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Tissues are constituted of heterogeneous cell types. Although single-cell RNA sequencing
has paved the way to a deeper understanding of organismal cellular composition, the high
cost and technical noise have prevented its wide application. As an alternative,
computational deconvolution of bulk tissues can be a cost-effective solution. In this
study, we propose DecOT, a deconvolution method that uses the Wasserstein
distance as a loss and applies scRNA-seq data as references to characterize the cell
type composition from bulk tissue RNA-seq data. TheWasserstein loss in DecOT is able to
utilize additional information from gene space. DecOT also applies an ensemble framework
to integrate deconvolution results from multiple individuals’ references to mitigate the
individual/batch effect. By benchmarking DecOT with four recently proposed square loss-
based methods on pseudo-bulk data from four different single-cell data sets and real
pancreatic islet bulk samples, we show that DecOT outperforms other methods and the
ensemble framework is robust to the choice of references.

Keywords: bulk RNA sequencing, single-cell RNA sequencing, cell-type deconvolution, wasserstein distance,
optimal transport

INTRODUCTION

Quantification of gene expression changes in different tissues or under different conditions gives
information on how genes are regulated in organisms. The analysis of gene expression by using
RNA sequencing (RNA-seq) has contributed substantially, since its development more than a
decade ago, to our understanding of biological processes such as organism development, human
disease progression, and patients’ response to treatments. The classic RNA-seq applied to bulk
tissue samples has accumulated a rich reservoir of data sets, for example, GTEx, TCGA, and so
forth (Tomczak et al., 2015, Carithers et al., 2015). However, since tissues are heterogeneous,
which comprise a variety of cell types, the bulk sequencing data only measure the average state of
the mixed cell populations. In fact, the information of cellular composition is crucial. For
example, when developing diagnostic techniques, such information would enable researchers to
track the contribution of each cellular component during disease progressions (Schelker et al.,
2017).

With the rapid development of single-cell technologies, one way to obtain a cell-specific
transcriptome is to apply single-cell RNA-seq (Saliba et al., 2014). However, these experiments
remain costly and noisy compared to the mature bulk RNA-seq and have therefore been performed
only on a limited scale (Denisenko et al., 2020): (Kuksin et al., 2021). Alternatively, one may apply
computational deconvolution algorithms with bulk data, which provide cost-effective ways to derive
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cellular composition information and have the potential to bring
considerable improvements in the speed and scale of relevant
applications.

In recent years, a number of computational deconvolution
methods have been developed with the goal of estimating cell-
type composition within the bulk sample and/or cell-type-
specific states (Avila Cobos et al., 2018); (Jin and Liu, 2021).
According to whether references, such as expression profiles of
pure cell types or marker gene lists, are provided, these
deconvolution methods can be divided into supervised and
unsupervised categories. As completely unsupervised
approaches based on non-negative matrix factorization
(NMF) suffer from low deconvolution accuracy and
interpretation of their results largely depends on the ability
to recover meaningful gene features or expression profiles for
different cell types, the most commonly used methods are
under the supervised category and are often optimized by least
squares algorithms (Avila Cobos et al., 2018). The rapid
accumulation of publicly available scRNA-seq data on a
number of different samples (Baron et al., 2016), (Guo,
2020), led to the recent popularization of developing
deconvolution methods with scRNA-seq references. For
instance, Bisque learned the gene-specific conversion of
bulk data from the scRNA-seq reference, eliminating the
technical deviation of the sequencing technology between
reference and bulk data (Jew et al., 2020). MuSiC proposes
a weighted non-negative least squares regression framework
that simultaneously weighs each gene through cross-subject
and cross-cell variation (Wang et al., 2019). SCDC extends the
MuSiC method and proposes an ensemble framework which
applies multiple scRNA-seq data sets as reference
deconvolution. They claim that SCDC can implicitly solve
the batch effect between reference data sets in different
experiments (Dong et al., 2019).

Besides square loss, divergence functions for characterizing
differences between two distributions, for example, Kullback-
Leibler divergence, are also commonly applied as loss functions in
solving deconvolution problems (Lee and Seung, 1999). These
losses, as well as square losses, decompose vectors or distributions
in an elementwise manner, which neglects relationships between
features (in our case, correlations between genes) (Zhang, 2021),
(Afshar et al., 2020).

