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Single-cell DNA sequencing (scDNA-seq) enables high-resolution profiling of genetic
diversity among single cells and is especially useful for deciphering the intra-tumor
heterogeneity and evolutionary history of tumor. Specific technical issues such as allele
dropout, false-positive errors, and doublets make scDNA-seq data incomplete and error-
prone, giving rise to a severe challenge of accurately inferring clonal architecture of tumor.
To effectively address these issues, we introduce a new computational method called
SCClone for reasoning subclones from single nucleotide variation (SNV) data of single cells.
Specifically, SCClone leverages a probability mixture model for binary data to cluster single
cells into distinct subclones. To accurately decipher underlying clonal composition, a novel
model selection scheme based on inter-cluster variance is employed to find the optimal
number of subclones. Extensive evaluations on various simulated datasets suggest
SCClone has strong robustness against different technical noises in scDNA-seq data
and achieves better performance than the state-of-the-art methods in reasoning clonal
composition. Further evaluations of SCClone on three real scDNA-seq datasets show that
it can effectively find the underlying subclones from severely disturbed data. The SCClone
software is freely available at https://github.com/qasimyu/scclone.
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1 INTRODUCTION

Cancer is a dynamic disease driven by accumulation of somatic mutations (Nowell, 1976). The
genetic aberrations give cancerous cells a growth advantage over surrounding normal cells to resist
apoptosis. With the clonal expansions, distinct subclones presenting genotypic and functional
diversity emerge in the tumor (Greaves and Maley, 2012; Swanton, 2012), and their lineage
relationship can be depicted in an evolutionary tree. Each branch of the tree forms taxa
descended from a common ancestor. As intra-tumor heterogeneity of tumor constitutes one of
the critical factors that contribute to therapy resistance, an accurate inference of tumor subclones and
their lineage relationship is essential for finding driver genes (Xi et al., 2020) and the assessment of
drug resistance and design of personalized treatment.

Next-generation sequencing (NGS) (Metzker, 2010) has shown significant advantages in
deciphering the intra-tumor heterogeneity and evolutionary history in tumors. The typical usage
of NGS techniques is the sequencing from cells in bulk. The mutation profile obtained from bulk
sequencing is a mixed signal that represents an average of thousands or even millions of cells that
derive from distinct subclones in the tumor. Therefore, a deconvolution of the mixed signal is
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required to identify the subclones and recover the clonal lineage.
The main challenge lies in the ambiguity that the number of
present subclones, their respective prevalence, mutation profiles,
and phylogenetic relationships are all undetermined (Navin,
2014). To solve this problem, an abundance of computational
approaches has been developed in the last decade to decode clonal
composition from bulk-sequencing data (Kuipers et al., 2017;
Satas and Raphael, 2017; Yu et al., 2017; Eaton et al., 2018).
However, deconvolution-based results suffer from low-resolution
indication of clonal architecture due to insufficient coverage of
low-prevalence subclones. The detection resolution can be
improved by analyzing multiple samples per patient that could
either be from spatially distinct regions of tumor (Gerlinger et al.,
2014), metastasis, or tumor/relapse pairs (Ding et al., 2012). The
snapshots of the tumor at different time points can also be utilized
to strengthen the resolution but are usually unavailable.

Single-cell DNA sequencing (scDNA-seq) (Gawad et al., 2016)
now provides an unprecedented view of the intra-tumor
heterogeneity at single cell resolution. In scDNA-seq
techniques, picograms of DNA from isolated single cells are
amplified to micrograms of genetic material, producing
enough DNA to be sequenced using NGS instruments.
Mutation profiles of single cells obtained from scDNA-seq
experiments can be exploited to reconstruct the evolutionary
tree without the signal deconvolution step as required in bulk
sequencing. However, processing scDNA-seq data is usually
complicated by several critical issues, such as allele dropout
(ADO), false-positive (FP) errors, missing data, and cell
doublets (Navin, 2014). ADO can result in false-negative (FN)
errors, that is, heterozygous sites are erroneously recorded as
homozygous genotypes, and the FN rates reported in previous
studies change from 0.1 to 0.43 (Hou et al., 2012; Gawad et al.,
2014). FP errors refer to falsely predicting homozygous genotypes
to be heterozygous and occur with a higher rate than the somatic
mutations (Hou et al., 2012; Xu et al., 2012). Missing sites may
result from non-uniform sequencing coverage and ADO events,
and the proportion of missing data can exceed 50% in scDNA-seq
data (Hou et al., 2012). Cell doublet is another type of noise in
scDNA-seq data that derives from unintended capturing of two
or more cells when isolating single cells, and the reported doublet
rate may reach 10% in current droplet-based techniques (Zafar
et al., 2017). These issues usually come together in scDNA-seq
data, making it very complicated to get unbiased inference from
the data.

