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Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are
formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple
regulatory functions and have been detected in different cell types, like normal, tumor and
immune cells. CircRNAs have been suggested to regulate T cell functions in response to
cancer. CircRNAs can enter into T cells and promote the expression of molecules that
either trigger antitumoral responses or promote suppression and the consequent evasion
to the immune response. Additionally, circRNAs may promote tumor progression and
resistance to anticancer treatment in different types of neoplasias. In this minireview we
discuss the impact of circRNAs and its function in the regulation of the T-cells in immune
response caused by cancer therapies.
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INTRODUCTION

Circular RNAs (circRNAs) are non-coding RNAs (ncRNA) that have pivotal roles in the genetic
regulation of eukaryotic cells (Xu and Zhang, 2021). circRNAs are linear pre-mRNA that have exonic
intergenic and intronic regions, which can be closed through several mechanisms (Chen, 2020).
Recent studies show that circRNAs regulate target genes through several action mechanisms like
sponging miRNAs, interaction with RNA-binding proteins, modulation of transcription and splicing
and protein translation (Tang and Hann, 2020). Deregulated circRNAs expression has been
associated with clinical pathological parameters and can be detected in biological samples of
body fluids and biopsies; for instance, circ0000190 has been detected in liquid biopsies from
lung cancer patients. These ncRNAs have been proposed as potential candidates as biomarkers for
the diagnosis and treatment with immunotherapy in patients with cancer (Luo et al., 2020).

The tumor microenvironment (TME) dynamically regulates a wide network of interactions
between tumor, and stroma cells, in particular immune cells (Arneth, 2019). Although several reports
show that long noncoding RNAs (lncRNAs) and circRNAs regulate the TME in solid tumors like
prostate cancer, breast cancer and acute myeloid leukemia (Cheng et al., 2021; Jiang et al., 2021),
there is no evidence of the interaction among lncRNA–circRNAs–mRNA for modulating the TME.

Tumor immune microenvironment (TIME) is composed of tumor cells, fibroblasts, endothelial
cells and immune cells, such as CD8+T cells, CD4+ T cells, T regulatory cells, neutrophils,
macrophages, B cells, dendritic cells, and myeloid-derived suppressor cells. TIME composition is
complex at the cellular and molecular levels, also it differs depending on its localization, all of these
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impact on cancer removal because each TIME shows an altered
balance of suppressive versus cytotoxic responses in the vicinity
of the tumor (Binnewies et al., 2018; Wilkinson et al., 2021).
TIME is intimately associated with innate and adaptive immune
responses involved in the processes of immunoedition of cancer,
which has three main phases: elimination, equilibrium and escape
see (Figure 1A) (Tavakoli et al., 2021). During the elimination
phase, immune cells recognize and develop several mechanisms
for inducing tumor cell death. In the equilibrium phase, tumor
variants evolve, which are resistant to the different mechanisms of
the immune response. T cells are of particular importance,
because they have different roles either promoting active
elimination of tumor cells or establishing the equilibrium
phase. Effector CD8+ T cells (CTL, cytotoxic T lymphocytes)
are responsible for recognizing and eliminating tumor cells,
whereas helper T cells secrete a wide array of cytokines, which
depend upon the context of activation; thus, they have different
roles during tumor development (Finn, 2018; Tavakoli et al.,
2021).

ncRNAs establish complex interaction networks among long
non-coding RNAs (lncRNAs), circRNAs, microRNAs (miRNAs)
and mRNAs, which regulate the responses of multiple target
genes to cancer therapy, including those involved in the immune
response. A better understanding of these complex interactions
could be useful for designing better therapeutic strategies in
personalized medicine for cancer patients (Anastasiadou et al.,
2018; Zhang et al., 2019). However, the role of circRNAs in innate
and adaptive immune responses and its impact on cancer

immunoediting is still unclear. The goal of this minireview is
to discuss the impact of circRNAs and their functions in the
regulation of immune cells, in particular in T cells, caused by
cancer therapies.

