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Background: Acute ischemic stroke (AIS) is a severe neurological disease with complex
pathophysiology, resulting in the disability and death. The goal of this study is to explore the
underlying molecular mechanisms of AIS and search for new potential biomarkers and
therapeutic targets.

Methods: Integrative analysis of mRNA and miRNA profiles downloaded from Gene
Expression Omnibus (GEO) was performed. We explored differentially expressed genes
(DEGs) and differentially expressed miRNAs (DEMirs) after AIS. Target mRNAs of DEMirs
and target miRNAs of DEGs were predicted with target prediction tools, and the
intersections between DEGs and target genes were determined. Subsequently, Gene
Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway
enrichment analyses, Gene set enrichment analysis (GSEA), Gene set variation analysis
(GSVA), competitive endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA) network,
protein–protein interaction (PPI) network, and gene transcription factors (TFs) network
analyses were performed to identify hub genes and associated pathways. Furthermore,
we obtained AIS samples with evaluation of immune cell infiltration and used CIBERSORT
to determine the relationship between the expression of hub genes and infiltrating immune
cells. Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to
predict the effect of the identified targets on drug sensitivity.

Result:We identified 293 DEGs and 26 DEMirs associated with AIS. DEGs were found to
be mainly enriched in inflammation and immune-related signaling pathways through
enrichment analysis. The ceRNA network included nine lncRNAs, 13 miRNAs, and 21
mRNAs. We used the criterion AUC >0.8, to screen a 3-gene signature (FBL, RPS3, and
RPS15) and the aberrantly expressed miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p,
hsa-miR-148b-3p, and hsa-miR-143-3p) in AIS, which were verified by a method of
quantitative PCR (qPCR) in HT22 cells. T cells CD8, B cells naïve, and activated NK cells
had statistical increased in number compared with the acute cerebral infarction group. By
predicting the IC50 of the patient to the drug, AZD0530, Z.LLNle.CHO and NSC-87877
with significant differences between the groups were screened out. AIS demonstrated
heterogeneity in immune infiltrates that correlated with the occurrence and development of
diseases.

Edited by:
Rosalba Giugno,

University of Verona, Italy

Reviewed by:
Eman Toraih,

Tulane University, United States
Vincenzo Bonnici,

University of Parma, Italy

*Correspondence:
Hebo Wang

wanghbhope@hebmu.edu.cn
https://orcid.org/0000-0002-0598-

5772

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 11 December 2021
Accepted: 25 February 2022
Published: 25 March 2022

Citation:
Wu Z, Wei W, Fan H, Gu Y, Li L and
Wang H (2022) Integrated Analysis of

Competitive Endogenous RNA
Networks in Acute Ischemic Stroke.

Front. Genet. 13:833545.
doi: 10.3389/fgene.2022.833545

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8335451

ORIGINAL RESEARCH
published: 25 March 2022

doi: 10.3389/fgene.2022.833545

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.833545&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/articles/10.3389/fgene.2022.833545/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833545/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833545/full
http://creativecommons.org/licenses/by/4.0/
mailto:wanghbhope@hebmu.edu.cn
mailto:https://orcid.org/0000-0002-0598-5772
mailto:https://orcid.org/0000-0002-0598-5772
https://doi.org/10.3389/fgene.2022.833545
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.833545


Conclusion: These findings may contribute to a better understanding of the molecular
mechanisms of AIS and provide the basis for the development of novel treatment targets
in AIS.

Keywords: acute ischemic stroke, differentially expressed genes, differentially expressed miRNAs, functional
enrichment analyses, competitive endogenous RNA, protein-protein interaction, qPCR analysis

INTRODUCTION

Stroke is one of the leading causes of permanent disability
worldwide and among the leading causes of mortality.
Approximately nine million people worldwide suffer from
stroke for the first time each year, and approximately 6.5
million people have long-term disabilities (Dennis et al., 2019).
Acute ischemic stroke (AIS) is triggered by obstruction of blood
flow to the local brain due to a clot or embolus blocking a cerebral
artery (Adams et al., 1993; Fatahzadeh and Glick, 2006; Benjamin
et al., 2018). In the ischemic stroke, a complex pathophysiological
cascade is strongly correlated, both spatially and temporally, with
the reduction of cerebral blood flow (Dirnagl et al., 1999). The
pathogenesis of AIS includes ischemic brain injury caused by a
chain of events (ischemic cascade) that are triggered by secondary
injuries occurring hours or days after the initial event (Iadecola
et al., 2020). However, the molecular mechanisms of ischemic
stroke remain unclear. Therefore, to improve diagnosis and
treatment, the molecular mechanism of ischemic stroke needs
to be investigated. Early diagnosis and successful treatment
beneficial in minimizing the damage to the brain, thus
reducing mortality and improving prognosis. The current
diagnosis of stroke has been severely hampered by the lack of
rapid, valid, and analytically sensitive diagnostic biomarkers
(Saenger and Christenson, 2010). Neuroimaging remains the
most reliable tool for the diagnosis of ischemic stroke.
Thrombolytic treatment through the tissue plasminogen
activator (tPA) agent and surgical removal of clots represent
the current therapeutic approaches for the treatment of AIS.
While these therapies can restore cerebral blood flow and are
efficient treatments for AIS, therapy designed to simultaneously
target multiple mechanisms of cell injury is needed. Thus, to
achieve improved clinical efficacy, there is an urgent need for
novel biomarkers with high sensitivity and specificity for early
diagnosis and treatment of ischemic stroke.