So far, an arsenal of computational methods (Jahn et al., 2016;
Zafar et al., 2017; El-Kebir, 2018; Chen et al., 2020; Myers et al.,
2020; Yu et al., 2021) has been developed to reconstruct tumor
phylogeny from single nucleotide variation (SNV) data of single
cells. Typically, three popular evolutionary models, that is, the
infinite sites model (ISM), the finite site model (FSM), and the
Dollo parsimonymodel, are employed in these methods. The ISM
assumption stipulates that each mutation is gained once and will
not be lost, and the FSM relaxes the constraint to allow parallel
evolution and mutation loss, while the Dollo parsimony model
only permits back mutation. For instance, SCITE (Roth et al.,
2016) takes ISM assumption and deduces the optimal phylogeny
based on the Markov Chain Monte Carlo (MCMC) approach.

With finite site assumption, SiFit (Zafar et al., 2017) leverages an
MCMC-based approach to infer the cell lineage tree, and the
authors further develop SiCloneFit (Zafar et al., 2019) to decipher
the clonal evolutionary tree with a doublet model. To model back
mutation, SPhyR (El-Kebir, 2018) exploits the Dollo parsimony
model to efficiently estimate tumor phylogeny. Similarly, SASC
(Ciccolella et al., 2021b) infers loss-supported cancer progression
based on simulated annealing. PhISCS-BnB (Sadeqi Azer et al.,
2020) delivers perfect phylogeny using a branch and bound
algorithm. Recently, GRMT (Yu et al., 2021) is proposed to
reconstruct the mutation tree with a generative model. There
are some methods that exploit additional data to improve the
inference accuracy. For instance, ScisTree (Wu, 2020)
incorporates genotype uncertainty information into analysis
for better inference of the cell lineage tree. SCARLET (Satas
et al., 2020) is a more recently proposed method to infer loss-
supported tumor phylogeny refined by copy number profiles.

Inference of subclones constitutes another paradigm for
scDNA-seq data analysis. For instance, OncoNEM (Ross and
Markowetz, 2016) finds subclones by reasoning the subclonal tree
using a heuristic search algorithm and fine-tunes the tree with
unobserved subclones. SCG (Roth et al., 2016) uses a hierarchical
Bayesian model to cluster single cells into distinct subclones.
RobustClone (Chen et al., 2020) is proposed to efficiently recover
subclonal composition with no explicit restriction on the
evolutionary model. Furthermore, BnpC (Borgsmüller et al.,
2020) adopts a non-parametric approach to cluster cells into
subclones. Another method called celluloid (Ciccolella et al.,
2021a) intends to reduce scDNA-seq data size for efficient
reconstruction of tumor phylogeny via mutation clustering
before tree inference. Despite the acceptably good performance
of existing clustering methods, their applications may encounter
specific limitations. The heuristic search and MCMC-based
methods are shown to suffer from high computational
complexity; therefore, they cannot scale well to large scDNA-
seq datasets. In addition, the performance of the existing methods
on severely disturbed scDNA-seq data, such as datasets
complicated by a high FN rate, is not yet fully investigated,
and they may suffer from heavy performance degradation on
such hard cases. Therefore, clustering of binary mutation data is
still a challenging task, and methods for accurate and efficient
clustering of scDNA-seq data are still highly needed for
deciphering subclones of tumor.

In this study, we introduce SCClone, a novel method for
inferring intra-tumor heterogeneity from scDNA-seq data by
addressing aforementioned critical issues. SCClone clusters
single cells into distinct subclones by formulating the input
genotype matrix (GTM) under a probability mixture model
for binary data. Unlike the existing search-based methods,
SCClone directly learns subclonal mutational profiles and FP
and FN rates from input data via an expectation-maximization
(EM) algorithm and therefore converges faster than the MCMC-
based methods. In addition, a novel model selection approach
based on inter-cluster variance is proposed to accurately decipher
underlying clonal composition. Comprehensive evaluations on
various simulated datasets demonstrate that SCClone performs
better than the state-of-the-art methods in multiple evaluation
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metrics. We also validate the effectiveness of SCClone on three
real scDNA-seq datasets.

2 MATERIALS AND METHODS

The input to SCClone is a binary N ×M GTM D that depicts the
observed genotypes of N cells at M genomic loci. The outputs of
SCClone include 1) underlying subclones from which the
observed mutation data derive and 2) estimated proportions of
false negatives and false positives in the mutation data. A
schematic illustration of SCClone workflow is given in
Figure 1. SCClone employs an EM-based clustering model to
decipher the clonal composition of the tumor and the error rates.

