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Accumulating evidence indicates that the N6-methyladenosine (m6A) modification plays a
critical role in human cancers. Given the current understanding of m6A modification, this
process is believed to be dynamically regulated by m6A regulators. Although the discovery
of m6A regulators has greatly enhanced our understanding of the mechanism underlying
m6A modification in cancers, the function and role of m6A in the context of prostate cancer
(PCa) remain unclear. Here, we aimed to establish a comprehensive diagnostic scoring
model that can act as a complement to prostate-specific antigen (PSA) screening. To
achieve this, we first drew the landscape of m6A regulators and constructed a LASSO-Cox
model using three risk genes (METTL14, HNRNP2AB1, and YTHDF2). Particularly,
METTL14 expression was found to be significantly related to overall survival, tumor T
stage, relapse rate, and tumor microenvironment of PCa patients, showing that it has
important prognostic value. Furthermore, for the sake of improving the predictive ability, we
presented a comprehensive diagnostic scoring model based on a novel 6-gene panel by
combining with genes found in our previous study, and its application potential was further
validated by the whole TCGA and ICGC cohorts. Our study provides additional clues and
insights regarding the treatment and diagnosis of PCa patients.
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INTRODUCTION

As the second most frequent type of cancer in men, prostate cancer (PCa) is gradually becoming
a major clinical burden (Siegel et al., 2016). Typically, patients with localized PCa exhibit long-
term survival, and a large number of patients develop bone metastasis (Liao et al., 2006).
However, when this disease progresses from metastatic to castrate-resistant PCa (CRPC), the
mortality rate of PCa patients is increased significantly in the subsequent 2–3 years (Kohaar
et al., 2019). It is estimated that over 350,000 people die from PCa each year and that the number
of newly diagnosed cases for PCa is increasing worldwide (Bray et al., 2018).

Over the past decade, research on PCa has developed rapidly, particularly with respect to the
development of new treatment methods and understanding of the underlying mechanisms.
Despite this, a number of important clinical issues remain unresolved, including the
identification of reliable biomarkers as supplement to prostate-specific antigen (PSA)
screening for PCa (Attard et al., 2016). The primary disadvantage of screening for PSA,
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which is widely used as a biomarker for PCa, is its low
specificity and poor diagnostic value (Barry, 2009). It is
therefore vital and urgent to discover new biomarkers that
can be used for the clinical diagnosis and prognosis of PCa.

As the most common type of RNA methylation modification,
N6-methyladenosine (m6A) has recently become a research
hotspot in the life sciences and has received extensive
attention worldwide, particularly in the context of cancer
(Deng et al., 2018). It is well established that m6A is a
dynamic and reversible RNA modification, and its
modification level is dynamically regulated by different types
of m6A regulators, including demethylases (“eraser”),
methyltransferases (“writer”), and RNA binding proteins
(“reader”) (Roundtree et al., 2017; Pinello et al., 2018).
Numerous studies have indicated that genetic changes in or
dysregulated expression of m6A regulators contribute to the
initiation, malignant progression, and drug resistance of
cancers (Wang et al., 2017; Dai et al., 2018; Wang et al.,
2018). For instance, METTL3 was reported to promote cell
adhension, growth, and progression in PCa through different
molecular mechanisms (Cai et al., 2019; Li E. et al., 2020; Yuan
et al., 2020). In addition, a recent report indicated that the
degradation of IGF2BPs was involved in NSCLC progression
(Li et al., 2021). Considering the functional importance of the
m6A modification in cancers, targeting dysregulated m6A
methylation regulators may serve as an ideal strategy for
cancer therapy in the future.

Although some previous studies have investigated the effect of
certain m6A regulators on PCa, systematic studies examining
m6A modification in PCa remain rare. In this study, we aimed to
construct a comprehensive diagnostic scoring model, with special
focus on epigenomics and transcriptomics. To achieve this, we
used The Cancer Genome Atlas (TCGA) PCa cohort to
investigate the expression patterns and prognostic value of
17 m6A regulators in 551 PCa samples. Additionally, we
created a complete atlas of prognosis-related m6A regulators,
and we found potential regulators that can be used as biomarkers
for prognostic stratification. Our study demonstrates the
importance of m6A regulators in PCa and lays a foundation
for the development of new PCa target therapy. Most
importantly, we constructed a novel six-gene scoring model
which may improve the clinical diagnosis ability of the early
stage of PCa patients.