LncRNAs are non-coding RNAs with more than 200
nucleotides in length and lacking of the protein coding
potential (Karagkouni et al., 2020). LncRNA molecule serves
as a “sponge” and is capable to compete for miRNA binding
(Karagkouni et al., 2020). Current evidence has shown that the
expression and function of miRNA can exert either pro-
inflammatory or anti-inflammatory effect after ischemic stroke,
and that miRNAs are negatively regulated by lncRNAs. LncRNA
SNHG14, which acts as a competitive sponge for miR-136–5p,
miR-145–5p, and miR-199b, regulates the activation of microglia
and exhibits pro-inflammatory ability (Qi et al., 2017; Zhong
et al., 2019; Zhang G. et al., 2021). In contrast to the pro-
inflammatory properties of the M1 microglia, the M2
microglia is responsible for the removal of debris and

facilitating tissue repair through anti-inflammatory factors
primarily at the recovery stage (Hu et al., 2015). Knockdown
of lncRNAH19 can negatively regulate the expression of miR-29b
and miR-138–5p, and therefore, can promote functional recovery
after cerebral ischemia and the polarization of microglia (Li et al.,
2020; Xu J. et al., 2021). A recent study shows that lncRNA
MALAT1, sponging miR-30a, promotes neuronal cell death and
suppresses autophagy in ischemic stroke (Guo et al., 2017).
Studies have shown that miR-145 plays an essential role in
inflammation after ischemic stroke. A previous study also
indicated that the production of inflammatory cytokines is
regulated by lncRNA TUG1 at an early stage after ischemic
injury by targeting miR-145a-5p (Wang et al., 2019).
Enhancing our understanding of the interactions between
RNAs through competitive endogenous RNA (ceRNA)
network can elucidate new AIS-related molecular mechanisms
and identifying novel biomarkers for AIS. Thus, elucidation of the
mechanistic details of AIS occurrence and progression, and
exploration of potential biomarkers and therapeutic targets are
critical to developing new treatments and diagnostics.

Neuroinflammation is driving cause of the pathophysiological
processes leading to ischemic stroke (Doll et al., 2014; Zhao et al.,
2016). Several pathophysiological processes could negatively
affect homeostasis of physiological functions, including
excitotoxicity, excessive formation of reactive oxygen species
(ROS), loss of glucose, and oxygen mitochondrial dysfunction,
neuronal apoptosis, and blood-brain barrier permeability
(Forrester et al., 2018; Chen W. et al., 2020; Xu Q. et al.,
2021). Local and peripheral immune system plays important
roles in the pathophysiology of stroke, and includes both the
innate and the adaptive immune responses (Benakis et al., 2016;
Venkat et al., 2018). Neurotoxic factors including reactive oxygen
and nitrogen species as well as exopeptidases can be released
immediately after peripheral immune system contribute to
secondary neurodegeneration (Benakis et al., 2016). Immune
cells, including microglia, monocyte/macrophages, neutrophils,
and lymphocytes infiltrate into the brain after stroke and induce
inflammatory or anti-inflammatory responses via distinct
pathways (Zhang S. R. et al., 2021).

Two studies (Zhang et al., 2020; Sun et al., 2021) aimed to
explore possible molecular mechanisms of ischemic stroke by
constructing ceRNA networks. Our study used different datasets
from that of Sun et al. The study of Sun et al. included the miRNA
expression profile of GSE55937, the mRNA and lncRNA
expression profile of GSE122709, and the mRNA expression
profile of GSE146882. However, our study included the
mRNA expression profiles of GSE16561, and the miRNA
dataset GSE110993. These two studies (Zhang et al., 2020; Sun
et al., 2021) only performed ceRNA network analysis, while our
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study used the hypergeometric distribution model to evaluate the
ceRNA interaction network and performed ROC analysis for key
genes. Relative to these two studies, we added GSEA analysis,
GSVA analysis, TFs network analysis, immune infiltration
analysis and drug network analysis. The ceRNA network we
found includes 9 lncRNAs such as AL360004.1, LINC00173,
LINC01089, LINC00115, 13 miRNAs such as hsa-miR-125a-
5p, hsa-miR-125b-5p, hsa-miR-148b-3p and hsa-miR-143-3p
and 21 mRNAs such as FBL, RPS3, RPS15. The difference was
that the ceRNA network constructed by Sun et al.’s study contains
7 mRNAs, 14 lncRNAs, such as SND1-IT1, NAPA-AS1,
LINC01001, LUCAT1, ASAP1-IT2, 8 miRNAs, such as miR-
93 -3p, miR-24-3p. Zhang et al. found that MCM3AP-AS1,
LINC01089, ITPK1-AS1 and HCG27 may be new biomarkers
and potential targets for AIS therapy.

Finally, we determined the DEGs and DEMirs in AIS through
a comprehensive analysis. Gene expression profiles in cerebral
infarction samples were obtained through the GEO database.
Subsequently, GO, KEGG, GSEA, and GSVA were used to study
the molecular mechanisms for DEGs in AIS. Then, a ceRNA
network and TFs network were established. Receiver operating
characteristic (ROC) curve analysis was implemented to explore
the diagnostic validity of the identified DEMirs and DEGs. We
identified three potential mRNAs and four potential miRNAs as
important predictors of AIS. Moreover, we further conducted
immune infiltration analysis and drug sensitivities of the cell lines
expressed, as the half maximal inhibitory concentration (IC50).
Our research will clarify the molecular mechanisms of AIS and
provide the basis for new applications in both diagnosis and
treatment.