2.1 Probability Models for Formulating
Mutation Data
Given the observed N × M GTM D, we denote the ground truth
GTM as Z* and assume each cell derives from one of the K cell
populations. Cells from the same population constitute a separate
cluster. The mutation states of the kth cluster are denoted by a
vector Ck of lengthM, where each element Ckj represents presence
(Ckj = 1) or absence (Ckj = 0) of mutation j in population k. Due to
allele dropout and false-positive issues, the observed data D are
often confounded by FN and FP calls. The conditional probability
of the ith cell is formulated by the following:

p Di|Ck( ) � ∏M
j�1

p Dij|Ckj( ) (1)

with p (Dij|Ckj) defined as follows:

p Dij|Cij( ) � p 0|0( ) p 1|0( )
p 0|1( ) p 1|1( )( ) � 1 − α α

β 1 − β
( ) (2)

where α and β indicate the false-positive rate (FPR) and the false-
negative rate (FNR), respectively. We rewrite formula (2) to the
following form for computational convenience:

p Dij|Ckj( ) � 1 − β( )Dijβ1−Dij( )Ckj

1 − α( )1−DijαDij( )1−Ckj
(3)

Suppose the proportion of the kth cluster is πk, then the log-
likelihood of observed mutation data can be expressed by the
following:

l C, π, α, β( ) � ∑N
i�1

log ∑K
k�1

πkp Di|Ck( )⎛⎝ ⎞⎠ (4)

We aim to find the maximum likelihood estimation of the
model parameters θ = (C, π, α, β), that is, θ* � argmax

θ
l(θ).

2.2 EMAlgorithm for Parameter Estimations
We employ an EM algorithm to infer the model parameters. In
the E-step, the posterior probability that the ith cell belongs to the
kth cluster is calculated as follows:

γ n( )
ik � π n−1( )

k p Di|C n−1( )
k( )

∑K
j�1π

n−1( )
j p Di|C n−1( )

j( ) (5)

based on the current parameters θ(n−1). The objective function to
maximize in the nth iteration of the M-step is the expected partial
log-likelihood:

J n( ) � ∑N
i�1

∑K
k�1

γ n( )
ik log p Di|Ck( )( ) + log πk( )( ) (6)

The value of C(n)
kj can be inferred as

C(n)
kj � argmax

s
J(n)(Ckj � s). The parameter π is updated

under the constraint ∑K
k�1πk � 1. By employing the

Lagrange multiplier method, we get the updating formula
for πk as follows:

π n( )
k � ∑N

i�1γ
n( )

ik

N
(7)

By maximizing the objective function with respect to β, we
derive the rule to update β:

FIGURE 1 | Schematic overview of the SCClone framework. SCClone takes noisy genotype matrix D inferred from scDNA-seq data as input and infers the number
of subclones as well as the genotypes of each subclone. Each element ofDij denotes the state (presence, absence, and unobserved) of the jth mutation in the ith cell, and
the different states are marked by black, white, and gray, respectively.
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β n( ) � ∑N
i�1∑K

k�1γ
n( )
ik ∑M

j�1C
n( )

kj 1 −Dij( )
∑N

i�1∑K
k�1γ

n( )
ik ∑M

j�1C
n( )

kj

(8)

The parameter α is usually available for scDNA-seq
experiments but can also be updated by the following:

α n( ) � ∑N
i�1∑K

k�1γ
n( )
ik ∑M

j�1 1 − C n( )
kj( )Dij∑N

i�1∑K
k�1γ

n( )
ik ∑M

j�1 1 − C n( )
kj( ) (9)

The model parameters are iteratively updated until the EM
algorithm converges, and the optimal solution is denoted by θ* =
(C*, π*, α*, β*). Each cell is then assigned to the cluster associated
with the highest posterior probability, and the predicted GTM is
denoted as Z.

2.3 Initialization of Model Parameters
The final solution found by the EM algorithm may heavily
depend on the initial values of model parameters; therefore,
appropriate configurations of θ(0) = (C(0), π(0), α(0), β(0)) are
critical to find the optimal solution. Specifically, we adopt a
uniform distribution for π(0), set α(0) to 0.01, and perform grid
search on β(0). If α and β are specified by users, their values will
not be updated. C(0) is specified via random sampling from input
mutation data.

