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Objective: Esophageal cancer is an aggressive malignant tumor, with 90 percent of the
patients prone to recurrence and metastasis. Although recent studies have identified some
potential biomarkers, these biomarkers’ clinical or pathological significance is still unclear.
Therefore, it is urgent to further identify and study novel molecular changes occurring in
esophageal cancer. It has positive clinical significance to identify a tumor-specific mutation
in patients after surgery for an effective intervention to improve the prognosis of patients.

Methods: In this study, we performed whole-exome sequencing (WES) on 33 tissue
samples from six esophageal cancer patients with lymph node metastasis, compared the
differences in the genomic and evolutionary maps in different tissues, and then performed
pathway enrichment analysis on non-synonymous mutation genes. Finally, we sorted out
the somatic mutation data of all patients to analyze the subclonality of each tumor.

Results: There were significant differences in somatic mutations between the metastatic
lymph nodes and primary lesions in the six patients. Clustering results of pathway
enrichment analysis indicated that the metastatic lymph nodes had certain
commonalities. Tumors of the cloned exploration results illustrated that five patients
showed substantial heterogeneity.

Conclusion: WES technology can be used to explore the differences in regional
evolutionary maps, heterogeneity, and detect patients’ tumor-specific mutations. In
addition, an in-depth understanding of the ontogeny and phylogeny of tumor
heterogeneity can help to further find new molecular changes in esophageal cancer,
which can improve the prognosis of EC patients and provide a valuable reference for their
diagnosis.

Keywords: esophageal carcinoma, whole-exome sequencing, lymph node metastases, multi-region sequencing,
subclone
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INTRODUCTION

Esophageal carcinoma (EC) is a malignant tumor that occurs in
the epithelial tissue of the esophagus. The number of EC patients
in China accounts for 70% of EC patients worldwide. EC is highly
aggressive and has a poor prognosis, with the 5-year survival rate
being only 10-25% (Bolton et al, 2009; Chen et al, 2013;
Pennathur et al, 2013; He et al., 2020a). Surgical resection is
the primary treatment method for EC (Chadwick et al., 2016).
However, 90% of EC patients who underwent surgery had
recurrence and metastasis. Nearly half of them recurred within
5 years after surgery (Koshy et al., 2004; Scheithauer, 2004), and
the annual survival rate was only about 40% (Allum et al., 2011;
Alderson et al., 2015). After surgery, the local recurrence and
distant metastasis are still clinically challenging issues for most
cancers (He et al., 2020b; Liu et al., 2021). Many factors influence
the prognosis of EC patients undergoing radical resection, such as
living environment, clinicopathological features, molecular
biological indicators, and treatment methods. It has been
reported that DNA damage and repair processes lead to
somatic mutations in cancer genomes (Pleasance et al., 2010).
Recent studies have identified some genomic abnormalities as
potential biomarkers for EC (Guo et al., 2013; Zhu et al., 2013),
but these biomarkers’ clinical or pathological significance
remains unclear. Therefore, further studies are urgently needed
to identify new molecular changes in EC.