MATERIALS AND METHODS

Data Download and Data Pre-Processing
Acute cerebral infarction expression profile datasets GSE16561
(Barr et al., 2010) and GSE110993 (Tiedt et al., 2017) with reliable

sample sources were downloaded from the GEO (https://www.
ncbi.nlm.nih.gov/geo/) database by using the GEO query package
(Davis and Meltzer, 2007)of R software (version 3.6.6). The
samples in the datasets are all from Homo sapiens. The data in
the two datasets were generated using different platforms:
GPL6883 Illumina HumanRef-8 v3.0 expression beadchip and
GPL15456 Illumina HiScanSQ respectively. GSE16561 dataset
includes whole blood samples from 39 patients with acute
cerebral infarction and 24 healthy controls. The GSE110993
dataset includes whole blood samples from 20 patients with
acute cerebral infarction and 20 healthy patients for inclusion.
The raw data were converted into an expression matrix and
corrected for background and normalized by the limma package
(Ritchie et al., 2015). Afterwards, the batch effect was removed in
sva package (Leek et al., 2012). A flow diagram for the present
analysis is shown in Figure 1.

Data Analysis: Differential Expression and
Pathway Analyses
First, Principal Component Analysis (PCA) was conducted using
FactoMineR package (Lê et al., 2008). Then, DEGs were identified
using the limma package (Ritchie et al., 2015), and volcano plots
of DEGs were generated using the ggplot2 package (Walter et al.,
2015). Finally, adjusted p < 0.05 and |log2FC| > 0.5 were used as
the cutoff criteria to identify DEGs. We performed GO and
KEGG enrichment analysis using the clusterProfiler R package
(Yu et al., 2012), and differences were considered statistically
different at adjusted p value <0.05.

GSEA Analysis, GSVA Analysis
GSEA was performed on the gene expression matrix using
clusterProfiler R package (Yu et al., 2012), and enrichment
was considered significant for false discovery rate (FDR) <
0.25 and p < 0.05. The gene sets were analyzed using the gene
matrix transposed (gmt) file downloaded from MSigDB. Each
gene set was constructed into a GSVA score matrix. Then,
according to the GSVA scores, the gene sets were separated
into low- and high-score groups. The limma R package was
applied to define the significant differences between the low- and
high-score groups. Finally, heat maps were drawn using the R
package pheatmap.

ceRNA Interaction Network Analysis
Normalized data were analyzed using the GDCRNATools
package (Li et al., 2018), and then screened for differential
mRNAs, miRNAs, and lncRNAs. The miRcode database
(Jeggari et al., 2012) was respectively utilized to pair lncRNA-
miRNA and mRNA-miRNA. The hypergeometric distribution
model was constructed to evaluate the ceRNA interaction
network, and finally visualization was performed with
Cytoscape (Shannon et al., 2003).

ROC Analysis of Key Molecules
A pROC package (Robin et al., 2011) was used to perform the
leave-one-out jackknife approach and draw the ROC curve of key
molecules, with the sensitivity as the ordinate and 1-specificity as

FIGURE 1 | Flow chart of overall analysis.
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the abscissa. The area under the curve (AUC) served as the main
evaluation performance. The higher the AUC value, the better is
the predictive power.

Immune Cell Infiltration Level, Correlation
Analysis of Immune Cells
CIBERSORT (Newman et al., 2015) is a tool used for
deconvolution of the transcriptome expression matrix based
on the principle of linear support vector regression, which can
estimate the composition and abundance of infiltrating immune
cells of the acute cerebral infarction sample in the mixed cells.
After uploading the gene expression matrix data to CIBERSORT
(Newman et al., 2015) and filtering the outputs (p < 0.05), we
obtained the immune cell infiltration matrix and the immune
infiltration distribution results of acute cerebral infarction. The
resulting correlation of 21 types of infiltrated immune cells was
visualized in a heat map format generated by the corrplot package
(Friendly, 2002) of R.

The Upstream Transcription Factor
Network That Regulate miRNAs and Drug
Network
Prediction of transcription factors regulating differentially
expressed genes was analyzed by FunRich software (Pathan
et al., 2015). By selecting the intersection molecules of the
predicted transcription factor, mRNA, and miRNA target
genes, we reconstructed the predicted transcription factor-
miRNA regulatory networks. In addition, Genomics of Drug
Sensitivity in Cancer (GDSC database) (Yang et al., 2013), that
covers the sensitivity and response of cells to drugs, was
employed. For further network pharmacology analysis, we
predicted the IC50 value and compared the p-value of the
rank sum test between acute cerebral infarction and normal
samples to determine drug sensitivity.