MATERIALS AND METHODS

Data Source and Processing
The raw RNA-seq data and corresponding clinical data of
prostate cancer (PCa) were generated within the TCGA
(http://cancergenome.nih.gov/). Our study, it should be noted,
meets TCGA publication guidelines (Wang et al., 2016). In
addition, we also collected other PCa cohorts from ICGC
(https://icgc.org/), which included Canada (https://dcc.icgc.org/
releases/current/Projects/PRAD-CA) and France (https://dcc.
icgc.org/releases/current/Projects/PRAD-FR). The PCa cohorts
from China and Britain were out of our consideration due to lack

of expression datasets. The overall clinical characteristics of PCa
patients are presented in Supplementary Table S1. Here, only
654 PCa patients have both complete follow-up survival
information and corresponding expression data, consisting of
TCGA-US (N = 492), ICGC-CA (N = 137), and ICGC-FR
(N = 25).

Details of the overall workflow and the purpose underlying the
study design are shown in Figure 1. First, we downloaded 551
samples and clinical information for the PCa cohort that was
cross-referenced via TCGA categories. Then we systemically
analyzed the expression levels and prognostic values of
17 m6A regulators in PCa and constructed a LASSO-Cox
model using 3 m6A regulators. In particular, we also applied
the CIBERSORT algorithm to explore the association between
m6A modification and the tumor microenvironment to further
confirm the diagnostic value of prognosis-related m6A regulators.
Finally, combining with our previous study (Liu et al., 2019), a
comprehensive diagnostic scoring model based on a novel 6-gene
panel was constructed and further validated by the whole TCGA
and ICGC cohorts.

Identification of Differentially Expressed
m6A Regulators in PCa
We identified 17 widely reported and verified m6A regulators
from existing literature and compared the expression levels of
these regulators between PCa and normal samples using heat
maps and violin plots. Circos Plots generated by using the
“RCircos” package indicated the m6A regulators in
chromosomes (Gu et al., 2014). Spearman analysis was used to
show the correlation among these regulators.

Construction of a LASSO-Cox Diagnostic
Scoring Model
To study the prognostic value of these regulators in PCa, univariate
analysis was first used to evaluate the correlation between the
expression of each risk gene and patient survival. These risk genes
were selected to screen and confirm using the least absolute
shrinkage and selection operator (LASSO) algorithm (Bovelstad
et al., 2007). The best penalty parameter λwas determined by using
the cross-validation method. The risk score based on these three
genes was obtained by using the following formula:

Risk Score � ∑ n
i�1 Coef(i) × x(i)

Coef(i) represents the coefficient, and x(i) represents the
relative expression value of the risk gene through the z-score-
transformed. Finally, PCa patients in TCGA were divided into
two groups based on the median risk score, and these included the
low- and high-risk groups.

Assessment of the Relevance of Clinical
Characteristics
The Kaplan–Meier method with log-rank test was used to
evaluate patient survival differences between low-risk groups
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and high-risk groups. Then, we used a multivariate regression
method to determine the impact of each variate on PCa patient
survival. Next, ROC curves was applied to validate the accuracy of
the model prediction. The area under the curve (AUC) value was
calculated by using the R package “survivalROC” (Heagerty et al.,
2000). Additionally, we also compared the clinical features (T
stage and N) of the two groups (low-risk and high-risk).

Estimation of Infiltrating Cells Within the
Tumor Microenvironment Using the
CIBERSORT Algorithm
Numerous studies have suggested that the immune response is
significantly associated with the clinical outcome and therapeutic
response of cancer patients, particularly in regard to the proportion
of immune cells within the microenvironment (Quail and Joyce,
2013; Strasner and Karin, 2015). Based on this, we investigated if a
correlation exists between m6A regulators and the tumor
microenvironment. CIBERSORT is a deconvolution algorithm
that can be used to characterize immune cell composition and
has been widely used for studying cell heterogeneity (Newman
et al., 2015). Therefore, we applied this method to predict the
relative proportion of 22 types of infiltrating immune cells in PCa
samples. The normalized gene expression data were uploaded to
the CIBERSORT website (http://cibersort.stanford.edu/), and the
algorithm was run using the LM22 signature and 1,000
permutations. Here, only 172 PCa samples with p-value < 0.05
were selected for the analysis.