2.4 Determination of the Best Number of
Clusters
To find the best number of clusters, that is, the value of K, we
introduce a score metric based on inter-cluster variance to
evaluate models with different K values. The inter-cluster
distance measures how well the cells from distinct subclones
are separated. Suppose θ* = (C*, π*, α*, β*) represent the inferred
optimal parameters for a given K and Vk denotes the set of cells
predicted to be from the kth cluster, we first calculate the expected
inter-cluster distance d (i, k) for each pair of clusters (i, k) as
follows:

d i, k( ) � p00 ∑M
j�1

1 − Cij*( ) 1 − Ckj*( ) + p01 ∑M
j�1

1 − Cij*( )Ckj*

+p10 ∑M
j�1

Cij* 1 − Ckj*( ) + p11 ∑M
j�1

Cij*Ckj*

(10)

where pst is the conditional probability that two cells c1 ∈ Vi

and c2 ∈ Vk have different observed states (include
missing entries) at a genomic locus given that the
mutation states of the ith and kth clusters at the locus are
s and t, respectively. The values of pst can be empirically
estimated as follows:

p00 � 2α* 1 − α*( ) 1 − η( )2 + 2η 1 − η( ) (11)
p01 � 1 − α*( ) 1 − β*( ) + α*β*( ) 1 − η( )2 + 2η 1 − η( ) (12)

p11 � 2β* 1 − β*( ) 1 − η( )2 + 2η 1 − η( ) (13)
where η is the proportion of missing entries in the input GTM D
and p10 = p01. The distances of all pairs of cells in clusters i and k

are calculated and the mean distance d̂(i, k) is used to define the
inter-cluster score:

s i, k( ) � exp − d i, k( ) − d̂ i, k( )( )2( ) (14)

The larger the value of s (i, k), the higher the probability that
clusters i and k are correctly separated. We then calculate the
mean inter-cluster score for all unordered pairs of clusters to
evaluate the whole model with K clusters:

s K( ) � 2
K K − 1( ) ∑K−1

i�1
∑K
k�i+1

s i, k( ) (15)

In SCClone, we start with the assumption of tumor
homogeneity (K = 1), then iteratively increase the number of
clusters (K = K+1) until the maximum value of the score has not
changed for more than κ (set to 10 by default) times.

2.5 Performance Evaluation
The performance of SCClone is compared to three state-of-
the-art methods, that is, SCG (Roth et al., 2016), RobustClone
(Chen et al., 2020), and BnpC (Borgsmüller et al., 2020),
based on several performance metrics adopted in previous
studies (Borgsmüller et al., 2020; Chen et al., 2020). To
evaluate the clustering accuracy, we calculate the
V-Measure (Rosenberg and Hirschberg, 2007) to quantify
how well the cells are correctly clustered. In addition, we
assess the genotyping accuracy by comparing the predicted
GTM Z to the ground truth GTM Z* and adopt three metrics
for evaluation: accuracy, sensitivity, and specificity. The
accuracy is the fraction of correctly called entries in Z
when compared to Z*, sensitivity is the proportion of
correctly identified 1-entries among all 1-entries in Z*, and
specificity is calculated as the proportion of correctly called 0-
entries among all 0-entries in Z*. All performance metrics are
calculated with doublet cells excluded.

The parameter configurations to run each method are as
follows: 1) for SCG, the maximum number of clusters is set to
N
4 , the maximum number of iterations is set to 1 × 109, and the
gamma prior is configured as “[9.99, 0.01, 1.0e-15] [2.5, 7.5, 1.0e-
15] [1.0e-15, 1.0e-15, 1]”; 2) for running RobustClone, default
parameters are used; 3) for BnpC, we set the runtime to N

50 minutes
to make the model convergent, as suggested by previously
reported results (Borgsmüller et al., 2020); and 4) for SCClone,
we use default parameters.

2.6 Datasets
To make comprehensive comparison of the performance
between the investigated methods, we build seven
simulated datasets (denoted by D1–D7) under various
controlling factors represented by F � (N,M, K, α, β, η, ρ)
by following the simulation process introduced in the
study by Ross and Markowetz (2016). Here, ρ denotes the
doublet rate. To simulate mutation data, a subclonal lineage
tree is first generated and cells are then assigned to the
subclones. The subclonal tree is initialized to only contain
two nodes, of which one denotes root, and the remaining
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subclones are iteratively attached to non-root nodes with
uniform probability. Given the simulated subclonal tree,
mutations are uniformly assigned to the edges of the tree,
and the cells are iteratively assigned to the subclones with the
probability of choosing a subclone proportional to the size of
the subclone, which enables generation of differently sized
subclones. The true genotypes of each cell can be deduced
from the subclonal tree by visiting the path from the root to
the attachment point of the cell. Finally, the observed GTM is
derived from the true GTM by introducing different noises.