Cell Culture and Treatment
The immortalized mouse hippocampal neuronal cell line, HT22
(Zhejiang Ruyao Biotechnology Co. Ltd., Zhejiang, China), was
cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Corning, NY, United States) containing 1% penicillin/
streptomycin and 10% fetal bovine serum (FBS, BI, Israel) at
37°C in a humidified incubator containing 5% CO2. For cell lysis
of adherent cells, cells were grown to 60–80% confluence and
were rinsed with PBS before trypsinization. Thereafter, HT22
cells were randomly divided into the normal group and the
model group. Cells were seeded in a 96-well plates at a density of
5 × 104 cells/well and cultured for 24 h. After 24 h, the culture
medium was discarded, and the cells of model group were
washed twice with PBS. Serum and glucose free media were
used, and cells were placed in an anaerobic culture box inside the
37°C incubator for 4 h. After hypoxia, glucose free media was
replaced with complete DMEM and the cells were reoxygenated
in a normoxic incubator at 37°C. These cells of control group
were cultured at 37°C in a 5% CO2 incubator under normal
atmospheric oxygen conditions. Cell viability from the model

and control groups was determined using the Cell Counting Kit-
8 assay (CCK-8, Biosharp, China).

Quantitative Polymerase Chain Reaction
(qPCR Analysis)
Total RNA was extracted using the TRIzol (Life Technologies,
Carlsbad, CA, United States), following the manufacturer’s
instructions. Briefly, HT22 cells were lysed in TRIzol, then
60 μL chloroform was added, samples were shaken for 1 min,
incubated at room temperature for 5 min and centrifuged for
15 min at 12000 g at 4°C. The aqueous phase was transferred into
a new tube and RNA was precipitated in the presence of
isopropanol. After centrifugation, the supernatant was
discarded and the pellet was washed with 200 μL 75% ethanol,
made with Diethyl pyrocarbonate (DEPC)-treated water, by
centrifugation at 7,500 g, for 10 min at 4°C. RNA was eluted in
20 μL DEPC-treated water, quantified by SmartSpec Plus (Bio-
Rad, Hercules, CA) and stored at −80°C. Reverse transcription
reactions (37°C for 15 min, 85°C for 5 s, 4°C) were carried out
using the Evo M-MLV kit (Accurate Biotechnology Co., Ltd,
China). The cDNA was synthesized (37°C for 60 min, 85°C for
5 min, 4°C) using the miRNA first-strand cDNA synthesis kit
(Accurate Biotechnology Co., Ltd, China). Then, qPCR was
performed using the SYBR Green Pro Taq HS qPCR premix
and PCR-amplified in a two-step process. The PCR amplification
conditions were the following: 40 cycles of 30 s at 95°C, 5 s at 95°C
and 30 s at 60°C. The relative expression levels were calculated
using the 2−△△Ct method with GAPDH as an internal reference
gene. The melting curve was analyzed to assure specificity of the
primers after each reaction. See Supplementary Table S1 for
primer sequences.

STATISTICAL ANALYSIS

All analyses were performed using R software for statistical
calculations (version 4.0.2). Independent sample t-test was
used to estimate normally distributed variables whereas Mann-
Whitney U test was used to compare non-normally distributed
variables. The statistical significance of categorical variables was
compared using the chi-square test or Fisher exact test. Pearson
correlation coefficients were calculated to define the correlation
between different genes. ROC curves were generated with the R
package pROC, and the corresponding area under curve (AUC)
values calculated. All statistical tests were performed two-sided,
and statistical significance was set at p < 0.05. The results were
shown as the mean ± standard deviation (SD).

RESULTS

Data Pre-Processing
PData function was available for getting grouping information of
the expression profile datasets GSE16561 (Barr et al., 2010) and
GSE110993 (Tiedt et al., 2017). Each expression matrix from two
raw datasets (GSE16561 and GSE110993) was obtained and then
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pre-processed identically for background correction and
normalization using the limma package (Ritchie et al., 2015).
Finally, batch effects were removed using the sva package (Leek
et al., 2012). The corresponding boxplot is shown in Figure 2.

Genes Associated With Cerebral Infarction
After normalization, the gene expression matrices of the two
datasets were presented as PCA plots (Figures 3A,B). The results
showed that the two groups of samples clustered more obviously
after normalization, indicating that the source of the samples was
reliable. We used R software to preprocess the data and
performed differential expression analysis on the gene
expression matrix of GSE16561 data set to obtain 3698 DEGs,
while the differential analysis in the GSE110993 data set yielded
62 DEMirs. The results are shown in the volcano plots (Figures
3C,D) and the heat maps (Figures 3E,F).

Intersected Differentially Expressed Genes
and Target Genes
The starbase database, a non-coding RNA database, was used to
find target genes based on miRNA, verify the interaction between
miRNA and mRNA, and generate a target gene RNA network.

Based on the differential expression results and the prediction
results of starbase, the intersection of the DEGs and the miRNA
target genes was drawn (Figure 4A). The intersection of the
differentially expressed miRNAs and target miRNAs of DEGs
included 26 genes, as shown in Figure 4B.