Statistical Analysis
Wilcoxon rank sum was performed to test the significance of the
infiltration levels of immune cells in PCa samples. Unless
otherwise specified in this study, all statistical tests were

performed using R 3.5.1 software and GraphPad Prism. The p
value < 0.05 was considered statistically significant (*p < 0.05,
**p < 0.01, and ***p < 0.001).

RESULTS

Overview ofm6ARegulators Profiling in PCa
According to the current view of m6A modifications, this process
is dynamically regulated by m6A regulators. Here, we initially
grouped these methylation regulators into three categories:
eraser, writer, and reader (Figure 2A). Then, Circos plots were
used to show the details of these m6A regulators and their
locations on chromosomes. For example, the FTO gene was
located on chromosome 16 (Figure 2B). Figure 2C presents
the Spearman correlation analysis of 17 m6A regulators. With the
exception of ALKBH5, ZC3H13, FTO, and IGF2BP families, the
relationship between the rest of the m6A regulators was positively
correlated, and the METTL14 gene and YTHDC1 gene were the
most relevant. Considering the important roles of m6A
modification in cancer initiation, we also compared the
expression of 17 m6A regulators in 499 PCa samples and 52
normal samples. Compared to levels in normal samples, the
expression levels of RBM15, METTL3, YTHDC2, YTHDF1/2,
HNRNPC, and HNRNPA2B1 in tumor samples were
upregulated, but IGF2BP2 expression levels were
downregulated (Figures 2D,E).

Potential Clinical Utility of Risk Score and
m6A Regulators
In an attempt to establish a diagnostic scoring model, we first
performed univariate analysis on the expression levels of 17 m6A

FIGURE 1 | Overall study design.
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regulators. The results suggested that METTL14 (HR = 2.09, 95%
CI = 1.09–4.00), HNRNPA2B1 (HR = 1.03, 95%CI = 1.01–1.06),
and YTHDF2 (HR = 1.22, 95%CI = 1.04–1.44) were significantly
correlated with survival of PCa patients (Figure 3A). It should be
noted that IGF2BP1(p-value = 0.33) and IGB2BP3 (p-value =
0.67) were not shown in Figure 3A, because the hazard ratio and
confidence interval of these 2 m6 regulators were 0. As shown in
Figures 3B,C, these three regulators were selected to build a risk
score, and coefficients obtained from the LASSO algorithm were
used to calculate the risk of each PCa patient. To study the
possible prognostic role of the risk score containing three m6A
regulators, we divided the PCa patients into low- and high-risk
groups. The data presented in Figure 3D indicate that the high-
risk group exhibited a poorer prognosis.

Assessment of the Prediction Performance
of Risk Score Based on m6A Regulators
We next investigated the correlation between the three m6A
regulators and clinicopathological features of PCa, including
age, T-status, and N-status. The heatmap displays the
expression level of these m6A regulators in the low-risk and
high-risk groups (Figure 4A). We found that compared to the
low-risk group, the high-risk group was closely related to higher
T-status (T3/T4) and N-status (N1) (Figure 4A). ROC was then
used to predict 5-year survival for PCa patients. The data
presented in Figure 4B indicate that 3-gene panel risk scores

(AUC = 0.782) exhibit relatively higher prediction accuracy than
PSA (AUC = 0.747). Finally, univariate and multivariate analyses
were used to evaluate the possibility of using the risk score as an
independent prognostic factor. Both results revealed that the risk
score was correlated with overall survival (Figures 4C,D). Based
on these data, there is a strong correlation between risk scores and
clinicopathological features of PCa.

The Prognostic Value of METTL14 for PCa
Patients
Furthermore, we constructed a protein–protein interaction
network of 17 m6A regulators using Cytoscape software
(Figure 5A) (Su et al., 2014). The degree of METTL14 was 14
among the three prognosis-related m6A regulators
(Supplementary Table S2). To further study the possible role
of METTL14 in PCa, we performed an overall survival analysis
and a clinical features correlation analysis. The expression of
METTL14 was significantly related to the overall survival of PCa
patients and to tumor stage T. Additionally, we found that the
expression level of METTL14 is associated with disease status
(Complete regression/relapse) according to ICGC datasets. As
shown in Figures 5B–D, patients in the high-expression group
exhibited reduced overall survival and higher T-status and
relapse rate.

