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Gastric cancer (GC) is a very common malignancy with a poor prognosis, and its
occurrence and development are closely related to epigenetic modifications.
Methylation of DNA before or during gastric cancer is an interesting research topic.
This article reviews the studies on DNA methylation related to the cause, diagnosis,
treatment, and prognosis of gastric cancer and aims to find cancer biomarkers to solve
major human health problems.
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1 INTRODUCTION

Gastric cancer (GC) is a major unresolved clinical problem, with over a million new cases globally in
2020 (Sexton et al., 2020). It is the fourth most common cancer in men (Sexton et al., 2020), and the
third most frequent cause of cancer-related deaths worldwide (Global, 2019). Most patients are
diagnosed at an advanced stage and have a poor prognosis (Digklia and Wagner, 2016). Recently,
multiple studies showed that epigenetic dysregulations, including DNA methylation, histone post-
translational modifications, chromatin remodeling and non-coding RNAs, play a vital role in the
oncogenesis and progression of GC. Among the epigenetic modifications mentioned, DNA
methylation is the earliest known and well-investigated epigenetic change (Skvortsova et al., 2019).

The types of aberrant DNA methylation in human cancers include global DNA hypomethylation
and local hypermethylation of genes. Genome-wide hypomethylation mainly occurs in repetitive
elements that are normally hypermethylated to maintain genomic integrity and stability. Long
Interspersed Nucleotide Element 1 (LINE-1), Alu repetitive elements and human endogenous
retroviruses (HERVSs) are the major constituents of interspersed repetitive sequences (IRS)
(Chansangpetch et al., 2018). Regional hypermethylation of genes occurs in CpG (5'-cytosine-
phosphate-guanine-3') islands, which are normally unmethylated and cause silencing of tumor-
suppressor genes, cell cycle regulator genes, and DNA repair genes (Eyvazi et al., 2019; Moore et al.,
2013; Shao et al., 2018; Zeng et al., 2017). CpG islands (CGI) are frequently found in mammalian
promoters (Field et al, 2018). Three types of DNA methyltransferases including DNMT]I,
DNMT3A, and DNMT3B, are responsible for DNA methylation. DNMT3A and DNMT3B are
primarily ab initio methyltransferases, while DNMT1 maintains the methylation of symmetrically
methylated CpGs during DNA duplication (Ebrahimi et al., 2020; Zeng et al., 2017).

Although many studies explored the prospect of DNA methylation as a biomarker with the aim of
decreasing GC deaths, the methylation levels in those studies were mainly detected from the tissues
by invasive methods. There are still many aberrantly methylated genes whose roles in GC have not
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been fully investigated, especially those detected by non-invasive
methods. Novel non-invasive biomarkers are necessary for early
detection, the prediction of prognosis and recurrence, and the
evaluation of treatment efficacy. In this review, from the
perspective of clinical practicality, we briefly described DNA
methylation associated with pathogens of GC. Then, we
highlighted the value of aberrant DNA methylation as a non-
invasive biomarker for GC management.

2 DNA METHYLATION ASSOCIATED WITH
PATHOGENESIS

Pathogens invade host cells and cause epigenetic changes, such as
DNA methylation, making it a safer environment for the
pathogen. This allows the infection to persist and promotes
the development of GC (Fattahi et al, 2018). The most
important pathogens associated with gastric carcinogenesis are
Helicobacter pylori (H. pylori, HP) and the Epstein-Barr
virus (EBV).

2.1 Infection Mediated by Helicobacter
pylori

Infection by H. pylori induces hypermethylation in the promoter
regions of many DNA repair genes and tumor suppressor genes
(MHL1, RUNX 3, APC, and PTEN), thus silencing the genes and
facilitating carcinogenesis (Muhammad et al, 2019). Kosumi
et al. found that LINE-1 hypomethylation of non-cancerous
gastric mucosae in gastric cancer patients was significantly
correlated with H. pylori infection (p = 0.037) and
prospectively confirmed the similar result in non-gastric
cancer patients (p = 0.010) (Kosumi et al, 2015). Yoshida
et al. found that compared to the gastric mucosae of H. pylori-
negative healthy volunteers, the Alu methylation level was
significantly lower in the gastric mucosae of H. pylori-positive
healthy volunteers and H. pylori-positive gastric cancer patients
(Yoshida et al., 2011).

When chronic inflammation, triggered by H. pylori infection
in Mongolian gerbils, was repressed by cyclosporin A, aberrant
DNA methylation was substantially suppressed; however, the
abundance of H. pylori in the gastric mucosa was not reduced.
Therefore, it was concluded that the inflammation, rather than H.
pylori, was responsible for inducing abnormal DNA methylation
(Niwa et al., 2013). However, recurrent inflammation caused by
alcohol or saturated NaCl did not induce abnormal DNA
methylation (Hur et al., 2011). Helicobacter pylori infection
activates the secretion of IL-1p and TNF-a and the production
of reactive oxygen species. Together, they induce DNA
methyltransferase 1 (DNMT1) and cause aberrant DNA
methylation in gastric epithelial cells (Kim, 2019). Aggregation
of aberrantly methylated DNA in the gastric mucosa might favor
cancerogenesis (Maeda et al., 2017).