It is well known that genetic changes are the root cause of
tumorigenesis, and cancers are caused by the accumulation of
genomic alterations (Meyerson et al., 2010). With the progress of
sequencing technology (next-generation sequencing, NGS), more
and more studies are using whole-exome sequencing (WES) to
study the comprehensive molecular characteristics of cancer,
which allows querying thousands of variants of multiple genes
in a given tumor sample at the same time (Ng et al., 2010; The
Cancer Genome Atlas Network, 2012). Recent cancer genome
analysis compared multiple samples of a single individual to gain
insights into the evolutionary history of the cancer genome
(Meyerson et al, 2010). For example, the primary tumor
genome was compared with the matched metastatic tumor
genome (Yachida et al., 2010). Based on WES technology,
many driving genes and several critical signaling pathways of
EC pathogenesis have been identified (Dulak et al., 2013; Zhang
et al., 2015; Cheng et al., 2016; Deng et al., 2017; The Cancer
Genome Atlas Research Network, 2017). However, the biological
relationship between different intratumoral clonal subgroups is
still unclear. Some scholars have begun to explore the diagnosis
and treatment of tumors from the perspective of tumor
heterogeneity (Liu et al., 2016; Furuta et al., 2017; Wang et al.,
2020). A study published in 2015 conducted regional
segmentation of the same lesion in patients with ESCC and
used WES to explore tumor heterogeneity (Cao et al., 2015).
Che et al. used WES to examine mutational concordance and
heterogeneity between EC patients with matched dysplasia and
carcinomatosis and tumor-free patients with only dysplasia
samples. By performing clonal evolutionary analysis of
individual patients, it has been found that most driver
mutations of EC are also present in dysplastic tissue (Chen
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et al., 2017). All the aforementioned studies have shown that
tumors evolve through different subclones, so there is
heterogeneity among tumors, which leads to tumor recurrence
and drug resistance (Gerlinger et al., 2012; Fisher et al., 2013;
Sottoriva et al., 2013). Therefore, detection of tumor-specific
mutations in patients with EC after surgery is helpful to
timely take effective intervention measures, which is an
effective way to improve the survival rate of EC patients and
has positive clinical significance to improve their prognosis.

In this study, WES was applied to lymph node (LN) metastasis
samples of EC patients to compare the difference of genomic
landscape and evolution map in multiregional LNs and explore
tumor heterogeneity based on somatic mutation information.

MATERIALS AND METHODS

Sample Collection

To explore the heterogeneity of EC, we collected the information
of esophageal cancer patients from Fujian Cancer Hospital.
Patients included were with the following criteria: male
patients undergone surgery; patients with corresponding case
data and histological specimens; and patients diagnosed with LN
metastasis. Written informed consent was obtained from all
participants. A total of 33 tumor tissue samples and lymph
node metastasis samples were obtained from 6 EC patients.
These samples included seven primary carcinomas, 20 LNs
with metastatic carcinoma, and six normal mucosae (Tablel).
The detailed pathological information and clinical information
(Table 2), such as the prognosis of the enrolled patients, were
collected simultaneously. WES was performed with DNA isolated
from tissues.

DNA Extraction and Quantification

Genomic DNA from fresh tumors and normal tissue were
extracted using a DNeasy Blood & Tissue Kit (Qiagen).
Purified genomic DNA was qualified by using Nanodrop2000
for A260/280 and A260/A230 ratios (Thermo Fisher Scientific).
According to the manufacturer’s recommendations, all DNA
samples were quantified by using Qubit 3.0 and a dsDNA HS
Assay Kit (Life Technologies). Genomic DNA from normal lung
tissue was used as the normal control.

Library Preparation

Sequencing libraries were prepared using the KAPA Hyper Prep
kit (KAPA Biosystems) with an optimized manufacturer’s
protocol. Briefly, 1 pg of genomic DNA was sheared into 350-
bp fragments using a Covaris M220 instrument (Covaris),
followed by end repair, A-tailing, and ligation with index
sequencing adapters. Then, size selection for genomic DNA
libraries was carried out using Agencourt AMPure XP beads
(Beckman Coulter). Finally, libraries were amplified by using
PCR and purified using Agencourt AMPure XP beads.