The TCGA PCa cohort was also divided into high-expression
and low-expression groups based on median METTL14

FIGURE 2 | Atlas of m6A regulators in prostate cancer (PCa). (A) The process of m6Amodification regulated by different types of m6A regualtors. (B) The location of
m6A regulators within chromosomes is illustrated using Circos plots. (C) The potential correlation among m6A regulators. (D) The expression of m6A regulators in PCa is
shown using a heat map. Red and green represent upregulated genes and downregulated genes, respectively. (E) The violin plot of the differentially expression m6A
regulators between normal samples (light blue) and tumor samples (light red).
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expression. Gene set enrichment analysis (GSEA) was then used
to find potential associated signaling pathways and biological
processes. Interestingly, we found that a number of cancer-related
pathways such as Wnt pathways, KEGG Prostate Cancer, KEGG

Colorectal Cancer, and KEGG Thyroid Cancer were
predominantly enriched in the high-expression group. This
implied that elevated expression of METTL14 may contribute
to unfavorable prognosis in PCa (Figures 5E,F).

FIGURE 3 | The construction of a LASSO-Cox diagnostic scoring model based on m6A regulators. (A) Univariate analysis of the 15 regulators on overall survival of
PCa patients. (B,C) The coefficients of three m6A regulators are calculated by using the LASSO algorithm. (D) Kaplan–Meier analysis of PCa patients with low-risk (blue)
and high-risk (red) groups in TCGA cohorts (N = 492).

FIGURE 4 | Evaluation of the prediction performance of the m6A prognostic scoringmodel. (A)Heatmap showing the differences in the clinicopathologic features of
PCa patients with low-risk group and high-risk groups. (B) The predictive efficiency of the 3-gene panel and PSA were shown by a 5-year ROC curve. (C,D) Univariate
and multivariate analysis of the correlation between clinicopathological features and overall survival of PCa patients.
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FIGURE 5 | Underlying prognostic value of METTL14 in PCa. (A) Protein–protein interaction network of 17 m6A regulators in which the key role of METTL14 is
shown. (B) Kaplan–Meier analysis of METTL14 with low expression (blue) and high expression (red) in PCa patients. (C,D) The association of METTL14 expression with
different tumor stages and disease status. (E,F). Gene set enrichment analysis for TCGA PCa samples with high expression of the METTL14 signature.

FIGURE 6 | Potential association betweenMETTL14 expression and the tumormicroenvironment. (A)Bar plots showing the proportion of 22 specific immune cells
in each of the PCa samples. (B) Violin plot depicting the difference of immune infiltration in PCa samples with low or high METTL14 expression. (C) Pearson correlation
analysis of five types of immune cell fractions with METTL14 expression (p < 0.05).
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METTL14 May Be a Potential Indicator for
Tumor Microenvironment Modulation
To further verify the diagnostic value of prognosis-related m6A
regulators, we investigated the potential correlation between
METTL14 expression and the tumor microenvironment. Using
the CIBERSORT algorithm (Newman et al., 2015), we created a
landscape of the PCa tumor microenvironment. Within this
landscape, 22 specific immune cell fractions in each PCa sample
are shown in a boxplot (Figure 6A). Interestingly, the infiltration
levels of naive B-cells, CD4+ memory resting T-cells, M1
macrophages, and dendritic resting cells in the METTL14 high-
expression group were higher than those in the low-expression
group (Figure 6B). In contrast, the infiltration levels of M0
macrophages and regulatory T-cells were lower in the
METTL14 high-expression group (Figure 6B). Additionally, we
found that three types of immune cells were positively correlated
with METTL14 expression, and these included naive B-cells, CD4+

memory resting T cells, andM1macrophages. Two types of immune
cells were negatively correlated with METTL14 expression, and
these included regulatory T-cells and M2 macrophages. These
data further confirmed that the expression levels of METTL14
affected the immune activity of the tumor microenvironment in
PCa (Figure 6C).