Although eliminating H. pylori significantly decreases
methylation of tumor suppressor genes, DNA methylation
does not return to the same level as that in individuals who
are never infected by H. pylori, and the higher levels of methylated
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DNA in the previously infected individuals have adverse effects
on the gastric mucosa in the long term (Nakajima et al., 2010).
Therefore, individuals with ongoing presence of aberrant DNA
methylation would face a higher risk of GC even after the
eradication of H. pylori (Shin et al, 2012). From this
perspective, determination of DNA methylation in H. pylori-
negative subjects, including subjects whose H. pylori has been
eliminated, can also act as a helpful diagnostic biomarker for
assessing the risk of gastric cancer (Tahara and Arisawa, 2015).

2.2 EBV Infection

Based on The Cancer Genome Atlas (TCGA) project, gastric
cancer was classified into four molecular subtypes: Epstein-Barr
virus, microsatellite instability, genomically stable, and
chromosomal instability (Sohn et al, 2017). Epstein-Barr
virus-associated ~ gastric  carcinoma (EBVaGC), which
comprises nearly 10% of gastric carcinomas (Fukayama and
Ushiku,  2011), shows the most extreme DNA
hypermethylation in all human malignancies (Usui et al,
2021). Matsusaka et al. divided GC into three epigenotypes
according to DNA methylation patterns: EBV-/low
methylation, EBV-/high methylation, and EBV+/high
methylation (Matsusaka et al, 2011). CXXC4, TIMP2, and
PLXND1 genes are methylated only in the EBV + tumors.
COL9A2, EYAI1, and ZNF365 genes are methylated both in
EBV+ and EBV-/high tumors. AMPH, SORCS3, and AJAP1
genes are methylated in all gastric cancers (Matsusaka et al,
2011). Many studies have shown that promoter hypermethylation
plays a crucial role in the carcinogenesis of EBVaGC (Kaneda
et al., 2012; Matsusaka et al., 2014; Okada et al., 2013; Yau et al.,
2014; Zong and Seto, 2014). EBVaGC exhibited promoter
hypermethylation in multiple genes (e.g., pl5, pl6, p73,
hMLH1, MGMT, GSTP1, CDH1, TIMP1, TIMP3, DAPK, bcl-
2, APC, PTEN, and RASSF1A) associated with regulation of cell
proliferation (Shinozaki-Ushiku et al., 2015). In contrast, the
relationship between EBV infection and demethylation in
interspersed DNA repeats is unclear.

Unlike  HP infection, EBV  infection-induced
hypermethylation is considered to be caused not by the
intermediate pathways related to inflammation induced by
infection but by the pathogen itself (Kaneda et al., 2012). The
molecular mechanism of aberrant DNA methylation triggered by
EBV infection remains unclear. The proposed mechanism
includes the upregulation of the expression of DNMTI1 and
DNMT3b and the downregulation of the activity of TET2
demethylase by EBV (Hino et al., 2009; Namba-Fukuyo et al.,
2016; Zhao et al., 2013).

3 DIAGNOSTIC BIOMARKERS

Exploring the role of DNA methylation in early diagnosis of
gastric cancer is important for reducing mortality. Most
investigations of DNA methylation are based on the
evaluation of disparities in methylation levels between the
tumor and the adjacent tissues. Many studies have found that
repetitive element hypomethylation and site-specific CpG island
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TABLE 1 | Aberrant DNA methylation as diagnostic biomarkers in body fluids and stool of GC patients.

Study Source Hypermethylated gene (sensitivity; Methods References
specificity)

Watanabe, 2009 Gastric wash MINT25 (90.0%; 95.8%) Pyrosequencing ~ Watanabe et al. (2009)

RORA (60.0%; 85.4%)

GDNF (65.0%; 89.6%)

ADAM23 (70.0%; 83.3%)

PRDM5 (65.0%; 93.7%)

MLF1 (60.0%; 85.4%)
Yamamoto, 2016 Gastric juice-derived BARHL2 (90.0%; 100%) Pyrosequencing ~ Yamamoto et al. (2016)

exosomes

Zhang, 2014 Whole blood SPG20 (48.8%; 100%) MSP Zhang et al. (2014)
Liu, 2015 Serum SFRP1 (30.95%; 93.2%) MSP Liu et al. (2015)
Zheng, 2011a Serum KCNA4 (67.4%; 97.4%) Q-MSP Zheng et al. (2011a)