Recently, the Wasserstein distance, which originated from the
optimal transport (OT) problem (Monge, 1781); (Kantorovich,
1942), has shown its potential as a better loss function for
measuring the distance between distributions (Langfelder and
Horvath, 2008); (Arjovsky et al., 2017). Wasserstein distance
utilizes a metric between features (e.g., genes) called ground
cost to take advantage of additional knowledge from the
feature space (Rolet et al., 2016). Especially, when comparing
two non-overlapping distributions (distributions with non-
overlapping support), Wasserstein distance can still provide a
smooth and meaningful measure, which is a desirable property
that square loss and other divergence losses cannot offer (Weng,
2019), (Schmitz et al., 2018a). Since the first application of
Wasserstein loss in solving NMF problems in Sandler and
Lindenbaum, 2011, it has been successfully applied to blind

source decomposition (Rolet et al., 2018), dictionary learning
(Rolet et al., 2016), (Schmitz et al., 2018b), and multilabel
supervised learning problems.

Cell types are characterized in gene space. The expression of
genes is not mutually independent. The co-expression of genes
naturally induces a similarity or distance metric among genes
(Langfelder and Horvath, 2008). To the best of our knowledge,
such a relationship has not yet been leveraged to solve cell-type
devolution problems.

Here, we present DecOT, a bulk gene expression
deconvolution method that uses the optimal transport distance
as a loss and applies an ensemble framework to integrate
reference information from scRNA-seq data of multiple
individuals. We apply different ground cost metrics for
characterizing gene relations in DecOT. We optimize DecOT
under an entropic regularized form. We test the performance of
DecOT on pseudo-bulk mixtures generated from different data
sets and evaluate its robustness when different reference data are
supplied. Finally, we applied DecOT on a real pancreatic islet bulk
data set. DecOT is available on GitHub (https://github.com/lg-
ustb/DecOT).

MATERIALS AND METHODS

In this section, we will first give a brief review of the original
Wasserstein distance and the optimization algorithm with
entropic regularization. Then, we will introduce our proposed
DecOT framework for deconvolution. Finally, we will describe
the data sets and procedures used for benchmarking DecOT.

Wasserstein Distance and Entropic
Regularization
Wasserstein distance, originated from the optimal transport
problem (Monge, 1781); (Kantorovich, 1942), aims at
minimizing transportation costs between two probability
distributions. Given two histograms, p ∈ Σn and q ∈ Σs , the
Wasserstein distance between p and q with respect to ground
cost M is

W(p, q)M �def min
T∈U(p,q) <M,T> (1)

where Σn �def{qϵRn
+|< q, 1> � 1} is the set of histograms or an

n-dimensional simplex; <X,Y> �def tr(XTY) � ∑m
i�1Xi, Yi is the

Frobenius dot product between matrices X and Y; U(p, q) �
{T ∈ Rn×s

+ | T1 � p
TT1 � p

} is called the transportation polytope of p

and q; M is the transportation cost of mapping p to q, which is
also called the ground cost. W is a distance whenever Mij is a
metric in these two histograms’ element space (Villani, 2009).

The computation of Wasserstein distance is extremely costly
when the histograms’ dimension exceeds a few hundreds. Cuturi
et al. (Cuturi, 2013) introduced an entropic regularizer to smooth
the optimal transport problem, which can be computed at several
orders of a magnitude faster in speed than traditional algorithms
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Wγ(p, q)M �def min
T∈U(p,q) <M,T> − γh(T) (2)

where γ> 0 is a hyperparameter. h(T) �def −<T, logT> �
−∑i,j Tijlog(Tij) is the entropic function.

The problem (Eq. 2) is strongly convex, and the solution of
transport plan Tp can be optimized by solving a matrix
balancing problem, which is typically solved using the fixed
point Sinkhorn algorithm (Sinkhorn, 1967). The
hyperparameter γ plays an important role in the final
performance of Sinkhorn, with higher values of γ
corresponding to a faster execution of the algorithm but a
more diffused coupling. In this study, unless otherwise noted,
we use γ � 0.001 by default.

Cell-Type Deconvolution with Wasserstein
Loss
In this section, we will introduce the bulk tissue deconvolution
framework by applying the Wasserstein distance as a loss
function, which is the core part of DecOT.