GO/KEGG Enrichment Analysis, Pathway
Diagram (Based on DEGs)
Based on the intersection of the DEGs and the miRNA target
genes, GO analysis was performed. The main biological processes
involving the DEGs included neutrophil activation, neutrophil
degranulation, neutrophil activation involved in immune
response. In terms of cellular component, the DEGs were
mostly enriched in secretory granule membrane and
cytoplasmic vesicle lumen. In terms of molecular functions,
the DEGs were linked with amide binding, peptide binding,
structural constituent of ribosome, amyloid-beta binding
(Figure 5A). As shown in Figure 5B, KEGG analysis results
included Coronavirus disease (Covid-19), Hematopoietic cell
lineage, Tuberculosis, etc. Figure 5C is an Upset plot of the
gene ontology (GO) analysis. The main enrichment can reflect
the intersection between different terms. Similarly, Figure 5D is

FIGURE 2 | Density plots of the dataset samples before and after correction. (A,B) The boxplot of GSE16561 dataset samples before and after correction after
removing the inter-batch differences. (C,D) The boxplot of GSE110993 dataset samples before and after correction after removing the inter-batch differences.
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FIGURE 3 | PCA plots and differential expression of the samples of the data sets after correction. PCA plots of the GSE16561 (A) and GSE110993 (B) datasets
after removing the inter-batch differences. Volcano plots of the GSE16561 (C) andGSE110993 (D) dataset; red plot represented upregulation, and blue plot represented
downregulation. Heat maps of the GSE16561 (E) and GSE110993 (F) datasets. The color scale represented the abundance of gene expression. The darker the color
shade, the higher expression level.
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an Upset plot of KEGG data. Figure 5E is a circos diagram of GO
analysis based on differentially expressed mRNA. Figure 5F is a
circos diagram of KEGG pathway enrichment analysis. The
Supplementary Table S2 shows the detailed enrichment
analysis results. The two key pathway diagrams were
constructed according to the above-mentioned differentially
expressed mRNA, as shown in Figure 6.

GSEA and GSVA
GSEA showed that the pathways were mainly enriched aromatic
compound catabolic process, cellular nitrogen compound catabolic
process, heterocycle catabolic process, nucleobase-containing
compound catabolic process, protein targeting, autophagy-
animal, NOD-like receptor signaling pathway, osteoclast
differentiation, regulation of actin cytoskeleton, Ribosome
pathway (Figures 7A–J). The detailed enrichment results are
deposited in https://www.ncbi.nlm.nih.gov/gds NCBI: GEO.
Accession numbers are GSE16561 and GSE110993 respectively.
Furthermore, the gene set variation of each sample in each specific
pathway converted the new biological function annotation into a
new expression matrix. GSVA analysis is shown in Figures 8A,B.
There were differences in the grouping of terms such as KEGG-
ribosome, GO BP-pyrimidine nucleotide biosynthetic process
between the patients with acute cerebral infarction and the
control group, or high and low expression groups, which were
consistent with Figures 5A,B.

Competitive Endogenous RNA Interaction
Network Analysis, PPI Network Analysis
We used the GDCRNATools package for data standardization, and
then screened for differential mRNAs, miRNAs, and lncRNAs,
including different forms of upregulation and downregulation, as
shown in Figure 9A. Considering the number ofmiRNAs shared by
mRNA, and lncRNA, key mRNAs were locked by combining with
the miRcode database, as a database support for the interaction of
lncRNA-miRNA and miRNA-mRNA. MiRNAs were identified
through the mechanism of mRNA binding to ceRNA, and then
a model was generated to evaluate the ceRNA interaction network,
visualized using Cytoscape (Figure 9A). The ceRNA network was
displayed also as a Sankey diagram (Figure 9B). The network
contained nine specific lncRNAs, 13 miRNAs, and 21 mRNAs.
AL360004.1 (degree = 5),has-miR-125a-5p (degree = 16), hsa-miR-

125b-5p (degree = 16), and KRT10 (degree = 5) were considered the
most important transcripts among the lncRNAs, miRNAs, and
mRNAs, respectively. Because hsa-miR-125a-5p, hsa-miR-125b-5p
had the highest ceRNA degree (degree = 16), we concluded that this
family gene might have an important influence on the pathogenesis
of acute cerebral infarction. Next, we explored the interaction
relationship between proteins encoded by different genes. PPI
network of DEGs was established (Figure 9C), and the hub
genes relationship was generated (Figure 9D). At the same time,
according to the existing ceRNA network, interactions between
differentially expressed miRNAs and their target genes were
analyzed, as shown in Figure 9E, and its hub-genes are shown
in Figure 9F.

ROC Analysis of Key mRNA and miRNA
According to our previous ceRNA analysis (section 3.6), the
molecules participating in the interaction network play a key
role in the pathogenesis of acute cerebral infarction. Furthermore,
we plotted the ROC curve by selecting the key mRNAs and
miRNAs (Figures 10A–G), and then screened the biomarkers to
reflect its predictive ability and accuracy for the disease.

Immune Cell Infiltration Level and
Correlation Analysis of Immune Cells
By deconvolution analysis via CIBERSORT of the expression
matrix of 21 immune cell subtypes were analyzed, using the
limited threshold is p < 0.05. We obtained the immune cell
infiltration matrix, and the results of immune infiltration
distribution in acute cerebral infarction samples. Immune cell
infiltration is shown in Figure 11A. Compared with other
immune cells, T cells CD8, T cells CD4 naïve, and T cells
CD4 memory resting were more infiltrated in samples that
were not divided into acute cerebral infarction and control
samples. However, Macrophage M and resting Dendritic cells
infiltration is limited. After further grouping analysis, the
significant infiltration of Macrophages M0, activated Mast
cells, and Monocytes in the acute cerebral infarction samples
difference compared with the control group (Figure 11B). In the
control group, T cells CD8, B cells naïve, and activated NK cells
had statistical increased in number compared with the acute
cerebral infarction group. The next step was to analyze the
correlation of different immune cells. As shown in