CYP26B1 (73.9%; 93.4%)
Lee, 2002 Serum p15 (55.6%; 100%) MSP Lee et al. (2002)
Kanyama, 2003 Serum p16 (26%; 100%) MSP Kanyama et al. (2003)
Abbaszadegan, Serum p16 (26.9%; 100%) MSP Abbaszadegan et al.
2008 (2008)
Wang, 2008 Serum RASSF1A (34%; 100%) MSP Wang et al. (2008)
Lu, 2012 Serum RUNX3 (94.1%; 100%) Q-MSP Lu et al. (2012)
Chen, 2009 Serum HSULF1 (55%; 81%) MSP Chen et al. (2009)
Hibi, 2011 Serum TFPI2 (10%; 100%) Q-MSP Hibi et al. (2011)
Leung, 2005 Serum TIMP3 (17%; 100%) Q-MSP Leung et al. (2005)

APC (17%; 100%)

E-cadherin (13%; 100%)

hMLH1 (41%; 92%)
Lee, 2002 Serum E-cadherin (57.4%; 100%) MSP Lee et al. (2002)

DAPK (48.1%; 100%)

GSTP1 (14.8%; 100%)
Xue, 2016 Serum RASSF10 (81.71%; 89.5%) BSP Xue et al. (2016)
Wang, 2015 Serum FLNC (67.1%; 93.0%) Q-MSP Wang et al. (2015)

THBS1 (63.4%; 94.2%)

UCHL1 (56.1%; 89.5%)

DLEC1 (80.5%; 93.0%)
Balgkouranidou, Serum SOX17 (68.9%; 100%) MSP Balgkouranidou et al.
2013 (2013)
Guo, 2011 Plasma HLTF (20.8%; 100%) MSP Guo et al. (2011)
Bernal, 2008 Plasma Reprimo (95.3%; 90.3%) MSP Bernal et al. (2008)
Alarcon, 2020 Plasma RPRML (56.0%; 88.0%) MethyLight assay  Alarcon et al. (2020)
Miao, 2020 Plasma SFRP2 (60.9%; 86.0%) Q-MSP Miao et al. (2020)
Cheung, 2012 Plasma RNF180 (56%; 100%) Q-MSP Cheung et al. (2012)
Ng, 2011 Plasma SLC19A3 (85%; 85%) Q-MSP Ng et al. (2011)
Pimson, 2016 Plasma PCDH10 (94.1%; 97.03%) MSP Pimson et al. (2016)
Guo, 2010 Plasma IRX1 (73.3%; 90%) MSP Guo et al. (2010)
Lee, 2013 Plasma SEPT9 (17.7%; 90.6%) PCR Lee et al. (2013)
Chen, 2015b Plasma ZIC1 (60.6%; 100%) MSP Chen et al. (2015b)
Guo, 2021 Stool SDC2 (Train set: 40.9%, test set: 40.9%; Train set: 93.3%; test PCR Guo et al. (2021)

set: 91.7%)

TERT (Train set: 36.4%, test set: 34.1%; Train set: 90.0%; test

set: 91.7%)

RASSF2 (Train set: 31.8%; Train set: 93.3%)

SFRP2 (Train set: 22.7%; Train set: 90.0%)
Liu, 2017 Stool TERT (54.3%; 90%) PCR Liu et al. (2017)

Abbreviations: MSP, methylation-specific PCR; g-MSP, Quantitative methylation-specific PCR; BSP, bisulfite sequencing PCR.

promoter hypermethylation are associated with increased risk of
GC (Hu X et al., 2021; Min et al., 2017; Saito et al., 2012). In such
cases, surgery is required to access the affected tissue, which is a
major limitation for clinical application. Growing evidence has
shown that methylation-related alterations in cancer patients
arise systematically and might be measured in surrogate
tissues (Yuasa, 2010). Developing non-invasive detection
techniques is quite important for GC patients. Therefore,
increasing researchers are devoted to exploring the clinical

significance of aberrant DNA methylation detected in body
fluids (including peripheral blood, gastric juice, etc.) and stool.
Methylation of tumor suppressor genes in peripheral blood has
been studied most extensively. In contrast, non-invasive tests
related to genome-wide hypomethylation are performed less
frequently. Aberrant methylation of multiple genes in body
fluids and stool could be a valuable non-invasive biomarker
for the early screening and diagnosis of gastric cancer (Qu
et al,, 2013; Yamamoto et al., 2020) (Table 1) (Figure 1).
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FIGURE 1 | Biomarkers for diagnosis, therapy, and prognosis of gastric cancer. Hypermethylated (in red) and Hypomethylated (in blue) genes are shown.
Sensitivity and specificity are shown in square brackets. GW: gastric washes. GJ: gastric juice. WBC: white blood cell. PPW: preoperative peripheral washes.

3.1 Biomarkers in Peripheral Blood

Various blood biomarker-based tests can be used for the early
diagnosis of cancer (Huang et al., 2021). Tumor cells can release
DNA into peripheral blood, causing abundant circulating DNA
levels in the blood of cancer patients to be several-fold higher than
that of individuals without cancer (Tahara and Arisawa, 2015).
Increasing evidence indicates that the detection of methylated
DNA in peripheral blood is more well-developed and stable than
detection of gene mutation (Qi et al., 2016). Testing DNA
methylation in the blood as a risk marker for carcinoma is of
special significance, since the non-invasive and convenient
collection of peripheral blood DNA is easily accepted by patients.