Exome Sequencing and Data Processing
Exome capture was performed using the IDT xGen Exome
Research Panel V1.0 (Integrated DNA Technologies). Enriched
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TABLE 1 | Information of all samples in six patients.
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Case 1 Site Sample type Sample number
Patient 1 2R lymph nodes FFPE P1_2R
Cardia lymph nodes FFPE P1_cardia
17 lymph nodes Frozen tissue P1_17
Normal mucosa FFPE P1_normal
Primary esophageal cancer FFPE P1_primary
Patient 2 2R lymph nodes FFPE P2_2R
16 lymph nodes FFPE P2_16
7 lymph nodes FFPE P2_7
Cardia lymph node FFPE P2_ cardia
1 L cardia lymph node Frozen tissue P2_1L
Normal mucosa FFPE P2_normal
110 lymph nodes FFPE P2_110
Primary esophageal cancer FFPE P2_primary
Patient 3 Left parapharyngeal lymph node FFPE P3_left
7 lymph nodes FFPE P3_7
Primary esophageal cancer Frozen tissue P3_primary
1 L lymph nodes Frozen tissue P3_1L
Normal mucosa FFPE P3_normal
Patient 4 Right parapharyngeal lymph node FFPE P4_right
7 lymph nodes FFPE P4_7
Normal mucosa FFPE P4_normal
Left parapharyngeal lymph node FFPE P4_left
Primary esophageal cancer Frozen tissue P4_primary
17 lymph nodes Frozen tissue P4_17
Patient 5 Cardia lymph node FFPE P5_ cardia
2R cardia lymph node Frozen tissue P5_2R
Normal mucosa FFPE P5_normal
Primary esophageal cancer FFPE P5_primary
Patient 6 8M cardia lymph node FFPE P6_8M
Primary esophageal cancer Frozen tissue P6_primary1
Left parapharyngeal lymph node Frozen tissue P6_left
Normal mucosa FFPE P6_normal
Primary esophageal cancer FFPE P6_primary2
TABLE 2 | Summary of the general clinical information of EC patients.
Patient Gender Age (years) TNM stage T N M Survival Smoking
Patient 1 Male 70 1IC 3 3 0 Dead No
Patient 2 Male 47 1C 4 2 0 Dead Yes
Patient 3 Male 54 1A 3 2 0 Alive Yes
Patient 4 Male 56 B 3 2 0 Alive Yes
Patient 5 Male 65 1A 3 1 0 Unknown Yes
Patient 6 Male 76 1NA 3 1 0 Dead No

libraries were sequenced using the Illumina HiSeq 4000 platform
to reach the mean coverage depth of ~60X for the normal control
(normal lung tissue) and ~200X for the tumor samples.
Paired-end sequencing reads were aligned to the reference
human genome (build hgl9) with the Burrows—Wheeler Aligner
(bwa-mem). Alignment results (BAM files) were further
processed for de-duplication, base quality recalibration, and
indel realignment using the Picard suite (http://picard.
sourceforge.net/) and the Genome Analysis Toolkit (GATK).

MuTect with default parameters was applied to paired normal
and tumor BAM files for the identification of somatic single-
nucleotide variants (SNVs). SNVs in the 1000 Genomes Project
and dbSNP with a frequency > 1% were excluded. Small
insertions and deletions (indels) were detected using
SCALPEL. SNV and indel annotations were performed by
ANNOVAR using the reference genome hgl9 and standard
databases version 2014 and functional prediction programs.
Gene-level copy number ratios were calculated by CNVKit.
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Tumor Heterogeneity Analysis

Relative copy-ratios for each exon were calculated by correcting
for imbalanced library size, GC bias, sequence repeats, and target
density using the CNVKit algorithm.

Pathway Enrichment Analysis

We conducted KEGG enrichment for non-synonymous mutation
genes to extend significance analysis beyond individual genes. We
checked the distribution of non-synonymous mutation genes
identified in KEGG and performed pathway enrichment
analysis, labeling, and visualization in the database by
observing the genome.

Tumor Heterogeneity Analysis

PyClone was used to conduct statistical analysis on somatic mutation
data (Roth et al., 2014). PyClone is a stratified Bayesian model that
inferred the cell prevalence for each variant (the percentage of tumor
cells in the sample containing the variant), clustering the variants
based on the covariance of multiple sample prevalence estimates for
the same patient (Findlay et al,, 2016; Lamy et al., 2016; McPherson
et al,, 2016). We used Citup for evolutionary analysis to infer the
subclonal of EC patients. Citup, a bioinformatics tool for tumor
clonal inference using phylogenetic theory, can infer tumor
heterogeneity from multiple samples obtained from a single
patient (Malikic et al, 2015). Given the mutation frequency of
each sample, Citup uses an optimization-based algorithm to find
the evolutionary tree that can best explain the data and infer the
tumor clone with phylogeny. This method can use data from
multiple samples to deduce clonal populations and their

frequencies subject to phylogenetic constraints. To sum up,
mutation data from multiple samples of the same patient were
used as the input data to software PyClone. Then, allele-specific copy
number measurements were made for each mutation site in each
sample. Second, evolutionary analyses were performed using Citup.
Finally, the results were visualized with the R package timescape.