Unless indicated otherwise, the default values of the
technical factors are set to (α = 0.01, β = 0.2, η = 0.2, ρ =
0.1), and each dataset is constructed by changing at least one
of the factors. The simulation details of the datasets are as
follows: D1 and D2 are formed by 500 × 200 GTMs deriving
from K = 10 subclones, β takes value from {0.2, 0.3, 0.4, 0.5}
for D1, and η takes value from {0.2, 0.3, 0.4, 0.5} for D2; D3
contains 1,000 × 500 GTMs with β = 0.8 and K = 10; D4 is
constituted by 1,000 × 500 GTMs with the number of
subclones K sampled from {20, 30, 40, 50} and β = 0.3; D5
consists of GTMs with changing number of cells N ∈ {500,
1,000, 1,500, 2,000}, M = 200, K = 15 and β = 0.3; D6 is a
small-sized dataset and consists of 200 × 50 GTMs with K = 5;
D7 is produced with N = 100, M = 100, α ∈ (0.01, 0.1), β ∈
(0.05, 0.4) and K = 5. For each value of the changing factor in
D1–D6, 10 replicates are simulated, and D7 contains 50
GTMs. The indexes of doublet cells are also recorded. In
addition, we further evaluate SCClone on three real datasets
to demonstrate its effectiveness in handling scDNA-seq data.

3 RESULTS

3.1 Comprehensive Evaluation of SCClone
on Simulated Data
3.1.1 SCClone Shows High Robustness Against
Different Noises in scDNA-seq Data
We first evaluate the robustness of different methods against two
types of noises including FN errors and missing entries (MEs) on
datasets D1 and D2, and the results are shown in Figure 2. The
simulated FNR β changes from 0.2 to 0.5, and missing rate η
ranges from 0.2 to 0.5.

When investigating the effects of false-negative errors on inference
accuracy, we find SCG can effectively correct FN errors and recover
the underlying GTMs across different β values, and BnpC shows
generally better results than SCG. For instance, the mean V-measure
and accuracy of SCG at β = 0.5 are as high as 0.902 and 0.984,
respectively, and the corresponding metric values of BnpC are 0.954
and 0.993.We can also observe that RobustClone achieves comparable
performance to SCG and BnpC when β = 0.2, but suffers from
degraded accuracy at larger β values. For instance, themean sensitivity
of RobustClone decreases from 0.960 at β = 0.2 to 0.238 at β = 0.5, and
the corresponding V-measure decreases by a large margin from 0.889
to 0.139. RobustClone first recovers the genotype matrix without
exploiting subclonal information and then clusters the cells based on
the inferred genotypes, which may result in suboptimal solutions.
SCClone exhibits good robustness against FN errors, and delivers high
consistency between the recovered and ground truth GTMs across
different β values. It reaches 0.967 mean V-measure in clustering cells
as well as 0.997mean accuracy in rebuilding the GTM even at β = 0.5.

FIGURE 2 | Performance evaluation results on the simulated datasets D1 and D2. The dataset D1 consists of 500 × 200 genotype matrices with the false negative
rate changing from 0.2 to 0.5, and dataset D2 is constituted by 500 × 200 genotype matrices with the missing rate ranging from 0.2 to 0.5. Four performance metrics
including V-measure, accuracy, sensitivity, and specificity are measured to examine the effects of false-negative errors and missing entries on inference accuracy.
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Besides its better performance in correcting false-negative
errors, SCClone also has advantage in dealing with
incomplete scDNA-seq data with a high missing rate. As
shown in Figure 2, SCClone is the most effective method in
extrapolating the MEs and significantly attenuates the effects
of MEs on GTM recovery and subclone inference. For
instance, the mean V-measure and accuracy of SCClone at
η = 0.5 are as high as 0.990 and 0.999, and the corresponding
metrics of SCG, BnpC, and RobustClone are (0.918, 0.986),
(0.984, 0.997), and (0.856, 0.973), respectively.

To verify if the superior performance of SCClone generalizes
to more complex datasets, we evaluate SCClone on dataset D3

where the FNR is set to 0.8. The results in Figure 3 suggest
SCClone still obtains better results than the state-of-the-art
methods and delivers 0.862 mean V-measure as well as 0.979
mean accuracy. BnpC outperforms other existing methods, and
RobustClone suffers from severely degraded performance on this
dataset. Taken together, these results demonstrate our method
has high robustness to FN errors andMEs in scDNA-seq data and
gains advantages over the existing methods in accurately
recovering the GTM and clustering cells.