We assume that each cell type has a unique expression profile
which can be characterized by a distribution/histogram in gene
space; for instance, we denote the expression profile over n genes
of cell type i as Ci ∈ Σn. Thus, the cell type-specific profiles of k
types can be represented as a k × n matrix,C ∈ Σk

n. For a set of
normalized bulk tissue samples Y � {Y1, . . . , Ym: Yj ∈ Σn,∀j},
the deconvolution problem is to solve the cell-type proportion or
mixture proportion P ∈ Σm

k for them bulk samples by giving cell-
type-specific profiles C, which can be represented by

Y ≈ C · P
To avoid individual/batch effects, here, we use reference data

from a single individual. The annotated scRNA-seq reference
data are then used by averaging the cell expressions within each
cell type to generate C. The Wasserstein distance not only
measures the difference between two distributions but also
accounts for the underlying geometry of the feature (gene)
space through the choice of an appropriate ground cost.
Since the expression of genes is not mutually independent,
the co-expression pattern between pairs of genes naturally
induces a similarity or a distance metric among genes. Such
a relationship forms the transportation cost among genes
(ground cost M) and will be incorporated in the
minimization of Wasserstein distance between the bulk
sample gene expression distribution Y and the estimated
mixture CP̂. In order to ensure a trackable calculation for
data containing thousands of genes, we apply the entropic
regularized Wasserstein distance as a loss, which results in
solving the following optimization problem

min
P∈Σm

k

∑m

j�1Wγ(Yj, CPj)M s.t. CP ∈ Σm
n (3)

In addition, since the cell-type proportions are non-negative,
we further added a regularization term, as performed by Rolet
et al. (Rolet et al., 2016) in solving the dictionary learning problem

with a fixed dictionary, to enforce non-negativity constraints on
the variables

min
P∈Σm

k

∑m

j�1Wγ(Yj, CPj)M − ρE(Pj) s.t. CP ∈ Σm
n (4)

where E is defined for matrices whose columns are in the simplex
as E(A) � <A, logA> and ρ> 0 is a hyperparameter. In this
study, unless otherwise noted, we use ρ � 0.001 by default.

Ensemble Deconvolution Results Across
Individuals
With the accumulation of publicly available single-cell data,
references from multiple individuals may be available. In order
to resolve variabilities in gene expression between references from
different individuals, we adopt an ensemble approach similar to
SCDC (Dong et al., 2019). The difference is that we focus on
individuals rather than reference data sets of different
experimental platforms. Assuming that single-cell data sets
from R reference individuals are available, we first deconvolve
the bulk gene expression data with entropic regularized
Wasserstein loss as described above for each individual
reference. Let Ĉ(r) and P̂(r) denote the cell-type-specific
average expression matrix and the cell-type proportion matrix
computed from the rth reference individual. Our goal is to find the
optimal combination strategy to ensemble the available
deconvolution results

(ŵ1, ŵ2, . . . , ŵR) � argmin
(w1 ,w2 ,...,wR)

l(P,∑R

r�1wrP̂(r)) (5)

where l is the loss function.
As explained by Dong in SCDC (Dong et al., 2019), function (5)

cannot be optimized directly since the actual cell-type proportionsP
are unknown, and the solutions to function (5) are approximately
equivalent to minimize the loss of gene expression levels. Therefore,
we change the optimization problem to

(ŵ1, ŵ2, . . . , ŵR) � argmin
(w1 ,w2 ,...,wR)

l(Y,∑R
r�1
wrŶ(r))

where Ŷ(r) � Ĉ(r)P̂(r) is the rth individual’s predicted bulk gene
expression levels.

We redefine the problem to non-negative least squares
regression by choosing the l2 norm as loss

min






Y −∑R

r�1
wrŶ(r)







2 s.t.∑R
r�1
wr � 1, wr > 0

Intuitively, wr can be seen as the similarity of cell expression
profiles between rth reference individual and a bulk tissue-derived
individual.