The Construction and Evaluation of a
Comprehensive Diagnostic Scoring Model
As previously mentioned, although we constructed a m6A
prognostic scoring model, its prediction performance may not
be good enough for PCa diagnosis. Therefore, we further
constructed a comprehensive diagnostic scoring model to
improve the predictive ability. Here, more biomarkers related
to PCa prognosis were taken into consideration. Combined with
our previous research results, in which we found three lncRNAs
(LINC00683, LINC00857, and FENDRR) and two mRNAs
(CCDC178 and SERPINA5) were significantly related with
overall survival of PCa patients (Liu et al., 2019), and 3 m6A
regulators (METTL14, HNRNPA2B1, and YTHDF2) were
combined with five RNAs (2lncRNA+3mRNA) in a variety of
ways in order to construct an optimal complex model. Finally,
HNRNPA2B1 plus five RNAs was the best model combination we
found from seven different ways (Supplementary Table S3).

The data presented in Figure 7 indicated that the scoring
model based on the six-gene panel was effective for the prediction
of PCa prognosis. By LASSO algorithm selection, six genes
(HNRNPA2B1, LINC00683, LINC00857, FENDRR, CCDC178,
and SERPINA5) were retained (Figures 7A,B). Based on this
model, we were surprised to find that the overall survival of PCa

FIGURE 7 | Construction of a comprehensive diagnostic scoring model for PCa. (A,B) The process of selecting risk genes using the LASSO algorithm. (C)
Kaplan–Meier analysis of PCa patients for high-risk (red) and low-risk groups (blue). (D) Heatmap of differences in the clinicopathologic features of PCa patients for low-
risk and high-risk groups.
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patients in the high-risk group exhibited significantly reduced
and closely related to high T-status (T3/T4) and N-status (N1)
(Figures 7C,D; Table 1). Besides, the accuracy of model
prediction and the clinical diagnosis feasibility were validated
by the 5-year ROC curve and independent prognosis analysis
(Figure 8). Compared with the PSA, 3 m6A regulators scoring
model, and previous established model (Leyten et al., 2015; Shao
et al., 2020;Wang et al., 2020), the 6-gene panel scoringmodel has
the best predictive performance (AUC = 0.827) (Figure 8;
Table 1). These results indicated that the 6-gene panel risk
score has the potential to be used as an independent
prognostic factor in the treatment and diagnosis of PCa patients.

Validation of Six-Gene Panel Scoring Model
in Large-Scale PCa Cohorts
To test the robustness and the application potential of the six-
gene panel scoring model in PCa diagnosis, we integrated whole
TCGA and ICGC cohorts containing three different countries:
America (TCGA-US), Canada (ICGC-CA), and France (ICGC-

FR). We first constructed a multivariate Cox regression model
using these six genes (Supplementary Figure S1) and then
calculated the risk score of 654 PCa patients. The risk score
distribution and survival status of PCa patients were shown in
Figures 9A,B. For the whole TCGA and ICGC cohorts (N = 654),
we observed that the overall survival of PCa patients in the high-
risk group were also significantly reduced (Figure 9C; Table 1),
which is consistent with the trends using the training dataset
(TCGA-US). In addition, the model prediction ability was
verified again by the 5-year ROC curve (AUC = 0.898). It still
showed good performance for predicting prognosis in large-scale
PCa cohorts (Figure 9D; Table 1).

DISCUSSION

PCa is asymptomatic in the early stages of disease development,
thus leading to difficulties in diagnosing this disease. However,
advanced PCa that progresses to tumor metastases is usually
regarded as incurable or difficult to treat (Ardura et al., 2020).

TABLE 1 | Comparison of prediction performance between our scoring model and the previous established model.