3.1.1 Circulating Cell-free DNA Methylation

Circulating cell-free DNA (cfDNA), derived from both normal
and tumor cells, is present in the blood. In particular, the cfDNA
that is derived from tumors and possesses tumor-specific
mutations is called circulating tumor DNA (ctDNA) (Pessoa
et al., 2020). Numerous studies have investigated the feasibility of
measuring serum or plasma DNA methylation to detect
methylation of tumor-derived circulating DNA as a latent
diagnostic biomarker for gastric cancer (Tahara and Arisawa,
2015). Methylation of p16, CDHI, RARP, Reprimo, RassflA,
hMLH1, RUNX3, APC, E-cadherin, SFRP1, KCNA4, p15, SFRP2,
HSULF1, PCDHI0, TFPI2, TIMP3, CYP26B1, DAPK, DLECI,
FLNC, THBS1, UCHL1, GSTP1, HLTF, RPRML, SLC19A3,
RNF180, etc. are markedly higher in the DNA from peripheral
blood of GC subjects than in that of control subjects (Wang et al.,
2015; Abbaszadegan et al., 2008; Alarcon et al., 2020;
Balgkouranidou et al., 2013; Bernal et al, 2008; Chen et al,
2015a; Chen et al, 2009; Cheng et al, 2007; Cheung et al,

2012; Guo et al.,, 2010, 2011,; Hibi et al,, 2011; Huang et al,
2021; Ikoma et al., 2006; Kanyama et al., 2003; Lee et al., 2002;
Leung et al., 2005; Liu et al., 2015; Lu et al., 2012; Miao et al., 2020;
Ng et al,, 2011; Pimson et al., 2016; Sakakura et al., 2009; Tahara
etal,, 2013; Wang et al.,, 2008; Xue et al., 2016; Zhang et al., 2010,
2014; Chen et al., 2015b; Zheng et al., 2011b). Lin et al. evaluated
the methylation state of three genes (ZICl, HOXDI10, and
RUNX3) from the blood samples of GC patients using
methylation-specific ~ polymerase chain reaction. They
discovered that the Odds ratios of ZICl, HOXDI10, and
RUNX3 methylation for predicting GC were 4.285 (95%CIL:
2.435-7.542), 3.133 (95%CI: 1.700-5.775), and 2.674 (95%CI:
1.441-4.960), respectively. The joint detection sensitivity of these
three genes was 91.6%. Therefore, the combined detection of
multiple gene promoter hypermethylation exhibited a
cooperative effect compared to a single biomarker used to
predict GC (Lin et al., 2017).

What is noteworthy is that even for the same methylated gene,
there are significant discrepancies between the results of different
studies, which might be attributed to differences in the sample
size, detection methods, and study regions (Huang et al., 2021).
To understand this heterogeneity and evaluate the accuracy of
DNA methylation markers in the blood for identifying gastric
cancer patients, Hu et al. conducted a meta-analysis with 32
studies, containing 69 analyses of blood DNA methylation tests
that were conducted to evaluate GC. The 32 studies included
2,098 GC patients and 2,098 control subjects. The blood test
based on DNA methylation had an overall sensitivity of 57% and
specificity of 97% for gastric cancer. Plasma-based tests showed a
sensitivity of 71% and specificity of 89%. Serum-based tests
showed a sensitivity of 50% and specificity of 98%. The
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sensitivity of using multiple methylation genes was 76% and
specificity was 85%. These results suggested that the blood-based
DNA methylation test has high specificity but moderate
sensitivity for the detection of gastric cancer. The
determination of various methylation genes or the use of
plasma samples might improve the sensitivity of the diagnosis
(Hu et al,, 2017).

3.1.2 DNA Methylation in Peripheral Blood Leukocytes
Unlike tumor DNA, leukocyte DNA can be obtained non-
invasively and relatively inexpensively (Tahara et al, 2018).
Studies which determine whether selected tumor suppressor
genes and genome-wide repetitive sequence methylation in
peripheral blood leukocytes of subjects with gastric cancer and
healthy controls are different are rapidly emerging.
Hypermethylation of KIBRA, DLEC1, FAT4, WTI1, HI9,
MALATI1, APC, ACIN1, BCL2, CD44, TNFRSF10C and
RARB promoters in peripheral blood leukocytes was found to
be statistically significant in GC patients (Dauksa et al., 2014; Hu
D. et al,, 2021; Sun et al., 2018; Xie et al., 2020; Zhang et al., 2018;
Zhou et al., 2019). To date, only a few studies have examined GC
risk associated with Alu and LINE-1 methylation in peripheral
blood leukocytes and the results are variable. Dauksa et al. found
that the mean methylation level in Alu and LINE-1 repeats of GC
patients was slightly lower than the mean level in the controls
(Dauksa et al., 2014). Hou et al. demonstrated that GC risk
increased with a decrease in the methylation of Alu or LINE-1,
although the trends were not statistically significant (Hou et al,,
2010). Gao et al. found that Alu methylation in blood leukocyte
DNA was inversely associated with GC risk, but LINE-1
methylation levels were not correlated with GC risk (Gao
et al., 2012). Barchitta et al. also showed that the LINE-1
methylation levels were significantly different in tissue samples
but not in blood samples (Barchitta et al., 2014). These results
suggested that studies with more individuals must be performed
to determine the clinical applicability of leukocyte DNA
methylation to detect gastric cancer non-invasively.

