biological understanding and
supports results from other methods that identify important
features. For example, the application of saliency maps as a post-
hoc method to a convolutional neural network for soybean trait
prediction identified an overlap with significant SNPs found from a
GWAS conducted with the same data (Liu et al, 2019). Model
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explainability should be a consideration for genomic prediction
problems and included as a determining factor for evaluating
optimum model performance.

When predicting plant phenotypes from genotype information,
the use of an interpretable model offers an opportunity to select
high ranking markers as a feature selection strategy, and there is
evidence that selecting a subset of important markers can improve
the prediction for a given phenotype (Oakey et al., 2016). This is
due to the large number of SNPs acting as background noise for
prediction, resulting in diminishing returns on performance unless
a major proportion of included SNPs are associated with the trait
(Pérez-Enciso et al., 2015). A tool such as CGBayesNets can be used
to firstly select a sample of features that are informative for
phenotype prediction (McGeachie et al., 2014). Harvestman is
another tool that selects a representative and non-redundant subset
of features with a specific focus on minimising overfitting issues,
which is common in high dimensionality prediction tasks (Frisby
et al,, 2021). The best subset and encoding of features can then be
used to train new models. Ensemble methods can also be
implemented, where interpretable ML methods can be used for
feature selection, and the high ranking features can then be input
into another model, such as a DL architecture, to improve
predictions (Azodi et al., 2019). A benefit of feature selection is
that input feature reduction can reduce the computing resources
and time required to train models.

Model interpretation is complex, as definitions of interpretability
are variable (Lipton, 2018), and evaluation of these interpretations is
non-standardised, making evidence based comparisons between
interpretable methods is difficult (Doshi-Velez and Kim, 2017).
Rudin (2019) argues that instead of extracting meaning from the
‘black box’ model after training, ML models should be built with
interpretability in mind (Rudin, 2019). Less complex ML algorithms,
such as decision tree-based models, are inherently interpretable, with
inbuilt functions to determine feature importance, however it can be
hard to quantify importance between different models as the
importance of these features often uses a metric that measures
relative feature importance against other input features for a
given model (Lundberg et al, 2018). For example, extreme
gradient boosting’s (XGBoost) inbuilt functions offer multiple
methods of calculating feature importance (weight, cover, gain),
each offering different importance scores and ranking of input
features, leading to variable interpretation of results depending on
the method used. Model-agnostic local explanation methods, such as
Shapley additive explanations (SHAP) (Lundberg and Lee, 2017)
and Local interpretable model-agnostic explanations (LIME)
(Ribeiro et al, 2016) have the potential to overcome this issue
due to how the methods consistently and transparently quantify the
input’s effect on prediction across most model types (Lundberg et al.,
2018). However, this leads back to the original criticism of describing
the extraction of meaning post-hoc from the black box as a practice
with potential bias [57], the ability to purposely engineer
explanations (Slack et al, 2020) and the likelihood of false
conclusions being made by inexperienced users (Chromik et al,
2021).

Explainability for genotype to phenotype prediction is a
relatively new area in genomic prediction studies, and the
interest in explainability and interpretability suggests that new
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DL algorithms may have enhanced interpretability (Montesinos-
Lopez et al.,, 2021b). This presents a challenge to evaluate new
algorithms, as conclusion extracted from interpretable models can
be erroneous if the model’s predictive performance is poor
(Murdoch et al, 2019). Additionally, interpretable ML extracts
associations through the correlation between features and
outcomes (Azodi et al., 2020), but are often interpreted with the
goal of guiding hypotheses to suggest possible causal relationships
from features (Lipton, 2018; Murdoch et al., 2019). Placed in a
genotype to phenotype context, this would mean the identification
of important genomic regions for phenotype outcome would
remain noncausal and associative until further work was
conducted to determine causality. One such example of why
further work is required is the possibility of an untested factor
not included in the genotype data, such as epigenetic or
environmental features, that cause both the genomic region and
the predicted phenotype to be associated with each other, without
the genomic region being the causal feature.

DISCUSSION

ML models have the potential to predict complex phenotypic traits
such as yield, biotic, and abiotic stress tolerance due to the way they
capture the non-linear relationships between the genetic variation
and environmental features extracted from the dataset. The growth
of high throughput phenotyping and genotyping will continue to
support crop breeding, however we need algorithms capable of
handling data at this scale and complexity. Further research into the
application of ML/DL models in crop breeding is required as the
application of the model is highly dependent on representativeness
of the training dataset, which may cause difficulties to apply the
model in a real-world setting. Increased efforts to share datasets, or
use data augmentation methods may help improve model
generalisation. In addition, updating model weights as new
datasets become available may also contribute to improve model
prediction accuracy. Most genotype to phenotype studies currently
lack interpretation of their predictions, which should be addressed
to gain insight from the features. As researchers and breeders use
advanced data analysis approaches, explainable ML models will
help answer biological questions. Explainable MLwill be a key area
for genotype to phenotype research, with an increasing focus on
harnessing the potential of ML to generate accurate predictions
combined with reliable interpretations.
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