Ground Cost Selection
In Wasserstein distance, a key factor is the ground cost matrix
M, which defines the transportation cost. We obtain M from
the reference cells an expression histogram X whose columns
correspond to cells and whose rows correspond to genes. Mij

represents the dissimilarity of expression between gene i and
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gene j in reference cells. Here, we focus on four metrics,
including

(i) Euclidean distance: ||x − y||2 �
������������∑n

i�1(xi − yi)2
√

.
(ii) Cosine similarity: cos(x, y) � xy

||x||2 × ||y||2. We use 1 −
cos(x, y) as distance.

(iii) Pearson correlation: cor(x, y) � cos(x − �x, y − �y), where �x
and �y are the mean of the values of x and y, respectively. We
use 1 − cor(x, y) as distance.

(iv) Topological overlap-based dissimilarity measure (dissTOM)
(Ravasz et al., 2002; Li and Horvath, 2007; Yip and Horvath,
2007) underweighted gene co-expression network analysis
framework (Zhang and Horvath, 2005)

dω
ij � 1 − ∑uaiuauj + aij

min {∑uaiu,∑uaju} + 1 − aij

where aij is the power adjacency function. dissTOM metric
measures the distance between genes in a co-expression
network, which is converted into a scale-free network. We use
a python package POT (Flamary et al., 2021) to compute metrics
(i)–(iii) and WGCNA (Langfelder and Horvath, 2008)..., a R
package ... to compute dissTOM.

Benchmark Data Sets and Artificial
Pseudo-bulk Mixtures
To evaluate DecOT and compare it to other deconvolution
methods using l2 norm loss, we generated artificial pseudo-
bulk mixtures from four real RNA-seq data sets (see Table 1).
We partly adopt the preprocessing and quality control pipeline in
Cobos et al. (Avila Cobos et al., 2020) to the original data, which
include filtering genes with all zero expression or zero variance,
removing cells with the library size deviating from the mean size
over three median absolute deviations (MADs), keeping genes
with at least 5% of all cells having a UMI or read count greater
than 1, and retaining cell types with at least 50 cells passing the
quality control step (Avila Cobos et al., 2020).

After quality control, for each individual in each data set, we
split their cells evenly into the reference set and testing set with
similar distribution of cell types. Then, we generate
200 pseudo-bulk mixtures by randomly sampling 60% of
the cells each time in testing data sets and aggregate the
expression counts of each gene to generate the pseudo-bulk

sample. The true cell-type proportions are recorded, which
allows us to benchmark the performance of different
deconvolution methods. The flow chart for constructing
pseudo-bulk mixtures is shown in Supplementary Figure S1.

To evaluate the performance of deconvolution methods,
we need to measure the deviation of the estimated
proportion P̂ to the true P. Here, we apply the Pearson
correlation coefficient and root-mean-squared error
(RMSE) to evaluate the performance of deconvolution
methods:

(i) Pearson correlation: cor(P, P̂);
(ii) Root-mean-squared error: RMSE =

�����������������
1

k·m∑k
i∑m

j (Pi,j − P̂i,j)2
√

.

RESULTS

Method Overview
Since Wasserstein distance has been successfully applied to blind
source decomposition (Rolet et al., 2018) and dictionary learning
(Rolet et al., 2016), (Schmitz et al., 2018b) problems with excellent
performance, we aimed to apply Wasserstein loss on the bulk
deconvolution problem. We propose DecOT, which applies
Wasserstein loss to estimate the relative abundance of cell
types within a bulk sample by using a scRNA-seq reference
ensemble of multi-individuals. An overview of DecOT is
shown in Figure 1. DecOT first solves the entropic regularized
Wasserstein loss for the cell-type deconvolution problem (Cell
Type Deconvolution with Wasserstein Loss formula 4) based on a
single individual reference constitute of scRNA-seq data with
annotated cell types. Wasserstein distance aims to find the
optimal transport plan under a given transportation cost. In
our case, the transportation cost, also referred to as the
“ground cost,” represents the similarity or distance among
genes. Therefore, the application of Wasserstein loss can take
advantage of the relationship between genes to get an accurate
estimate.

When references from multi-individuals are available, to
minimize the possible bias induced by individual and/or
platform variations across different individual references, we
apply an ensemble framework similar to SCDC (Dong et al.,
2019), which aims to solve batch effects between reference data
sets. Instead of weighting deconvolution results across a data set,
DecOT seeks to optimize weights on results based on each

TABLE 1 | Four real scRNA-seq data sets.