3.1.3 DNA Methylation in Whole Blood

Several studies evaluated the association of aberrant DNA
methylation with the risk of gastric cancer. SOCS3, SPG20,
and SFRP1 promoter hypermethylation in whole blood
significantly increased GC risk (Han et al., 2020; Tahara et al.,
2013; Zhang et al., 2014).

3.2 Biomarkers in Gastric Washes

Since a large number of mucosal cells could be extracted from
gastric juice (GJ)), DNA biomarkers in gastric juice might be used
to detect gastric cancer. However, DNA is easily degraded in an
acidic environment; thus, gastric wash (GW) is used as an
alternative source for determining aberrant DNA methylation
(Yamamoto et al., 2020). Unfortunately, only several early studies
showed that the methylation levels of MINT25, RORA, GDNF,
ADAM23, PRDMS5, CDH1, and MLF1I in gastric washes of GC
patients were significantly higher than those of control subjects
(Muretto et al., 2008; Watanabe et al., 2009). Among them,
MINT25 methylation has the optimal sensitivity (90.0%) and

DNA Methylation and Gastric Cancer

specificity (95.8%), and thus, can distinguish GC from non-GC
and be a potential biomarker for screening GC. Yoshiyuki et al.
investigated the relationship of the methylation levels between
biopsy and gastric washes. The methylation levels of all six genes
were tightly associated by statistical analysis (MINT25: p = 0.001;
RORA: p = 0.03; PRDM5: p < 0.001; MLFI1: p < 0.001;
ADAM23 p < 0.001; GDNF: p < 0.001). These results
indicated that DNA from gastric washes can be used as a
suitable substitute for DNA from biopsied tissues to determine
the accumulation of DNA methylation in GC patients (Watanabe
et al., 2009).

Hypermethylation of BARHL2 was detected in gastric wash-
derived and gastric juice-derived exosomal DNA in early-stage GC
patients before endoscopic treatment, whereas methylation levels
considerably decreased with a curative endoscopic therapy. These
results indicated that BARHL2 methylation might contribute to the
detection of residual cancer after endoscopic resection and the
potential prediction of tumor relapse (Yamamoto et al., 2020).
Some disturbing factors such as aging, HP infection, and chronic
inflammation can also induce aberrant DNA methylation.
BARHIL2 methylation is not affected by those factors. Therefore,
GW or GJ exoDNA-based methylation analysis of BARH2 is
expected to be an accurate biomarker for detecting early and
advanced gastric cancer (Yamamoto et al.,, 2016).

3.3 Biomarkers in Stool

Guo et al. (Guo et al,, 2021) evaluated the feasibility of gene
methylation in feces for screening gastric cancer. All GC patients
and normal controls were divided into training sets and test sets.
The sensitivity and specificity of a single marker for gastric cancer
detection in the training set for SDC2 were 40.9 and 93.3%, for
TERT were 36.4 and 90.0%, for RASSF2 were 31.8 and 93.3%, for
SFRP2 were 22.7 and 90.0%, and for Hb were 27.3 and 90.0%. The
sensitivity and specificity of the three markers for methylation of
SDC2, TERT, and Hb in the test set for gastric cancer detection
were 40.9 and 91.7%, 34.1 and 91.7%, and 25.0 and 86.7%,
respectively. The results showed that the methylation of SDC2,
SERP2, TERT, and RASSF2 has a certain sensitivity and high
specificity in GC screening, which is a potential fecal biomarker of
gastric cancer. Another study (Liu et al., 2017) also suggested the
feasibility of stool TERT promoter methylation analyses for the
non-invasive screening of gastric cancer.

4 THERAPEUTIC TARGET

DNA methylation is also critical for the adjuvant treatment of
gastric cancer. Chemotherapy is one of the major methods for
treating GC. The main problem with chemotherapy is drug
resistance, which is primarily related to DNA methylation.
Correcting aberrant methylation patterns can improve
chemotherapy response and patient survival (Housman et al,
2014). Animal studies have also shown that direct repression of
aberrant DNA methylation can inhibit gastric carcinogenesis
(Maeda et al., 2017). Therefore, DNMT inhibitors (DNMT1)
are being actively investigated as novel cancer treatments.
Additionally, adjuvant radiotherapy of GC has been debated
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TABLE 2 | Aberrantly methylated genes as prognostic biomarkers in GC patients.