RESULTS
Framework for This Study

An overview of the main workflow for this study is shown in
Figure 1. Specifically, after DNA was extracted from tumor and
normal tissues, a gene library was prepared and sequenced using
Mumina HiSeq 4000 platform. The sequencing reads were then
compared with the reference human genome to identify the
somatic SNV. Based on the results of mutation analysis,
KEGG was used for pathway enrichment analysis of non-
synonymous mutations. In addition, somatic mutation data
were statistically analyzed to infer subclones of EC patients.

There Are Differences in Somatic Mutations
Among Primary Tumors and Metastatic LNs
Thirty-three formalin-fixed paraffin-embedded tissues (FFPE)
and frozen tissue samples from six EC patients were collected.
WES was performed on all samples to further explore potential
heterogeneity and the cloning progress, and SamTools was
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applied to invoke somatic variations. To identify specific
mutations at this locus, we screened non-identical and
frameshift mutations with a mutation frequency greater than
5%. For all primary sites and metastatic LN, the total number of
mutations (non-homozygous and frame-coding mutations with a
mutation frequency of not less than 5%) ranged from 18 to 1,221.
Specific mutations are shown in Figures 2A,B. We observed that
C: G > T: A had the largest number of mutations both in
metastatic LNs and primary lesions. For primary lesions of all
patients, the largest number of C: G > T: A occurred in patient 5.
The heatmap in Figure 2C shows all the metastatic LNs and

primary mutations at each site. It can be seen that the mutations
of metastatic LNs and primary were distinct, indicating that there
are differences in somatic mutations between metastatic LNs and
primary lesions.

Metastatic LNs Have Pathway Commonality
KEGG enrichment analysis for non-synonymous mutant genes
was used to extend the significance analysis beyond a single gene.
Our results (shown in Figure 3) indicated that metastatic LNs
had certain commonalities. Lymph nodes and primary foci
shared many pathways, such as hsa04512: ECM receiver
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interaction, hsa00562: inositol phosphate metabolism, hsa05210:
colorectal cancer, hsa04070: phosphatidylinositol signaling
system, hsa04020: calcium signaling pathway, and hsa04510:
focal adhesion. These signaling pathways are often
dysregulated in a variety of cancers, which enhances
confidence in the study of their respective mechanisms.

The pathways of primary focus acting alone were hsa04330:
Notch signaling pathway, hsa05215: prostate cancer, hsa04114:
oocyte meiosis, hsa04270: vascular smooth muscle contraction,
hsa05212: pancreatic cancer, hsa05220: chronic myeloid
leukemia, and hsa04920: adipocytokine signaling pathway. The
Notch signaling pathway mediates different biological processes,
including stem cell self-renewal, progenitor cell fate
determination, and terminal differentiation. The expression of
the Notch pathway core transcription complex and its target
genes was closely related to the invasive clinicopathological
variables of esophageal squamous cell carcinoma (ESCC). In
conclusion, this result suggests that the normal function of the

aforementioned signal pathways may be widely affected by the
related mutant genes and is helpful to the development of
heterogeneity research of EC.

Primary and LNs Are Heterogeneous

We collated somatic mutation data from all patients to analyze
and explore the evolutionary relationship between primary and
metastases LNs at the molecular level. We analyzed the
subclonality of each tumor using PyClone. The cell prevalence
of each variant was estimated using the copy number and tumor
purity based on its allele frequency. The results of different
clustering types according to the cell prevalence distribution of
different samples are shown in Figure 4. It is important to note
that the sample order is not chronological but that primary and
metastatic LNs were collected simultaneously. The results showed
that different patients had different subclones. Even for the same
patient, the prevalence of cells in distinct clusters varied in
different samples. For example, subclone 10 from patient 1
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(Figure 4A) has a low cellular prevalence in cardiac lymph nodes
but is higher in other samples. The other cluster 11 of patient 1
was almost exclusively present in the primary lymph nodes, with
little or no presence in other samples. Clusters 9 and 10 in patient
3 (Figure 4C) were found in primary and seven lymph nodes.
Similarly, patient 6 also showed substantial heterogeneity
(Figure 4F). Interestingly, according to the survival
information in Table 2, both patient 1 and patient 6 died,
suggesting that tumor heterogeneity may affect the prognosis
and survival of patients.