The Tumor Immune Microenvironment
Despite the development of targeted therapies and
immunotherapies, some cancers have a poor response to these
treatments or develop resistance to them. The TIME has been
shown to be crucial in the response of patients to
immunotherapeutic treatments, which has lead to a
classification of the TIME depending on the composition of
immune cells: infiltrated–inflamed, which are characterized by
a high infiltration on leukocytes, albeit dampened by tumor
evasion mechanisms such as expression of PD-L1.
Infiltrated–excluded show exclusion of leukocytes from the
tumor core; instead immune cells, in particular CTLs, are
found in the tumor periphery. Infiltrated–TLS (tertiary
lymphoid structures) show aggregates of immune cells with a
composition similar to that found in lymph nodes (Binnewies
et al., 2018). Infiltrated–inflamed TIMEs contribute with a pro-
tumoral and immunosuppressive environment that support their
growth and promote immune evasion. For instance, bladder
cancer patients that have the most infiltrated immune cells
and anti-PD-1/PD-L1 immunotherapy treatment have higher
survival in comparison with patients that show infiltrated-
excluded TIMEs. The latter require immunotherapy in
combination with TGF-beta inhibitors to have a better

FIGURE 1 | Biogenesis of circRNAs and regulation of immune cells in cancer. (A) shows cancer immunoediting phases: elimination, equilibrium and escape. (B)
Biogenesis of circRNAs is regulated by three mechanisms: lariat-driven circularization, intron pairing-driven circularization, RNA-binding proteins (RBPs)-mediated of
circularization. (C) Regulation of immune cells through circRNAs-miRNAs-mRNAs interaction. Created with Biorender.com
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response to treatment (Meng et al., 2021). However, highly
aggressive and invasive tumors such as lung cancer, colon
cancer, breast cancer, among others show a poor response to
therapeutic treatments. This is because tumor cells can modify
TIME through the recruitment of immune cells that favor an
immunosuppressive response. Additionally, epigenetic
mechanisms as circRNAs regulate the expression of genes in
the tumor environment, including immune cells. Although many
studies have focused on characterizing the mechanisms involved
in this resistance, there are few studies on how circRNAs regulate
immune cells and the consequent immune response of patients to
therapeutic treatments.

Biogenesis of Circular RNAs and Their
Functions in Cancer
CircRNAs are single-stranded closed circular structures
covalently linked that lack 3′-poly (A) tails and 5′-caps. These
characteristics provide stability and resistance against
degradation by ribonucleases. Moreover, circRNAs are widely
conserved across species in different types of tissues and many of
them have been associated with specific clinical stages of some
cancers (Chen and Yang, 2015; Li et al., 2020). Although the
biogenesis and the mechanisms of action of circRNAs are not yet
fully understood, it is known that circRNAs start from linear pre-
mRNA, made up of exonic regions, intergenic and intronic
regions. CircRNAs can also originate by lariat-driven
circularization, exon skipping, intron-pairing-driven
circularization, direct back splicing, intron circularization by
tail cutting, interactions among RNA-binding proteins (RBPs)
and trans-factor-driven circularization (Shan et al., 2019; Zhao
et al., 2019). According to their biogenesis, circRNAs have been
classified in three types: exonic circRNAs (ecircRNA), intronic
circRNAs (cirRNA) and exon-intronic CircRNAs (EIciRNA).
CircRNAs location can be found in the cytoplasm (ecircRNAs)
and the nucleus (cirRNA and EIciRNA), see Figure 1B (Cai et al.,
2019; Li et al., 2019; Nisar et al., 2021).

CircRNAs regulate physiological and pathological processes
like cell proliferation, cell differentiation, cell survival, among
others. Although the biological functions of circRNAs are not
fully understood, some reports show that circRNAs act via some
of the following mechanisms: 1) competing for endogenous RNA
or as sponges to miRNAs, 2) interacting with RNA-binding
proteins (RBPs), 3) regulating the stability of mRNAs, 4)
regulating gene transcription, and 5) modulating protein
translation (Li et al., 2015; Meng et al., 2017; Qu et al., 2017;
Li et al., 2018).