Data set Tissue type Data type Protocol Individual samples Cells Genes Cell types

Baron (GSE84133) Baron et al. (2016) Pancreatic islet Single-cell
RNA-seq

Illumina HiSeq 2,500 (InDrop) 4 7,876 8,415 10

E-MTAB-5061 Segerstolpe et al. (2016) Pancreatic islet Single-cell
RNA-seq

Smart-seq2 10 1901 14,200 7

GSE81547 Enge et al. (2017) Pancreatic islet Single-cell
RNA-seq

Smart-seq2 8 2073 11,861 5

Kidney.HCL Han et al. (2020) Guo, (2020) Kidney Single-cell
RNA-seq

Microwell-seq 3 20,601 2,748 13
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individual reference. In this way, the individual or batch effects
can be accounted for simultaneously by DecOT.

DecOT Outperforms Deconvolution
Methods Based on Squared Loss
We evaluate DecOT with different ground costs as listed in
Ground Cost Selection, which we refer to as DecOT_dissTOM,
DecOT_euclidean, DecOT_cosine, and DecOT_correlation. For
these four settings, we apply the aggregated reference, which is,
pooling cells from multiple individuals to generate a single
reference. In addition, we also evaluate DecOT with dissTOM
under the ensemble framework (referred to as
DecOT_disTOM_ensamble). The various settings of DecOT
are then compared to four other square loss-based methods
(including Nonnegative least squares (NNLS), MuSiC, SCDC,
and Bisque) on artificial pseudo-bulk mixtures generated from
four scRNA-seq data sets (Table 1, Methods). Since it is possible
by design to assay both bulk-RNA and scRNA from the same

individual (Kuksin et al., 2021), we consider settings of reference
data in two situations:

a) There are annotated single-cell reference data from the same
individual, from which the bulk sample is collected. We term
such a situation as “paired”.

b) Reference data are all collected from other individuals. We
refer to such a scenario as “unpaired”.

We mimic the “paired” situations in the benchmark by
including cells (in the reference set) from the same individual
for generating a pseudo-bulk sample (in the testing set)
(Supplementary Figure S1).

Figure 2 shows the benchmark result of data set GSE81547
from Enge et al. (Enge et al., 2017) under these two situations.
Applying DecOT under the ensemble framework has the best
overall performance compared to other settings and methods.
The average RMSE of DecOT_dissTOM_ensemble over all
pseudo-bulks is 0.037 and 0.056 under paired and unpaired

FIGURE 1 |Overview of DecOT. Based on the Wasserstein loss, DecOT first converts the gene expression of single-cell and bulk samples into distributions. Next,
DecOT calculates the ground cost matrix from the single-cell expression data, which forms the correlations among genes, see Ground Cost Selection for details. Then,
for each individual reference, DecOT finds the optimal proportion of cell types by minimizing the Wasserstein loss under the premise of a given ground cost. Finally, in
order to resolve the impact of batch effects between individuals, DecOT uses an ensemble framework to weigh each individual’s deconvolution result.
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situations, respectively, and the average correlation is 0.946 and
0.893 (Figure 2A). Figure 2B shows the detailed estimation
results of individual sample 54_male in GSE81547. DecOT
with an ensemble framework using dissTOM shows the
greatest performance. Even when applying aggregated
references, Wasserstein’s loss still outperforms NNLS.

In order to show the overall quality of the various methods in
pseudo-bulk mixtures generated from different samples in
GSE81547, we compared the mean RMSEs and mean Cors,
which result from performing different methods on the
pseudo-bulk generated based on different individuals
(Figure 2C). For each individual, we rank the results across
different methods and rescale them to the interval between 0 and
1. As shown in Figure 2C, the dark-red and larger points within a
line represent a smaller RMSE and a larger Cor. In general,
DecOT using Wasserstein loss has better performance than
square loss methods in most cases, and the ensemble
framework can further improve the accuracy of the

deconvolution results even when the mixtures and reference
cells come from different individuals.

Similar conclusions are also obtained from benchmarks based
on the other three data sets. The results are shown in
Supplementary Figures S2–S4.