FIGURE 4 | Intersected differentially expressed genes and target genes. (A) The intersection of DEGs and miRNA target genes. (B) The intersection of differentially
expressed miRNAs and target miRNAs of DEGs.
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FIGURE 5 | GO/KEGG function enrichment analysis. (A) In GO biological function enrichment analysis, the X horizontal axis represents the proportion of DEGs
enriched in GO term, and the color of the dot represents the adjusted p value: the redder the color, the smaller the adjusted p value; the bluer the color, the greater the
adjusted p value. The size of the dot represents the amount of enrichedmRNA. (B) In KEGG enrichment analysis, the X horizontal axis represents the proportion of DEGs,
and the color of the dot represents the corrected p value. (C) GO function enrichment analysis upset chart. The horizontal axis represents the categories of term
names enriched by DEGs, and the vertical axis represents the number of DEGs in this term. (D) KEGG function enrichment analysis Upset plot. (E) GO function
enrichment analysis circos plot. (E) The outer circle is the information of the corresponding entry gene in the enrichment analysis, and the line is the corresponding
enrichment term entry. (F) KEGG function enrichment analysis circos plot.
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FIGURE 6 | Pathway diagram. (A,B) Two pathway diagrams composed of two major networks are constructed using DEGs.
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Figure 11C, the proportions of different subgroups of infiltrating
immune cells were weakly to moderately correlated. Neutrophils
had a strong positive correlation with Macrophages M0 and
activated Mast cells. T Cells CD8 were positively correlated
with activated NK cells and B cells naïve, and Neutrophils
were negatively correlated with T cells CD8. Figure 11D
shows the changes in the proportion of immune cells within
and between different groups. Therefore, the abnormal immune
infiltration and the heterogeneity of immune infiltration in acute
cerebral infarction suggested that different immune cells play a
role in the occurrence and development of the disease. The
immune signature may be used as prognostic targets for
immunotherapy and may have significant clinical significance.

Correlation Between Diagnostic Markers
and Infiltrating Immune Cells
In the previous analysis, differentially expressed hub genes were
selected, and ROC analysis was performed to screen for diagnostic
markers. To determine the correlation between the hug genes and
the immune cell infiltrations in acute cerebral infarction, linear
regression was performed on the model, and the goodness-of-fit of
regression model coefficients were evaluated to clarify the
correlation between diagnostic markers and immune cell
infiltration (Figure 12).

Target Genes and Transcription Factor
Network Analysis
Differential expression of mRNAs, miRNA target genes, and
transcription factors were intersected to obtain four molecules,
CEBPD, MAFB, FOS, and STAT1 (Figure 13A). Applying the
intersection of DEGs and DEmiRTargetGenes as starting point, a
network between these four molecules and miRNAs was
generated (Figure 13B). The network integrating differential

lncRNAs, miRNAs, and mRNAs shows the interaction analysis
between target genes and transcription factors (Figure 13C).

Drug Sensitivity Analysis
The half-maximal inhibitory concentration (IC50), that is, the
concentration of a drug that inhibits cell growth by 50% in
different treatments, was predicted using the GDSC database.
The value reflects the degree of cell tolerance to the drug. The
lower the IC50 value, the more sensitive the cells are to drugs.
IC50 and AUC values were obtained from all cell lines and drug
combinations through the GDSC database. According to the
screening results, we compared acute cerebral infarction with
the control group and integrated the data. Finally, we visualized
and predicted the IC50 of patients on drugs, and screened out
drugs with significant differences between groups. (Figure 14).

Validation of the Identified miRNAs and
mRNAs
Five Cell viability was assessed through the CCK-8 assay. Oxygen
glucose deprivation/re-oxygenation (OGD/R) was used to mimic
neural injury. Data demonstrated thatOGD/R insult in model group
exhibited decreased cell viability, compared to the normal control
group. When compared with the normal control group, the miRNA
expression levels ofmiR-148b-3p (p< 0.01),miR-125a-5p (p< 0.05),
miR-125b-5p (p < 0.01) and miR-143-3p (p < 0.05) in the model
control group were significantly downregulated while the mRNA
expression levels of FBL (p < 0.01), RPS3 (p < 0.01), and RPS15 (p <
0.01) were significantly upregulated (Figure 15).

DISCUSSION

The incidence of AIS increases with aging and is linked to a poor
prognosis. Timely monitoring of undiagnosed strokes is critical to

FIGURE 7 | Gene Set Enrichment Analysis (GSEA). (A–J) GSEA enrichment analysis result sub-graph. The upper part of the graph represents the distribution of
rank values of all genes after sorting, and the Signal2Noise algorithm is used by default. The lower part of the graph represents the line chart of the gene Enrichment
Score, the horizontal axis is each gene in the gene set, and the vertical axis is the corresponding result.
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reduce mortality. However, long delays in imaging and treatment
initiation and poor functional prognosis represent a significant
challenge. Despite remarkable advances in the development of
therapeutic strategies, developing effective targeted molecular
therapies is limited. Therefore, there has been an increased
search for noninvasive and quantitative markers for AIS. This
study aimed to identify novel biomarkers with sensitivity and
specificity for the diagnosis and treatment of AIS. Through a
comprehensive analysis, a total of 3698 DEGs were identified
from the mRNA microarray dataset (GSE16561) and a total of
26 DE-miRNAs were identified from the miRNA high-
throughput sequencing dataset (GSE110993). GO enrichment,
KEGG pathway analysis, GSEA and GSVA were performed to
enrich and analyze DEGs. We performed ceRNA interactions
analysis and a network of miRNA-mRNA interactions in patients
with acute cerebral infarction, allowing us to uncover potential

biomarkers associated with AIS. A total of 17 hub genes were
identified based on DEGs andmiRTargetgenes. We compared the
levels of immune cell infiltrates in cerebral infarction group and
control group, and we found that screened diagnostic markers
correlated with immune cell infiltration. We also identified drugs
with significant differences between groups by predicting the
patient’s IC50 for the drug.