Recent research shows that CirRNAs contained in exosomes
are found in body fluids such as blood, urine, cerebrospinal fluid,
and saliva. All of these fluids are considered as liquid biopsies, and
because most of them can be obtained by non-invasive methods,
these fluids are very valuable for the clinical diagnosis, prognosis
and treatment of various diseases, including cancer (Zhang et al.,
2018). CircRNAs are delivered by exosomes into different cell
types and are internalized into the target cell through direct
fusion or by endocytosis; thus, their incorporation into the cell is a
random process. Nonetheless, some studies show that tumor-

derived exosomes containing cicRNAs are tissue-specific or can
be recognized by specific targets via receptors or adhesion
molecules; thus, cicRNAs can regulate various functions in the
target cells at autocrine, paracrine and even endocrine levels
(Wang et al., 2017; Seimiya et al., 2020). Within the cancer
context, circRNAs are master regulators of several hallmarks,
including sustaining proliferative signaling, resisting cell death,
angiogenesis, invasion and metastasis (Visci et al., 2020).
Nonetheless, little is known about the role of circRNAs in the
modulation of a particular hallmark: evasion of immune
destruction and cancer immunoediting. There are few studies
that evidence the role of circRNAs in regulating some immune
cell functions like macrophages, natural killer (NK) and
neutrophils, see Table 1. Even so, circRNAs have been shown
to promote immunosuppression, and even induce resistance to
cancer therapy in solid tumors, such as lung, hepatic, pancreatic,
colorectal, among other cancers (Ou et al., 2019; Zhang et al.,
2020b; Shang et al., 2020; Katopodi et al., 2021).

Certain CircRNAs regulate immune cells in response to cancer
treatment (see Table 1 and Figure 1C). For instance, some
circRNAs might favor NK cell activity. A recent study has
shown that a high expression of circARSP91 in hepatocellular
carcinoma cells compared with non-transformed cells induce an
increase in the cytotoxicity activity of NK cells toward hepatic
cancer cells. The mechanism is through overexpression of UL16-
binding protein 1 (ULBP1) in hepatic cancer cells. ULBP1
interacts with activating NKG2D receptor on NK cells,
promoting a higher release of granzyme B compared with
hepatic cancer cells where circARSP91 expression was
inhibited, leading to an increase in the immune surveillance
activity of NK cells (Ma et al., 2019).

On the other hand, some circRNAs might be released by the
hypoxic tumor microenvironment, which promotes metastasis,
increases therapy resistance, as well as delivery of
immunosuppressive molecules that inactivate NK cells and
T cells. For instance, increased circ0000977 expression induced
by hypoxia promotes the immune escape of the pancreatic cancer
cells mediated by HIF-1α (hypoxia inducible factor-1 alpha).
circ0000977 expression is positively correlated with ADAM10 (A
Disintegrin and metalloproteinase Domain 10) and soluble
MICA (sMICA) expression, but negatively correlated with
membrane MICA expression (mMICA). As mMICA is one of
the activating ligands for NKG2D, a reduced expression of this
molecule, accompanied by higher levels of sMICA, reduces
NKG2D membrane expression, and consequently the cytotoxic
activity of NK cells (Ou et al., 2019). ADAM10 can also cleave
PD-L1 in culture (Romero et al., 2020); thus, it is conceivable that
soluble PD-L1 might have deleterious effects on T cells.
Nonetheless, more research is required to evaluate if inhibition
of circ0000977 will be helpful for treatment of pancreatic cancer.

Tumor masses show spatial/temporal differences in their
genome and epigenome, which leads to intratumoral
heterogeneity. The latter, together with the TIME, promote
cell state transition in the tumors and phenotypic
heterogeneity that can lead to immunosuppression, resistance
to treatments and promote tumor progression [(Ramón y Cajal
et al., 2020), (Biswas and De, 2021)]. Oncogenic Kras signaling in
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stages III–IV lung cancer drives intratumoral heterogeneity via
enhanced circHIPK3/PTK2 expression, promoting the
infiltration of tumor-associated macrophages (TAM), which
are polarized to a M2 phenotype. These macrophages trigger
both chemoresistance and immunosuppression through MDSC
(myeloid-derived suppressor cells) differentiation. Also,
infiltration by M2 macrophages drives high exosomal
circHIPK3/PTK2 expression, thus inducing lymph node
metastasis, and immunosuppressive activities in response to
chemotherapy (Katopodi et al., 2021).