3.1.2 SCClone Performs Well in Detecting Subclones
We further examine the performance of SCClone in reasoning clonal
composition with complex lineage structure on dataset D4. The
evaluation is conducted on simulated data where the number of
subclones K changes from 20 to 50, and the results are depicted in
Figure 4. BnpC performs better than SCG and RobustClone and
yields highly consistent results with the ground truth across different
test conditions. Similar to the results on datasets D1–D3, RobustClone
has the highest specificity but miss-classifies a large proportion of 1-
entries as 0 and delivers less accurate clustering results. For instance,
the mean V-measure of RobustClone decreases from 0.786 atK = 20
to 0.414 atK = 50, while the corresponding values of SCG and BnpC
are (0.914, 0.770) and (0.981, 0.915), respectively. Ourmethod exhibits
high robustness against the change in clonal structures and achieves
good performance at different K values.

We also assess the accuracy of SCClone in inferring the
number of subclones and make a comparison with other
methods. The results in Figure 5 indicate all methods
underestimate the number of subclones on GTMs with K ≥
40, and SCClone performs acceptably well on GTMs with K <

FIGURE 3 | Performance evaluation results on the simulated dataset D3.
The dataset consists of 1,000 × 500 genotype matrices with the false negative
rate being as high as 0.8.

FIGURE 4 | Performance evaluation results on the simulated datasets D4 and D5. The dataset D4 consists of 1,000 × 500 genotype matrices with the number of
subclones changing from 20 to 50, and dataset D5 is constituted by genotype matrices with the number of cells ranging from 500 to 2,000.
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40. Although BnpC identifies more subclones than SCClone on
complex GTMs, it tends to deliver false-positive calls of subclones
since SCClone yields higher clustering accuracy than BnpC as
demonstrated in Figure 4. SCClone does not explicitly consider
doublet cells when modeling the mutation data, which may be a
considerable factor that results in the degraded clustering
accuracy of SCClone on the complex GTMs.

3.1.3 SCClone Performs Well on Different-Sized
scDNA-seq Datasets
Besides the superior performance on medium-sized datasets, we
proceed to evaluate the scalability of SCClone on large scDNA-
seq datasets. To achieve this, up to 2000 cells are simulated to
investigate the effect of number of cells on inference accuracy,
and the comparison results on dataset D5 are presented in
Figure 4. With more cells exploited into the analysis, all
methods yield improved results in revealing the clonal
composition. BnpC performs better than SCG and
RobustClone in recovering the GTM and achieves as high as
0.999 mean accuracy when the number of cells N = 2,000. By
comparison, SCClone also gives good results and has high
accuracy (> 0.999) when N > 500. We also analyze the
runtime efficiency of the investigated methods on this dataset.
As RobustClone employs a model-free framework to infer clonal
composition, it has higher efficiency than other methods. For
instance, the mean elapsed time of SCClone, BnpC, SCG, and
RobustClone on the GTMs with 2000 cells are 18, 40, 14, and
0.2 min, respectively. SCClone shows comparable computational
efficiency to SCG. We further assess the performance of SCClone
on small dataset D6 consisting of 200 × 50 GTMs. The results in
Figure 6 suggest SCClone is able to accurately cluster single cells
and infer the subclonal genotypes. The mean accuracy of
SCClone is 0.971 for clustering and 0.998 for genotyping, and
the corresponding metrics of BnpC, SCG, and RobustClone are
(0.965, 0.996), (0.875, 0.973), and (0.72, 0.965), respectively.

Taken together, the evaluation results suggest our method
performs well on different-sized scDNA-seq datasets.

3.1.4 SCClone Can Accurately Estimate the Error
Rates
We also examine the ability of SCClone in estimating the error
rates in scDNA-seq data. Evaluations are conducted on simulated
dataset D7 with α changing from 0.01 to 0.1 and β being in range
(0.05, 0.4). The results in Figure 7 indicate our method is very
effective in accurately estimating the error rates. The predicted
values of α are highly correlated with the ground truth (coefficient
= 0.996). It is also observed that the inferred α is generally larger
than the simulated value due to doublet cells. Since a doublet
event causes a homozygous locus to be recorded as heterozygous
provided that any of the cells constituting the doublet mutates at
that locus, the doublets inevitably result in the elevated FPR. In
addition, SCClone accurately estimates the FNR with highly
significant correlation with the true value (coefficient = 0.999),
and the estimation of β is less affected by doublets. The results
demonstrate our method can automatically and accurately
estimate both the FPR and FNR from the data.

FIGURE 5 | Number of subclones estimated by SCClone, BnpC, SCG,
and RobustClone on the simulated dataset D4. The simulated number of
subclones changes from 20 to 50. ΔK denotes the difference between
predicted and expected number of subclones.

FIGURE 6 | Performance evaluation results on the simulated dataset D6.
The dataset consists of 200 × 50 genotype matrices with five subclones.