DecOT Performs Robustly Under the
Ensemble Framework
The choice of reference in solving the supervised deconvolution
problem is crucial. We first compare the performance of DecOT
by using references from different individuals. In detail, we
evaluate DecOT on the pseudo-bulk generated from the
testing set of 54_male in GSE81547 by respectively applying
reference data from each individual as well as under the
ensemble framework (paired and unpaired). Figure 3A shows
the result out of 200 pseudo-bulk mixtures in each reference
setting. Using references from the same individual (reference set

FIGURE 2 | Benchmark results using data set GSE81547. (A) Average RMSE and Cor of the deconvolution results of all mixtures in data set GSE81547. From the
overall results, the estimation of DecOT with the ensemble framework has smaller errors and stronger correlation than other methods. (B) Boxplot of RMSE from 200
replicate pseudo-bulk mixtures from sample 54_male. The top/bottom panel shows the results under paired/unpaired situation. (C)Overview of deconvolution results of
individual pseudo-bulk mixtures across all methods in data set GSE81547. For each individual, we rank the results across different methods and rescale them to the
interval between 0 and 1. A darker-red and larger point within a line represents a smaller RMSE and a larger Cor. Both paired (top) and unpaired (bottom) situations are
considered.
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from 54_male) outperforms the situation of applying references
from other individuals (Figure 3A). The deconvolution
performance is slightly improved with integrating results
across all individuals (paired), indicating that the DecOT
ensemble framework makes use of information from other
individuals to adjust the final estimation. Such a finding is
further confirmed in the case under the unpaired reference
situation; when excluding 54_male from the reference, the
estimation of DecOT under the ensemble framework still
obtains a smaller error than using other single individual
references. In fact, including more individual references under
the ensemble framework tends to improve the performance of
deconvolution (Supplementary Figure S5).

Deconvolution with paired single-cell data as a reference will
greatly improve the performance. However, in a more realistic
scenario, single cells collected from the same individual may have
missing cell types as compared to the paired bulk sample,
especially when the cell type is rare. Therefore, we conducted
an experiment by gradually and cumulatively removing cell types
in ascending order of cell count in the reference set of 54_male
(Supplementary Table S1) and used the data with the missing
cell type as a reference. When there is a missing cell type in the

reference, the deconvolution may allocate the expression of the
missing cell type to other types, which leads to biased estimation
(Figure 3B). One way to reduce such bias is to impute the
missing cell type in the reference by utilizing a publicly
available data set as a surrogate. Here, we use the mean
expression of the missing cell type from references of
other individuals for imputation (Figure 3C). Compared
to the results in Figures 3B,C, imputation of missing cell
types significantly improves the performance of
deconvolution. Nevertheless, regardless of imputation, the
estimation error will get worse as the number of missing cell
types increases.

Another possible way for reducing the impact caused by
missing cell types in paired single-cell references is to apply
DecOT under the ensemble framework. Since our ensemble
framework integrates deconvolution results respectively
performed under each individual reference, we can still apply
imputation on missing cell types in the paired reference. Table 2
compares the average RMSE of cases based on single references
from paired single-cell data (RMSE-54_male) and ensemble
references which account all possible individuals (RMSE-
ensemble). In addition, we use the unpaired ensemble case as

FIGURE 3 | Effects under different manipulation references benchmarked bymixtures constructed from 54_male of GSE81547. (A)Comparison of the results from
single individual references and multi-individual references under the ensemble framework. (B,C) Deconvolution results with missing cell types in paired references. The
cell types are progressively removed according to the ascending order of cell counts in 54_male. (B) Direct application of the paired reference from 54_male with the
missing cell type. (C) Application of the paired reference from 54_male with missing cell types imputed by references from other individuals.
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TABLE 2 | Optimal weights of different individual references under the DecOT ensemble framework. The weights and the overall performance are compared under different settings of the missing cell type in the paired
reference of sample 54_male. Imputation indicates that the reference profiles of missing types are imputed by references from other individuals.