Regulation of circRNas-miRNAs-mRNAs
Modulating the Response of Immune Cells
in Cancer
Accumulating evidence has demonstrated that circRNas have
important roles contributing to the escape phase by inhibiting
T cells. circPTPN22 has been recently shown to be overexpressed
in pancreatic cancer tissues and was associated with tumor size.
circPTPN22 promotes STAT3 acetylation, which induces
immunosuppression. The inhibition of circPTPN22 suppresses
tumor cell growth in vivo, and induces immune cell infiltration,
(CD8+ T cells, CD4+ T cells, γδT cells, and NK cells). Inhibition of
circPTPN22 also induces an increased ratio of CD8+ T cell/T reg, as
well as in the number of CD8+ T cells producing granzyme B and
interferon-γ (IFN-γ). Thus, knockdown of circPTPN22 induces a
high immune cell infiltrate that leads to tumor cell elimination (He
et al., 2021). In recurrent nasopharyngeal carcinoma, circ0000831,
circ0006935, circ005019, circ0031584 and circ0001730 have been
shown to induce tumor microenvironment changes, affecting
distribution of immune cells, as well as a decrease in the ratio of
CD4+/CD8+T cells.Wang et al. suggest that these alterations lead to
repression of immune response mediated by T cells (Wang et al.,
2021b); however, this study only correlated the presence of these
circRNAs with the frequency of T cells. Hence, further
characterization of the effects on T cell functions need to be
investigated.

Gene amplification is a common process occurring in the
cancer genome, which is involved in tumor progression,

recurrence and therapy resistance (Matsui et al., 2013). In
hepatocellular cancer, circMET, which is coded in the
chromosome 7q21-7q31, showed a high expression and cancer
relapse in patients that showed amplification of this chromosome.
An immunosuppressive tumor microenvironment regulated by
the miR-30-5p/Snail/dipeptidyl peptidase 4 (DPP4)/CXCL10 axis
was demonstrated in vivo. Xenotransplants of Hep1–6 cells
overexpressing circMET (Hep1–6-circMET cells) exhibit a
decreased infiltration of CD8+ T cells compared to control
mice, as well as reduced production of cytokines and
chemokines (CXCL10, CXCL16, CCL11, IL17, leptin, CCL9,
CCL17, and Timp-1). circMET overexpression induces
epithelial mesenchymal transition, and it favors upregulation
of the transcription factor Snail. The latter upregulates DPP4,
which promotes local immunosuppression by inhibiting T cell
trafficking via cleavage of the chemokine CXCL10 (Huang et al.,
2020).

Inhibition of T cell activation is responsible for tumor
progression and reduced patient survival. Programmed death-
ligand 1 (PD-L1) expressed on tumor cells binds to PD-1 receptor
(programmed cell death 1) leading to inhibition of T cell
activation. Thus, immunotherapies targeting the PD-1/PD-L1
pathway, activate T cells and enhance anti-tumoral responses.
This type of therapy is known as checkpoint immunotherapy
(Akinleye and Rasool, 2019). In lung cancer, high expression of
PD-L1 induces tumor progression, resistance to the therapy and
tumor immune escape (Incorvaia et al., 2019). A study on the
regulation of PD-L1 in lung cancer showed that circ-CPA4 and
PD-L1 were overexpressed in lung tumors, and that miR-let-7
expression was diminished. Tumor cells suppress T cell growth,
proinflammatory cytokines production and induce the
inactivation of CD8+ T cells by means of PD-L1-containing
exosomes. The high expression of circ-CPA4 promotes
exosomal PD-L1, and acts as sponge of miR-let-7 inhibiting its
expression. All of the above leads to CD8+ T cell inactivation,
tumoral immune escape and increased resistance to cisplatin
(Hong et al., 2020). A similar study showed that circHST15 is
overexpressed in advanced stages of lung cancer and in lymph
node metastasis. circCHST15 is mainly located in the cytoplasm,

TABLE 1 | circRNAs delivery by tumor cells through exosomes regulate the therapy response of some immune cells in cancer.