FIGURE 7 | Error rate estimation results of SCClone on the simulated
dataset D7. The simulated FPR α changes from 0.01 to 0.1, and FNR β

changes from 0.05 to 0.4.
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3.2 Evaluation of SCClone on Metastatic
Colorectal Cancer Dataset
We use SCClone to infer subclones of metastatic colorectal cancer
patient CRC1 (Leung et al., 2017). This dataset consists of 178
single cells isolated from primary and metastatic tumor tissues.
Genotype calling finds 16 SNVs among all cells, yielding a 178 ×
16 mutation matrix with binary entries.

By automatically learning the error rates, SCClone finds five
subclones (subclone1 ~subclone5) in this tumor, and the clonal
lineage relationship constructed by the minimum spanning tree
(MST) based on genotypes is shown in Figure 8. The error rates
are estimated as α = 0.96% and β = 14.46%. The root of the clonal tree
represents diploid cells (marked by gray) without mutations and
mainly contains primary diploid cells. Mutations in APC, TCF7L2,
and TP53 tumor suppressor genes and KRAS oncogene result in the
emergence of subclone2 (marked by blue). TCF7L2 is reported to be
frequently mutated in CRC and acts as an invasion suppressor
(Wenzel et al., 2020). Subclone3 is derived from subclone2 through
mutation gains in genes like POU2AF1, CCNE1, ROBO2, andMYH9.
CCNE1 is an oncogene that has frequently been amplified in
malignancies (Pils et al., 2014), and MYH9 is considered to
promote growth and metastasis in CRC (Wang et al., 2019). This
subclone consists mostly of primary aneuploid cells (marked by red).
One branch from subclone3 yields a set of primary aneuploid cells
(marked by green) that constitute subclone4 through gain ofmutation
in TPM4 tumor suppressor gene. Another branch derived from
subclone3 is characterized by the mutations in GATA1, RBFOX1,

TRRAP, EYS, and ZNF521. It is noted that GATA1 is reported as an
important gene to promote CRC migration (Yu et al., 2019), and
RBFOX1 deletion occurs with high prevalence in CRC patients
(Sengupta et al., 2013). This metastatic clade represents the
subclone5 formed by metastatic aneuploid cells (marked by orange).

We compare the subclones inferred by SCClone to the results of
SCG, RobustClone, and BnpC. SCG classifies the cells into three
clusters including the normal population, a subclone mainly
constituted by primary aneuploid cells, and another subclone that
represents the metastatic clade. Compared to the results of SCClone,
SCG groups all the primary aneuploid cells with and without
mutation in TPM4 into the same cluster and predicts the primary
diploid cells to be normal or aneuploid. We also obtain the results of
RobustClone on this dataset, and it clusters the cells into one subclone
encompassing mutated cells and the normal population without
mutations. RobustClone maps all the primary and metastatic
aneuploid cells into the same cluster and predicts the mutations
in genes like GATA1, RBFOX1, and TPM4 as false positives, which is
inconsistent with the previously reported results (Zafar et al., 2017).
Compared to SCClone, BnpC delivers an over-segmented result on
this dataset by dividing the cells into 16 clusters.

3.3 Evaluation of SCClone on High Grade
Serous Ovarian Cancer Dataset
The high grade serous ovarian cancer (HGSOC) dataset contains
the mutation states of 420 single cells on 43 genomic loci. The
genotype matrix encompasses 10.7% missing entries as shown in

FIGURE 8 | Subclones and their lineage relationship inferred from metastatic colorectal cancer dataset. SCClone identifies five subclones. subclone1 represents
normal population without mutations, subclone2 consists of mutated diploid cells, subclone3 and subclone4 are constituted by primary aneuploid cells, and subclone5
represents metastatic aneuploid cells. The estimated FPR α and FNR β are 0.96 and 14.46%, respectively.
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Figure 9A. The cells are collected from the left ovary (LOv), right
ovary (ROv), and omentum (Om). We apply SCClone on this
dataset to infer clonal composition. It finds five subclones (labeled
by the numbers 1~5 as depicted in Figure 9B) and simultaneously
estimates the error rates as α = 2.26% and β = 31.61%. The number
of cells assigned to each subclone are 36, 33, 86, 148, and 117,
respectively. It is observed that the distribution of the cells is highly
different across distinct subclones (Figure 9C). For instance,
subclone4 is mainly formed by the ROv and Om cells, while
subclone5 consists of the LOv cells. In addition, 91.67% of the
LOv1 cells are assigned to subclone5, and 82.14% of the Om1 cells
belong to subclone4. These findings are highly in accordance with
the reported results in SCG and BnpC. We further analyze the
lineage relationship between the subclones by constructing MST
(Figure 9D), and get the same topology of the lineage tree as
delivered by RobustClone. These results suggest our method is
effective in handling medium-sized real scDNA-seq data.