DNA Methylation and Gastric Cancer

Study Source Aberrantly Prognosis Methods References
methylated
gene

Balgkouranidou, Serum APC Poorer OS (HR = 4.6, 95% Cl = 1.1-20.3, p = 0.046) MSP Balgkouranidou et al.
2015 (2015)
lkoma, 2006 Serum E-cadherin Poorer 3-year survival rate (p < 0.05) MSP lkoma et al. (2006)
Yan, 2021 Serum SFRP2 Shorter PFS (HR = 13.05; 95% Cl = 3.05-55.95) and OS (HR = PCR Yan et al. (2021)

7.80; 95% Cl = 1.81-33.60) (stage lll); Shorter PFS (HR = 2.74;

95% Cl = 1.58-4.78) and OS (HR = 3.14; 95% Cl = 1.67-5.92)

(stage IV)
Hu, 2021 Serum THBS1 Worse DFS (HR = 3.838; 95% Cl = 1.691-8.710; p = 0.001) Q-MSP Hu X et al. (2021)
Wang, 2015 Serum UCHLA1 Worse OS (p = 0.033) Q-MSP Wang et al. (2015)

THBS1 Worse OS (p = 0.0483)
Ko, 2021 Plasma LINE-1 Worse OS (p = 0.006) gPCR Ko et al. (2021)
Pimson, 2016 Plasma RASSF1A Lower OS (HR = 2.33, 95% Cl = 1.14-4.85, p = 0.002) MSP Pimson et al. (2016)
Karamitrousis, Plasma SOX17 Lower PFS and OS (p < 0.001) MSP Karamitrousis et al.
2021 Wif-1 Lower PFS and OS (p = 0.001) (2021)
RASSF1A Lower PFS and OS (p = 0.004)
Cheung, 2012 Plasma RNF-180 Poorer OS (HR = 2.13; 95% Cl = 1.11-4.08; p = 0.02) Q-MSP Cheung et al. (2012)
Zhang, 2014 Whole blood SPG20 Shorter OS (p = 0.037) MSP Zhang et al. (2014)
Xie, 2020 Peripheral blood PBX3 Poorer cum survival (HR = 1.678, 95% Cl = 1.046-2.693) (elderly MS-HRM  Xie et al. (2020)
leukocytes group); Poorer cum survival (HR = 2.058, 95% Cl = 1.024-4.137)

(female group)

Yu, 2012 PPW CDHA1 Worse DFS (p < 0.000) MSP Yu et al. (2012)

Abbreviations: Cl, confidence interval; HR, hazard ratio; OR, odds ratio; MS-HRM, methylation-sensitive high-resolution melting; PFI, progression-free interval; PFS, progression free

survival; PPW, preoperative peritoneal washes.

over the past few decades. However, it has been suggested that
hypermethylation and inactivation of certain genes associated
with cell cycle regulation, DNA repair, apoptosis, and signal
transduction can lead to radiotherapy resistance in GC cells
(Zhang et al, 2006). In the future, it may be possible to
improve radiotherapy response by altering DNA methylation
patterns to benefit GC patients.

4.1 Chemotherapy

Studies have shown that DNA methylation in gastric cancer cells
is related to the sensitivity of chemotherapy and resistance of
anticancer agents such as 5-FU and cisplatin. The biomarkers
used to identify resistance or sensitivity to chemotherapeutic
drugs can be investigated. Hypermethylated TFAP2E, TMSI,
PYCARD (ASC/TMS1), and DAPK might be appropriate
biomarkers for 5-FU-resistant gastric cancer. Hypermethylated
CDKN2A (p16INK4a) and DCTPP1 might be useful biomarkers
for 5-FU-sensitive gastric cancer. Hypomethylated ADGRL2
(LPHN2) and GTSEl are potential biomarkers of cisplatin-
sensitive gastric cancer. Regardless of the type of drug, the
hypomethylated ATP-binding cassette gene Bl (ABCBI1) could
be an effective biomarker for chemotherapy-resistant gastric
cancer (Choi et al., 2017) (Figure 1). This is because ABCB1
hypermethylation silences genes that encode cellular factors
necessary for cancer cell resistance to the chemotherapeutic
drugs 5-FU and cisplatin (Shitara et al., 2010).

4.2 DNMT Inhibitors

DNMT inhibitors are either nucleoside analogs or non-
nucleoside analogs (Erdmann et al,, 2015). Azacytidine and

decitabine are nucleoside analogs of cytosine that cannot
accept a methyl donor at the 5’ position of the pyrimidine
ring and depletes cellular DNMT1 (Zeng et al, 2017).
Decitabine is integrated into DNA instead of cytidine during
duplication, and azacitidine can be incorporated directly into
RNA, inhibiting protein synthesis, which causes a substantial
reduction in DNMT activity (Navada et al., 2014). Azacitidine
was found to suppress the proliferation of GC cell lines and alter
DNA methylation (Chen & Wang et al, 2015). Decitabine
treatment can cause growth inhibition and reduction in
DNMT3A and DNMT3B levels, accompanied by
demethylation of the P16 INK4A gene (Liu et al, 2013).
Zebularine, another kind of nucleoside analog, is a novel
DNMT inhibitor that reduces the expression of the DNMT
protein and reactivates epigenetically silenced genes (Tan
et al,, 2013).