CircRNA Immune
cells

Targets/pathways Immune response Cancer References

circHIPK3,
circPTK2

Macrophage Kras Immunosuppressive metastasis Lung Katopodi et al.
(2021)

circ0005963 Macrophage PTEN/PI3K/AKT pathway Increased EMT and metastasis Lung Chen et al. (2021)
circ0004913 Macrophage miR-182–5p/PRC1 Tumor progression Hepatocellular Zhou et al. (2020)
circ0074854 Macrophage HuR Suppressing migration and invasion Hepatocellular Wang et al. (2021)
circ004811 Macrophage miR-140/TLR4 pathway Enhance invasion, migration and

metastasis
Esophageal squamous cell
carcinoma

Lu et al. (2020)

circUHRF1 NK TIM-3 via degradation of miR-
449c-5p

Drive resistance to anti-PD1 Hepatocellular Zhang et al. (2020)

circARSP91 NK ULBP1 Enhance innate immune surveillance Hepatocellular Ma et al. (2019)
circ0000977 NK miR-153/HIF-1A/ADAM10 HIF1A- mediated immune escape Pancreatic Ou et al. (2019)
circPACRGL Neutrophil miR-142-3p/miR-506-3p-TGF-

β1 axis
Tumor progression Colorectal Shang et al. (2020)
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and has recognition sites for miR-155-5p and miR-194-5p, which
leads to decreased expression of these miRNAs. circCHST15
promotes upregulation of Ki-67, PCNA; hence, this circRNA
promotes tumor proliferation. In addition, circCHST15 induces
the production of both protumoral (TNF-β, and IL-10 and PD-
L1) and antitumoral cytokines (IFN-γ and CCL17). The authors
propose that increased expression of PD-L1 induces the
inactivation CD8+ cells, leading to immune escape in lung
cancer (Yang et al., 2021). In lung adenocarcinoma, circRNA-
002178 increases PD-L1 expression, by acting as sponge of miR-
34. Interestingly, circRNA-002178 is contained in tumor
exosomes which, once inside CD8 + T cells, induce the
expression of PD-1 receptor on these cells, consequently
promoting their dysfunction (Wang et al., 2020).

CONCLUDING REMARKS

circRNAs regulate the tumor microenvironment through interaction
among immune cells, stromal cells, and the extracellular matrix,
among other factors. circRNAs regulate immune cells like NK cells,
macrophages, and T cells. However, T cell mediated antitumoral
response is not enough to kill tumor cells due to several factors such
as tumor heterogeneity, clonal selection and tumor evasion
mechanisms. Among these mechanisms, circRNAs participate in
immunosuppressive networks, which lead to T cell dysfunction. The
therapeutic treatments against cancer have shown little effectiveness
due to tumor microenvironment conditions that promote the
development of intrinsic and acquired resistance of tumor cells.
Immunotherapeutic treatments that block regulatory checkpoints
by using monoclonal antibodies appear to be promising. However,
tumor heterogeneity induces acquired resistance to immunotherapy
that promotes immune evasion allowing tumor progression.

Recent evidence shows that some circRNAs regulate to the
miRNAs function through join to specific sites of miRNAs and

perform a transcriptional control. Although there is no direct
evidence yet of how the interaction network among
lncRNA–circRNAs–mRNA modulate the TIME, circRNAs
have been shown to establish these networks and their
dysregulation may affect the response of T cells in different
cancer types; consequently, the composition of immune cells
within the TME is modified.

Nevertheless, the contribution of circRNAs in regulation of
immune cells and its immune response against cancer and its
impact in cancer immunoediting remains largely unknown.
Few circRNAs, as well as, their interaction networks among
lncRNAs-circRNAs-miRNAs-mRNAs have been functionally
studied in detail in some cancers. However, there are many
important questions that remain to be addressed to
understand the role of circRNAs during the development of
carcinogenesis and its role in resistance to cancer therapies.
Hence, a potential venue of research is the study of the
interplay between circRNA–lncRNA and how they interact
to modulate the TIME.
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