Optimal weight with imputation RMSE-54_male RMSE-ensemble

1_male 21_male 22_male 38_female 44_female 54_male 5_male 6_male

54_male-all 0.0000 0.0000 0.1654 0.0000 0.0000 0.7504 0.0842 0.0000 0.0190 0.0175
54_male-delta 0.0000 0.0000 0.1691 0.0000 0.0000 0.7412 0.0817 0.0081 0.0234 0.0215
54_male-delta-ductal 0.0000 0.0000 0.1772 0.0000 0.0000 0.7293 0.0830 0.0104 0.0234 0.0218
54_male-delta-ductal-acinar 0.0000 0.0000 0.1684 0.0000 0.0000 0.6985 0.0934 0.0397 0.0318 0.0289
54_male-delta-ductal-acinar-beta 0.0000 0.0000 0.1765 0.0000 0.0475 0.6251 0.1509 0.0000 0.0359 0.0306
54_male-unpair 0.0000 0.0000 0.5114 0.0000 0.1837 — 0.1487 0.1561 — 0.0227

Optimal weight without imputation RMSE-54_male RMSE-ensemble

1_male 21_male 22_male 38_female 44_female 54_male 5_male 6_male

54_male-all 0.0000 0.0000 0.1462 0.0000 0.0000 0.7483 0.0859 0.0196 0.0190 0.0172
54_male-delta 0.0000 0.0000 0.1558 0.0000 0.0000 0.7310 0.0901 0.0231 0.0211 0.0165
54_male-delta-ductal 0.0000 0.0000 0.1625 0.0000 0.0000 0.7069 0.1093 0.0212 0.0293 0.0237
54_male-delta-ductal-acinar 0.0000 0.0000 0.2971 0.0000 0.0545 0.3624 0.2173 0.0686 0.1268 0.0444
54_male-delta-ductal-acinar-beta 0.0000 0.0000 0.4654 0.0000 0.1840 0.0081 0.1670 0.1755 0.6834 0.0226
54_male-unpair 0.0000 0.0000 0.4692 0.0000 0.1855 — 0.1683 0.1770 — 0.0224
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FIGURE 4 |Cell-type deconvolution of healthy and T2D human pancreatic islet samples. (A) Estimated composition of islet cell types in healthy and type 2 diabetes
(T2D) humans by DecOT under three settings of references. The violin plots show the proportion differences between healthy and T2D samples. (B) Independent sample
t-tests of beta cell proportion between healthy and T2D individuals. DecOT shows themost significant difference as compared to other methods. (C) Linear regression of
HbA1c expression level and the proportion of beta cells estimated by five methods. The reported p-values come from a multivariate linear regression model: beta
cell ratio ~ HbA1c + age + BMI + gender.
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a baseline. The weight contributions of references from each
individual are also displayed in Table 2. Since the pseudo-bulk
mixtures are constructed from 54_male, the reference from one’s
own cell (self-ref) contributed the most to the ensemble result.
The weight contribution from self-ref decreases with the
increasing number of missing cell types. The ensemble DecOT
estimation under the ensemble framework is always better than
using a single reference, even though it is collected from the same
individual as for the bulk sample. Such a result verifies that the
ensemble framework can integrate the information of multiple
individuals to get a better estimate even if there is a cell type
missing in the paired reference. In general, the results from the
ensemble framework are rather robust under missing cell types in
paired references (regardless of whether they are imputed or not).

Performance of DecOT on Human
Pancreatic Islet Data
Next, we apply DecOT with dissTOM as the ground cost to
deconvolve the bulk samples of 89 human islets from Fadista
et al. (Fadista et al., 2014), which contains 51 healthy individuals,
26 type 2 diabetic (T2D) individuals, and 12 unknown individuals.
We focus on the composition of six cell types of interest (alpha, beta,
delta, gamma, acinar, and ductal) in the human pancreatic islet. We
use three groups of scRNA-seq references, denoted as the Baron
reference (Avila Cobos et al., 2020), Segerstolpe reference
(Segerstolpe et al., 2016), and ensemble reference, which combine
data from both studies. Figure 4A shows the deconvolution results
of DecOT on the six types of cells by contrasting the status of
individuals (normal or T2D). The proportion of beta cells that
secrete insulin will gradually decrease with the progression of type 2
diabetes (T2D) (Kanat et al., 2011), (Hou et al., 2015). DecOT can
successfully detect such a proportion difference between normal and
T2D patients, regardless of which group of reference is used for
analysis. In addition, we also apply independent sample t-tests on the
beta cell proportion estimated by DecOT between normal and T2D
groups. The estimates of DecOT based on all three reference
groups all result in significant differences in beta cell
proportion between normal and T2D samples (Figure 4B).
When comparing the results with those of the four other
deconvolution methods, DecOT shows the most significant
p-values (Figure 4B). Note that for the ensemble reference,
SCDC applies its built-in ENSEMBLE method, which weighs
the deconvolution results across two sources of references.
The other methods directly use the pooled data as references.