3.4 Evaluation of SCClone on IDH-Mutant
Gliomas Dataset
To assess if the good performance of SCClone observed on
simulated data generalizes to real large scDNA-seq datasets,

we further apply SCClone on an IDH-mutant gliomas dataset
(Venteicher et al., 2017; Ciccolella et al., 2021a) formed by 926
cells and 1,392 mutations. This dataset consists of a highly sparse
GTM with ~96.8% entries being zero (Figure 10A).

SCClone clusters the cells into 18 subclones (Figure 10B), and
predicts 686 mutations to be false positives in any of the
subclones. Further analysis suggests 200 of these mutations are
singletons (each mutation is only present in a single cell), and our
method is able to automatically identify false positives in
mutation data without a preprocessing step to filter possible
singletons. The estimated FPR and FNR are α = 0.64% and β
= 82.38%, respectively, and such a high FNR may be associated
with severe allele dropout events. In addition, distinct mutation
patterns are observed among the subclones, and several shared
blocks of mutations appear in major subclones. BnpC infers 33
subclones on this dataset (Figure 10C) and predicts the error
rates to similar values (α = 1.13% and β = 76.7%). Compared to
SCClone, BnpC delivers over-segmented results for single cells,
which implies BnpC is more sensitive to subtle changes between
the cells within the same subclone and therefore classifies the cells
into different clusters. We also run RobustClone on this dataset; it
fails to decipher the clonal architecture and predicts all mutations to
be false positives, which is consistent with the result on the simulated

FIGURE 9 | Subclones inferred from high grade serous ovarian cancer dataset. SCClone identifies five subclones and estimates the error rates as α = 2.26% and β

= 31.61%. (A) The observed 420 × 43 genotype matrix. (B) The recovered genotype matrix and inferred subclones. (C) Distribution of the cells among subclones. (D)
Constructed lineage relationship of subclones by building the minimum spanning tree.

FIGURE 10 | Subclones inferred from IDH-mutant gliomas dataset. SCClone identifies 18 subclones and estimates the error rates as α = 0.64% and β = 82.38%.
(A) The observed 926 × 1,392 genotype matrix. (B) The recovered genotype matrix and inferred subclones by SCClone. (C) The recovered genotype matrix and inferred
subclones by BnpC.
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dataset D3. The tumor phylogeny can then be efficiently obtained by
using phylogeny estimation methods such as SCITE and GRMT
based on the inferred 18 subclones by SCClone.

4 DISCUSSION

scDNA-seq provides an unprecedented view of the genetic
diversity of single cells in cancer. In this study, we introduce a
novel computational method, SCClone, to cluster single cells
from scDNA-seq data. It finds distinct clusters in single cells
using a probability mixture model where the technical noises in
scDNA-seq data are parameterized. The model parameters are
efficiently estimated via an EM algorithm. To infer the number of
underlying subclones, a score metric based on inter-cluster
variance is proposed to compare models associated with
different number of subclones. When compared to the state-
of-the-art methods on simulated datasets, SCClone shows
superior robustness against different noises in scDNA-seq
data. Further evaluation results on real scDNA-seq datasets
show SCClone gets consistent results with the existing methods.

As done in previous methods (Jahn et al., 2016; Zafar et al.,
2017), SCClone takes an implicit assumption that genotyping
errors are uniformly distributed along genomic loci, which may
not hold for scDNA-seq data with severe amplification bias. In
addition, SCClone does not explicitly model doublet events; thus,
it may suffer from degraded performance when processing
scDNA-seq data with severe contamination of doublets; we
will elaborate on these issues in the future. Further
improvements of SCClone can be made from multiple aspects.
First, copy number information has been used to find loss-
supported tumor trees (Satas et al., 2020) and can also be
utilized in SCClone to yield more accurate clustering of the
single cells. Second, boost in inference accuracy has been

observed in joint analysis of bulk and scDNA-seq data
(Malikic et al., 2019), and inclusion of bulk data is a feasible
way to refine the results of SCClone. Third, information about
lineage relationship between subclones is helpful to accurately
estimate the genotypes of subclones, and joint inference of
subclones and their lineage tree is an effective way to improve
SCClone. Finally, information of genotype uncertainty may be
helpful to decipher true genotypes from severely disturbed
scDNA-seq data (Wu, 2020) and can be exploited as prior
knowledge in SCClone to deliver more accurate results.
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