First, functional annotation to DEGs displayed enrichment of
GO and KEGG pathway analyses referring to inflammation and
immune response. Biological processes analysis in GO annotation
indicated that DEGs were primarily enriched in the inflammatory
response associated with neutrophils, T cell and lymphocytes.
Among them, neutrophils are involved in multiple biological
processes, including neutrophil activation, neutrophil
degranulation, and neutrophil activation. Neutrophils have
received particular attention during recent years of their

FIGURE 8 | GSVA analysis. (A) In the GSVA enrichment analysis of KEGG term entries, the color scale represents the abundance of gene expression, red
represents up-regulation, and blue represents down-regulation. The darker the color shade, the higher is the expression level. (B) GSVA analysis of GO term entries.
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FIGURE 9 | ceRNA interaction and protein-protein interaction analysis. (A) ceRNA network diagram. In the network diagram, red indicates upregulation, blue
indicates downregulation, squares indicate lncRNA, triangles indicate miRNA, and circles indicate mRNA. Sankey diagram (B). The three columns include lncRNAs,
miRNAs, and mRNAs in order from left to right. The line colors represent different types of gene-gene interactions. (C) Diagram of interaction of differentially expressed
proteins. Red indicates increased expression, blue indicates decreased expression, and color intensity indicates different degrees of u-regulation or
downregulation. Orange represents the hub genes. (D) Diagram of hub-genes interaction in differentially expressed proteins. (E) MiRNAs targeting mRNAs interaction
diagram. Red indicates upregulated expression, blue indicates downregulated expression, and color intensity indicates different degrees of upregulation or
downregulation. Orange represents hub genes. (F) Diagram of hub genes interaction in targeted mRNAs.
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significant destructive potential. Experimental studies have
shown that neutrophils reach the ischemic area in the first few
hours after an ischemic attack (Perez-de-Puig et al., 2015). They
can release neurotoxic proteolytic enzymes, accumulate
neutrophils in blood vessels, block blood flow in capillaries
and cause the no-reflow phenomenon (Allen et al., 2012;
Perez-de-Puig et al., 2015).In terms of molecular function
annotations, the occurrence of AIS was closely related to
amide binding, peptide binding, structural constituent of
ribosome, and amyloid-beta binding. KEGG suggested that
most of DEGs in subjects were mainly enriched in the toll-like
receptor signaling pathway, Cell adhesion molecules, T cell
receptor signaling pathway, NF−kappa B signaling pathway,
the B cell receptor signaling pathway, which have collectively
been confirmed as essential mechanisms in inflammation of
ischemic stroke. The theranostic strategy is a combination of

diagnosis and therapy which can be furnished through analyzing
relevant data in the GEO database and forming an AIS-related
lncRNA-miRNA-mRNA regulatory network.

To detect underlying biological functions, GSEA and GSVA
were performed. The results of GSEA suggest that the NOD-like
receptor signaling pathway and autophagy pathway were
significantly enriched pathways. In cerebral ischemic injury,
autophagy can be protective (Carloni et al., 2010) or
destructive (Koike et al., 2008). If its protective function can
be controlled, autophagy may become novel therapeutic targets
for ischemic brain (Carloni et al., 2010). Moreover, NOD-like
receptor, which regulates innate immunity and inflammatory
processes (Shiau et al., 2013), is expected to become as a
therapeutic target in ischemic stroke. GSVA analysis
confirmed that the most abundant pathways are related to
immune response, inflammation and apoptosis.

FIGURE 10 | ROC curve of key mRNA and miRNA. (A–G) ROC curve of mRNA and miRNA. The abscissa is specificity, and the ordinate is sensitivity (true positive
rate), specificity = 1 (false positive rate) AUC is the area under the ROC curve enclosed by the coordinate axis.
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Using GEO, differentially expressed transcripts, including
mRNAs, miRNAs and lncRNAs, were identified and the
ceRNA network in AIS was constructed. In the ceRNA
network, AL360004.1 (degree = 5), hsa-miR-125a-5p (degree =
16), hsa-miR-125b-5p (degree = 16) and KRT10 (degree = 5) were
the molecules with the highest connection score. Previous studies
have correlated cancer-related functions with AL360004.1,
LINC00173, LINC01089 and LINC00115; however, none of
them have been linked to the pathogenesis of AIS. LINC00115
expression levels correlate with prognosis in human bladder
(Jiang et al., 2018) and lung cancer (Li et al., 2016) patients. A
study demonstrated that LINC00115, a novel miRNA sponge of
the miR-200 family, can promote ZEB1 signaling in GBM (Tang
et al., 2019). Deletion or ectopic expression of LINC00115 affects
ZEB1 signaling, neuro-like sphere formation in vitro, and animal
survival time in vivo (Tang et al., 2019). A study reported that
LINC00173 plays an important oncogenic role in glioma by