Previous studies have shown that in human pancreatic islet
samples, hemoglobin A1c (HbA1c) is an important biomarker of
type 2 diabetes, and its expression level should be negatively correlated
with beta cell functions (Kanat et al., 2011), (Hou et al., 2015),
(Frogner et al., 2015). We perform linear regression to the
estimates of beta cell proportion (BP) by HbA1c and adding age,
gender, andBMI as covariates.Figure 4C shows the regression results.
The estimates of BP by NNLS and BisqueRNA failed to recover a
significant negative correlation to the level of HbA1c. The beta cell
proportion estimated by DecOT, MuSiC, and SCDC based on the
three groups of references discovered significant negative correlations
withHbA1c.When using a single-source reference, DecOT calculated

the smallest p-values (0.0599 and 0.0514), indicating a more
significant correlation between BP and HbA1c levels. In fact, the
estimated BP by DecOT is robust over all three groups of references,
which can be seen from the variation between the slops of the fitted
regression line in Figure 4C. In contrast, the slopes have greater
differences in MuSiC and SCDC cases when a different reference is
applied. In short, DecOT shows better performance on real data sets
and is robust to different sources of references.

DISCUSSION

In this study, we proposed DecOT, which applies single-cell data as
references and uses Wasserstein distance as a loss function for
decomposing bulk cell types. Compared with the commonly used
square loss methods, the optimization of Wasserstein loss in DecOT
is able to utilize additional information from gene space, for example,
ground cost induced by gene-gene relations. By benchmarking
DecOT with four recently proposed square loss-based methods on
pseudo-bulk data from four different single-cell data sets and real
pancreatic islet bulk samples, DecOT shows superior performance.

Wasserstein loss accounts for the distance between genes through
the ground cost matrix. In this study, we evaluated four possible
choices of ground cost, namely, three common metrics (Euclidean
distance, cosine similarity, and Pearson correlation) and the
dissTOM distance based on gene co-expression networks. In the
analysis of simulated data, the final deconvolution effect of the four
metrics did not showmuch difference; however, since the topological
overlapmeasure (TOM) has been considered amore robustmeasure
of gene interconnections (Li and Horvath, 2007), we recommend
using dissTOM over other metrics.

Although DecOT obtains better deconvolution accuracy by using
Wasserstein loss, optimization of such a loss also brings a greater
computational cost. The application of entropic regularization allows
tractable computation of data sets on a larger scale. However, there is
a trade-off between accuracy and computation time. This trade-off
can be tuned by the two hyperparameters γ and ρ. In
Supplementary Figure S6, we show the calculation time of
DecOT under different numbers of genes and the accuracy and
time of DecOT calculations under different choices of two
regularization parameters. We show that the performance of
DecOT is rather robust with parameters in the range of γ≤ 0.05
and ρ≤ 0.01, which results in higher calculation accuracy.

When applying a supervised bulk-cell-type deconvolution
algorithm, the possible individual variation and batch effect
should be noted when combining references from multiple
individuals and/or data sets. DecOT uses an ensemble framework
to weigh the deconvolution across multiple results from each
individual reference to mitigate individual effects. The weights of
the ensemble framework indicate, to a certain extent, the similarity of
the gene distribution between the reference individuals and the bulk
samples. In the benchmarks on pseudo-bulk data, DecOT using the
ensemble framework shows improved accuracy and robustness over
existing methods in most scenarios.

The performance of deconvolution will be greatly improved
when paired single-cell references are available. However, there
can be a problem regarding the cell-type integrity in the paired
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reference. We have tested two solutions in the study, imputation of
themissing cell types, and/or applying the ensemble framework with
DecOT. The results show that the ensemble framework can
effectively utilize information of missing cell types from other
reference individuals by adjusting the weights. Although the
imputation solution also achieves acceptable results, the ensemble
framework of DecOT shows more robust performance.
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