To further investigate the inference of tumor clones, we
conducted an evolutionary analysis of mutant clusters and cell
prevalence in all samples to identify the parent clones of each
tumor clone. According to the analysis results of Citup, the
metastatic evolution diagrams of all patients are shown in
Figure 5. The results showed that the founder clone of the
primary tumor was absent. However, the most persistent
clones were traced back to the primary tumor during disease
progression. Except for patient 5, the samples of all patients
showed significant heterogeneity. For patient 6, in particular, the
clones not present in primary 2 were present in the left lymph

node, while clones present in primary 2 were not in the left lymph
node. This indicated a substantial heterogeneity between primary
2 and left lymph nodes. The distribution of these subclones in
different sites of all samples probably reflected the prognosis of
patients.

DISCUSSION

Esophageal cancer is highly invasive and prone to recurrence and
metastasis. Recent whole-exome sequencing and whole-genome
sequencing have shown that patients with EC have a high
mutation rate (Song et al., 2014; Zhang et al,, 2015), with a large
number of copy number changes and large-scale chromosome
rearrangements. Hence, it is urgent to further study new
molecular changes in EC. With the rapid development of cancer
genome sequencing, the genomic heterogeneity between and within
tumors has been a vital cancer feature (Zhang et al., 2013; Murugaesu
et al,, 2015). It is of positive significance to detect whether there are
tumor-specific mutations in patients and take effective intervention
measures to improve patients’ prognosis and survival rate.
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This study collected 33 samples from six EC patients,
including tumor tissue and lymph node metastases. WES was
performed on these samples to compare genomic and
evolutionary maps in different regions. Then, we performed
pathway enrichment on non-synonymous mutation genes.
Finally, the subclonality of each tumor based on the somatic
mutation data of all patients was analyzed. Results showed that
the total number of mutations in metastatic LNs and primary
ranged from 18 to 1,221. The largest number of mutations found
was C: G > T: A. There were significant differences in somatic
mutations between metastatic lymph nodes and primary lesions
in six patients. Moreover, the metastatic LNs had certain
commonalities based on the clustering results of pathway
enrichment. For example, ECM-receptor interaction is the
most abundant signal pathway in the ESCC cell line (Ma
et al, 2021). The extracellular matrix (ECM) serves an

essential role in tissue and organ morphogenesis and
maintains cell and tissue structure and function.
Transmembrane molecules mediate specific interactions

between cells and the ECM. These interactions lead to direct
or indirect control of cellular activities such as adhesion,
migration, differentiation, proliferation, and apoptosis. But the
primary had some independent pathways. Notch and other
developmental pathways are involved in different cell
functions from cell cycle regulation to self-renewal (Moghbeli
et al., 2015). The expression of Notch pathway core transcription
complex and its target gene and the overexpression of TWIST1
are closely related to the invasive clinicopathological variables of
ESCC (Fahim et al, 2020). Adipokines play a significant
regulatory role in the adipocytokine signaling pathway. The
increase in the adipocyte volume and number is positively
correlated with leptin production and negatively associated
with adiponectin production. Obesity may increase the risk of
ESCC and affect its growth and progression (Liu et al., 2020).
Tumors of the cloned exploration results showed that different
patients had distinct subclones. Even for the same patient, the
prevalence of cells in different clusters varied among samples.
It is of notice that there are a few limitations to this study. First,
we only focused on genomic changes, and other levels of
molecular data such as gene expression have also been proven
vital in studying the recurrence and metastasis of many cancers
(He et al.,, 2020c). Second, since EC is quite heterogeneous, it
might be helpful to check EC samples at the single-cell level to
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