At present, neither azacytidine nor decitabine has been
identified as monotherapy for gastric cancer in the clinical
setting. This might be because DNMT inhibitors alone cannot
reactivate gene expression (Si et al., 2010). However, growing
evidence suggests that the combination of DNMT inhibitors and
traditional chemotherapy can improve chemosensitization by
restoring aberrant epigenetic changes. For example, the
combined administration of decitabine and 5-FU showed that
TFAP2E is reactively expressed in GC by demethylation and an
increase in chemosensitization (Wu F. L. et al, 2015).
Additionally, azacytidine upregulates DAPK2, DAPKS3,
RASSF1, and THBS1 genes which might synergize with
chemotherapeutic agents (Tan et al., 2013; Wu F et al, 2015;
Zhang et al., 2006). In a clinical trial (Phase 1) (Schneider et al.,
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TABLE 3 | Aberrantly methylated genes that play an important role in both
diagnosis and prognosis of GC.

SFRP2
Detection Sensitivity: 60.9%; Specificity: 86.0% (plasma) Miao et al. (2020)
Sensitivity: 22.7%; Specificity: 90.0% (stool) Guo et al. (2021)
Prognosis  Shorter PFS (HR = 13.05; 95% CI = 3.05-55.95) and OS (HR = 7.80; 95% Cl = 1.81-33.60)
(stage Ill); Shorter PFS (HR = 2.74; 95% Cl = 1.68-4.78) and OS (HR = 3.14; 95% Cl =
1.67-5.92) (stage IV) (serum) Yan et al. (2021)
THBS1
Detection  Sensitivity: 63.4%; Specificity: 94.2% (serum) Wang et al. (2015)
Prognosis ~ Worse DFS (HR = 3.838; 95% Cl = 1.691-8.710; p = 0.001) (serum) Hu X. et al. (2021)
Worse OS survival (p = 0.0483) (serum) Wang et al. (2015)
UCHL1
Detection Sensitivity: 56.1%; Specificity: 89.5% (serum) Wang et al. (2015)
Prognosis ~ Worse OS (p = 0.033) (serum) Wang et al. (2015)
SOX17
Detection Sensitivity: 58.9%; Specificity: 100% (serum) Balgkouranidou et al. (2013)
Prognosis  Lower PFS and OS (p < 0.001) (plasma) Karamitrousis et al. (2021)
APC
Detection Sensitivity: 17%; Specificity: 100% (serum) Leung et al. (2005)
Prognosis  Poorer OS (HR = 4.6, 95% Cl = 1.1-20.3, p = 0.046) (serum) Balgkouranidou et al. (2015)
E-cadherin
Detection Sensitivity: 13%; Specificity: 100% (serum) Leung et al. (2005)
Sensitivity: 57.4%; Specificity: 100% (serum) Lee et al. (2002)
Prognosis  Poorer 3-years survival rate (p < 0.05) (serum) lkoma et al. (2006)
RASSF1A
Detection Sensitivity: 34%; Specificity: 100% (serum) Wang et al. (2008)
Prognosis  Lower OS (HR = 2.33, 95% Cl = 1.14-4.85, p = 0.002) (plasma) Pimson et al. (2016)
Lower PFS and OS (p = 0.004) (plasma) Karamitrousis et al. (2021)
RNF-180
Detection Sensitivity: 56%; Specificity: 100% (plasma) Cheung et al. (2012)
Prognosis  Poorer OS (HR = 2.13; 95% Cl = 1.11-4.08; p = 0.02) (plasma) Cheung et al. (2012)
SPG20
Detection Sensitivity: 48.8%; Specificity: 100% (whole blood) Zhang et al. (2014)
Prognosis  Shorter OS (p = 0.037) (whole blood) Zhang et al. (2014)

2017), researchers investigated pre-treatment with 5-azacitidine
as a demethylation reagent in late-stage gastric cancer. They used
5-azacytidine (V) before EOX (epirubicin, oxaliplatin,
capecitabine) neoadjuvant chemotherapy in GC patients and
the result showed hypomethylation of tumor-related loci such
as HPP1, TIMP3, CDKN2A, ESR1, and MGMT. Most patients
easily tolerate neoadjuvant VEOX therapy with significant
clinical and epigenetic responses. More randomized studies are
required to further determine whether the efficacy of this
combination is better than chemotherapy alone.

Other types of non-nucleoside analogs such as procaine,
hydrazone-gallate, genistein, miRNA-21, miRNA-335, miRNA-
148a, and miRNA-155-5p have also been investigated, but further
studies need to be performed before approval for clinical use
(Erdmann et al,, 2016; Li et al., 2014, 2018,; Pan et al., 2010; Xie
et al., 2014; Zhang et al., 2015; Zuo et al., 2013).