Prediction ability Gene signature Significance of
difference

of overall survivala

Significance of
difference
of clinical T

statusb

AUC value of
ROC
curve

Model

Leyten et al HOXC6, TDRD1, DLX1, sPCA3c — — 0.81
Shao et al.d ZNF467, SH3RF2, PPFIA2, MYT1, TROAP, GOLGA7B p < 0.001 (TCGA) — 0.73 (TCGA)

p = 0.003 (GEO) 0.76 (GEO)
p < 0.001 (FUSCC) 0.72 (FUSCC)
p < 0.001 (TAHNU) 0.81 (TAHNU)

Wang et al. METTL14, YTHDF2 p = 0.001 — 0.762
m6A prognostic scoring
model

METTL14, YTHDF2, HNRNPA2B1 p = 0.040 T (*) 0.782

6-gene panel scoring
model

LINC00683, LINC00857, FENDRR, HNRNPA2B1, CCDC178,
SERPINA5

p = 0.001 (Training set) T (**) 0.827
(Training set)

p = 0.0005 (Testing set) (Training set) 0.898 (Testing set)

aSignificance of difference of Overall Survival between low-risk groups and high-risk groups.
bClinical characteristics significant differences between low-risk groups and high-risk groups (*p < 0.05, **p < 0.01).
csPCA3 is serum prostate-specific antigen.
dThe Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) serve as discovery set and test set separately, the databases of Fudan University Shanghai Cancer Center (FUSCC)
and Third Affiliated Hospital of Nantong University (TAHNU) were an external validation set.

FIGURE 8 | Evaluation of the prediction performance of the 6-gene panel diagnostic scoring model in TCGA cohorts. (A) The predictive efficiency of the 6-gene
panel model and PSA were shown by a 5-year ROC curve. (B,C) Univariate and multivariate analysis of the correlation between clinicopathological features and overall
survival of PCa patients.
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Current clincial diagnosis largely depends on PSA screening;
however, this often fails to detect certain aggressive tumors and
can lead to overtreatment in a considerable number of patients
(Lilja et al., 2008; Scott andMunkley, 2019). Therefore, there is an
urgent need to identify novel biomarkers that can be used for
clinical diagnosis. As PCa is a heterogeneous and multifocal
disease, multiple biomarkers are required to aid in directing
clinical decisions (Scott and Munkley, 2019). In order to
combine liquid biopsy for effective diagnosis, we aimed to
explore new biomarkers for PCa from the epigenomics and
transcriptomics perspective, and we hope to construct a
comprehensive scoring model that can be used in clinical
diagnostics.

Over the past few years, m6A modification has been
demonstrated to play a vital role in major bioprocesses such
as self-renewal, tissue development, control of circadian
rhythms, primary mRNA processing, and RNA–protein
interactions (Wang et al., 2014; Liu et al., 2015; Meyer et al.,
2015; Zhao et al., 2017). More recently, a number of efforts have
been devoted to investigate the biological impacts and the
associated machinery of dysregulated m6A modification in
the context of various cancers, including PCa (Li et al., 2017;
Wang et al., 2017; Wu et al., 2018). These studies suggested that
up- or down-regulation of particular m6A regulators is
associated with tumors, and the same m6A regulators may
exert different functions in different cancers.

In the present study, we attempted to delineate a complete
atlas of prognosis-related m6A regulators for PCa and develop a

new prognostic prediction scoring model. Here, only 17 widely
reported and verified m6A regulators were taken into
consideration. First, the atlas of m6A regulators in PCa was
mapped based on TCGA RNA-sequencing data, including
categories, chromosome location, correlation, and expression
level (Figure 2). Finally, three PCa prognosis-related m6A
regulators (METTL14, HNRNPA2B1, and YTHDF2) were
identified by univariate analysis, and a LASSO-Cox model
was constructed based on these regulators (Figure 3). Both
multivariate Cox analysis and ROC analysis revealed that the 3-
gene panel risk scores can predict clinicopathlogical features of
PCa as an independent prognostic factor (Figure 4). In order to
improve the prediction performance of clinical diagnosis, we
next constructed a comprehensive diagnostic scoring model.
Here, we combined five RNAs reported in our previous study
(Liu et al., 2019) and 3 m6A regulators found in this study in
seven different ways (Supplementary Table S3). Finally, we
found HNRNPA2B1 plus five RNAs was the best model
combination. This six gene-panel risk signature is
significantly correlated with advanced clinical features of
malignancy (T3/T4, N1), indicating that we can distinguish
between early and advanced PCa patients according to this
model (Figure 7).