4.3 Radiotherapy

Despite active anticancer treatment, the overall prognosis of
advanced GC is not ideal. Hence, an effective biomarker is
required for selecting suitable patients who might benefit from
adjuvant radiotherapy. Unfortunately, such predictive indicators
have not been determined.

DNA Methylation and Gastric Cancer

Anetal. (An et al, 2020) analyzed methylation maps of 397 gastric
cancer samples downloaded from The Cancer Genome Atlas (TCGA)
and established a new biomarker called promoter methylation burden
of DNA repair genes (RPMB), which meant the ratio of methylated
DNA repair genes to the number of all DNA repair genes in order to
identify patients who were sensitive to radiotherapy. Subgroup
analyses based on overall survival (OS) and disease-free survival
(DFS) showed that most of the subgroups tended toward the
high-RMPB group. High-RPMB patients receiving radiotherapy
with both > T2 tumor and positive lymph nodes showed longer
DFS than the low -RPMB group (p = 0.010). High-RPMB patients
receiving radiotherapy with both > T2 tumor and positive lymph
nodes survived low-RPMB patients in disease-free status (p = 0.010).
Therefore, RPMB might be a promising biomarker to evaluate the
indications for adjuvant radiotherapy in GC. Furthermore, treatment
with 5-aza-CdR can positively affect radiotherapy sensitivity of gastric
cancer cells by enhancing the expression of some genes such as p53,
RASSFI1, and DAPK (Qiu et al., 2009).

5 PROGNOSTIC BIOMARKERS

Aberrant DNA methylation in peripheral blood is also related to
multiple prognostic results of gastric cancer. Therefore, it could be
used as a prognostic biomarker of GC (Figure 1). Hypermethylation
of most genes such as APC, E-cadherin, UCHL1, SPG20, RASSFIA,
SFRP2, CDHI1, THBS1, SOX17, Wif-1, RNF-180, MEDI12L,
HMLHI1, MGMT, FLNC, LOX, HOXD10, BNIP3, and PCDH10
was significantly associated with adverse prognosis in GC
(Balgkouranidou et al, 2015; Cheung et al, 2012; Hu X et al,
2021; Ikoma et al., 2006; Karamitrousis et al., 2021; Necula et al.,
2019; Pimson et al., 2016; Wang et al., 2015; Yan et al,, 2021; Yu et al,,
2012; Zhang et al., 2014) (Table 2). Additionally, Xie et al. found that
PBX3 methylation in peripheral blood leukocytes was associated
with poorer GC prognosis only in the elderly group (HR = 1.678,
95% CI = 1.046-2.693) and the female group (HR =2.058,95% CI =
1.024-4.137) (Xie et al., 2020).

Ko et al. evaluated the prognostic value of LINE-1 methylation
level in cfDNA in gastric cancer patients undergoing radical surgery
and chemotherapy. The overall survival (OS) of patients with low
methylation levels before starting treatment was significantly worse
than those with high methylation levels. But methylation level before
surgery had no effect on recurrence-free survival (RFS) and OS (Ko
et al,, 2021). However, another study showed that the methylation
status of LINE-1 in leukocyte DNA was not an independent
prognostic factor of GC (Tahara et al., 2018).

The association between aberrant DNA methylation and the
prognosis of GC needs to be evaluated in larger cohorts and
diverse populations. Additionally, more intensive studies are
required to determine the potential molecular biomarkers for
predicting prognosis in GC patients.

6 CONCLUSION

Helicobacter pylori and EBV are the most important pathogens
associated with gastric cancer, which can cause carcinogenesis by
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inducing aberrant DNA methylation. DNA methylation has high
clinical application value. Aberrant methylation of various genes in
body fluids and feces can be used as a non-invasive method for
early screening and diagnosis of gastric cancer. Specifically,
Reprimo, RUNX3, PCDHI10, BARHL2, and MINT25
hypermethylation have both high sensitivity and specificity,
which indicates their value in the diagnosis of GC. However,
the sensitivity of detecting other types of DNA methylation
from peripheral blood and stool is not satisfactory. Using a
combination of multiple genes can yield higher sensitivity. DNA
methylation can also affect the response to chemoradiotherapy in
gastric cancer patients. A combination of DNMT inhibitors and
chemotherapy drugs seems to have a better therapeutic effect.
Therefore, more DNMT inhibitors that have lower toxicity, an
effective response, and a low price need to be developed.
Furthermore, DNA methylation can predict a variety of
prognostic results for GC patients, such as overall survival (OS)
and disease-free survival (DFS). Aberrant methylation of APC,
SFRP2, LINE-1, E-cadherin, SOX17, Wif-1, RASSF1A, RNF-180,
UCHLI, and SPG20 in peripheral blood was significantly
associated with shorter OS in GC. The methylation levels of
SFRP2, SOX17, Wif-1, and RASSFI1A in peripheral blood had
an impact on progression-free survival (PFS). THBS1 methylation
in the serum and CDH1 methylation in preoperative peripheral
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