To better illustrate our results, we conducted literature
curation for three risk genes that construct the m6A
prognostic scoring model. Among these prognosis-related m6A
regulators, a number of previous studies have indicated that
YTHDF2 is primarily involved in the malignant progression of

FIGURE 9 | Application potential of the 6-gene panel scoring model in large-scale PCa cohort diagnosis. (A,B) The distribution of risk score and survival status of
PCa patients in the whole TCGA and ICGC cohorts (N = 654). (C) Kaplan–Meier analysis of PCa patients for high-risk (red) and low-risk groups (blue). (D) The predictive
efficiency of the 6-gene panel scoring model was assessed by using a 5-year ROC curve.
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pancreatic cancer, hepatocellular carcinoma, and acute myeloid
leukemia (Chen et al., 2017; Paris et al., 2019; Zhong et al., 2019).
The findings by Li et al. revealed that YTHDF2 was involved in
the development of PCa by targeting miR-493–3p or inducing
AKT phosphorylation (Li et al., 2017; Li et al., 2020).
HNRNPA2B1 was previously reported to be associated with a
number of cancers, including liver cancer, breast cancer, lung
cancer, cervical cancer, and pancreatic cancer (Barcelo et al.,
2014; Chen et al., 2017; Hu et al., 2017; Hung et al., 2017; Shi et al.,
2018). Although Li et al. revealed that HNRNPA2B1 was
associated with the overall survival of PCa patients, the
function and role of HNRNPA2B1 in the context of PCa were
not clear (Li et al., 2019). In regard to METTL14, currently
available studies have demonstrated that it was significantly
correlated with hepatocellular carcinoma, glioblastoma, acute
myeloid leukemia, gastric cancer, and breast cancer (Cui et al.,
2017; Ma et al., 2017; Weng et al., 2018; Wu et al., 2019; Zhang
et al., 2019). So far, only two studies explored the possible roles of
METTL14 in the context of PCa (Panneerdoss et al., 2018; Wu
et al., 2021). One found that the depletion of METTL14 could
inhibit clonability and migration of PCa (DU-145) cells, while
another showed METTL14 was negatively correlated with the
Gleason grade in PCa. Despite this, the underlying mechanism of
METTL14 in PCa remains unclear. In our analysis results,
METTL14 was proved to possess important clinical prognostic
value based on large-scale PCa cohorts (Figure 5). Interestingly,
METTL14 expression affected the immune activity of the tumor
microenvironment, thus providing additional insight into the
therapeutics of PCa (Figure 6). Combining our existing data with
the previous research, we believed that METTL14 may prove to
be a promising biomarker and therapeutic target in PCa.

Since the incidence and mortality of PCa have increased in
recent years, it will be of great importance to develop new
therapeutic approaches for this disease based on promising
prognostic and diagnostic biomarkers. In this study, we finally
constructed a comprehensive diagnostic scoring model based on
a novel 6-gene panel. The model showed strong robust
performance with respect to predicting PCa prognosis
(Figure 8). Compared with the results of other research group
(Leyten et al., 2015; Shao et al., 2020; Wang et al., 2020), the
prediction performance of the novel 6-gene panel prognostic
model (AUC = 0.827, Table 1) is relatively higher than their
models. Most importantly, the application potential of the novel
6-gene panel prognostic model was further verified in large-scale
PCa cohorts (Figure 9). In addition, using the RMVar database,
we also found that 5 (LINC00683, LINC00857, FENDRR,
SERPINA5, and CCDC178) out of the six genes could be
methylated by m6A modification, but the direct evidence
showing that “reader” HNRNPA2B1 could regulate the
methylation level of these five genes is lacking within
medium- or high-confidence experiment levels (Luo et al.,
2021). It should be pointed out that HNRNPA2B1 itself could

also be methylated by m6A modification based on the m6A-Atlas
database (Tang et al., 2021). Therefore, the potential regulatory
relationship between these six genes and m6A modification may
need to be explored further by experiments in the future.

In summary, we expect that the application of this novel 6-
gene panel scoring model will not only contribute to the selection
of an appropriate therapeutic strategy, enabling precise
prediction of personal prognosis, but will also further promote
the understanding of the basic biology of PCa. Although further
biological experiments are required to validate our findings, we
believe that this model could also be used in the future as a
complement to PSA screening for PCa (Figure 8).
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