activating the miR-765/NUTF2 pathway (Du et al., 2020). And
silencing of LINC00173. V1 attenuates vascular endothelial cell
proliferation and migration (Chen J. et al., 2020). Thus, they
represent a potential novel biological markers for AIS diagnosis
and therapy. KRT10 is an intermediate filament (IF) protein
belonging to the type I (acidic) cytokeratin family. Keratin
expression may affect cell proliferation and differentiation
(Paladini and Coulombe, 1998; Paramio et al., 1999). KRT10
impairs cell cycle progression through isolating and inhibiting
protein kinase B (PKB; Akt) and atypical PKC, the key effectors of
the phosphatidylinositol 3-kinase (PI3K) pathway (Paramio et al.,
2001). PI3K pathway plays a central role in neuronal survival.
Therefore, KRT10 may also be a potential therapeutic targets for
AIS. MiR-125a and miR-125b belong to the same miRNA family,
which has identical ‘seed sequence’. MiR-125a-5p and miR-125b-
5p both have been shown to inhibit angiogenesis (Banerjee et al.,
2013; Pan et al., 2015). Overexpression of miR-125a-5p promotes

FIGURE 11 | Evaluation and visualization of immune cell infiltration. (A) Ungrouped immune cell infiltration map. (B) Immune cell infiltration map between acute
cerebral infarction group and control group. (C) Correlation heat map of 22 types of immune cell infiltration. Blue and red indicate positive and negative correlations,
respectively. The darker the color, the stronger is the correlation. (D) Immune cell infiltration map between a single sample of acute cerebral infarction group and control
group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 83354514

Wu et al. CeRNA Networks in AIS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 12 | Correlation between diagnostic markers and immune cell infiltration. (A–M) The linear regression of diagnostic markers and immune cell infiltration
level. The horizontal axis indicates the immune cell infiltration level, and the vertical axis indicates the marker expression. The p value is the regression significance level,
and R2 is the goodness-of-fit.
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nitric oxide (NO) production, reduces ROS production, and
delays human brain microvascular endothelial cells (HBMECs)
senescence through the PI3K/AKT/eNOS signaling pathway (Pan
et al., 2017). MiR-125b-5p regulates synaptic morphology and
function (Edbauer et al., 2010). MiR-125a-5p is associated with
colorectal and liver cancer diseases (Chen L.-Y. et al., 2020; Zhou
et al., 2021). Acute kidney injury and triple-negative breast cancer
are associated with miR-125b-5p (Lv et al., 2021). According to a

report, MiR-148b plays multiple roles in the development of
various biological processes (Friedrich et al., 2017). A study
confirmed the role of miR-148b in the modulation of
proliferation and differentiation of neural stem cell after
ischemic stroke (Wang et al., 2017). Therefore, we determined
that this group of miRNAs is a promising diagnostic marker.
Seventeen DEGs were highly connected as the most significant
hub genes in the PPI network and there are multiple interactions

FIGURE 13 | Network analyses of target genes and transcription factors. (A) The intersection of differentially expressed genes (DEGs), differential miRNA target
genes, and transcription factors is determined using Venn diagram analysis. (B) Intersection molecules-miRNA network analysis. The inner ring is the intersection of
DEGs and DEmiRTargetGenes, and the outer ring is miRNAs. Red indicates increased expression, blue indicates reduced expression, and color intensity indicates
different degrees of upregulation or downregulation. (C) Network diagram of differential lncRNAs, miRNAs, and mRNAs. Red indicates upregulated expression;
blue indicates downregulated expression.
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FIGURE 14 | Drug sensitivity analysis. The IC50 values of different drugs were determined in the control group and the acute cerebral infarction group. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, *****p < 0.00001.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 83354517

Wu et al. CeRNA Networks in AIS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


in the network. Moreover, FBL, RPS3 and RPS15 were ranked as
the top three proteins of the most potentially serving as key
regulators in AIS. Both RPS3 and RPS15 encode a ribosomal
protein, which is part of the 40S subunit. Interestingly, GO and
KEGG analysis, as well as GSEA and GSVA, showed that
ribosome pathway was closely related to the increased
incidence of ischemic stroke. RPS3 induces neuronal apoptosis
by interacting with the E2F1 transcription factor and inducing the
expression of pro-apoptotic proteins BCL2L11/BIM and HRK/
Dp5 (Lee et al., 2010). When located in the mitochondria, RPS3
reduces cellular ROS levels and mitochondrial DNA damage
(Kim et al., 2013). Diseases associated with RPS3 include
Eumycotic Mycetoma and Schopf-Schulz-Passarge Syndrome.
A study shows that RPS15 is a critical morbific leucine-rich

repeat kinase 2 (LRRK2) substrate in Parkinson’s disease
models of drosophila and human neuron (Martin et al., 2014).
Phosphorylation of RPS15 is related to LRRK2
neurodegeneration and neurotoxicity (Martin et al., 2014),
suggesting that the genes encoding ribosomal proteins may be
potential targets and treatment for early diagnosis of AIS. The
components of small nucleolar ribonucleoprotein (snRNP)
particles include FBL products, which are required for
ribosomal RNAs processing and modification. FBL interacts
with small nucleolar RNAs (snoRNAs) and ribosomal RNA
(rRNA) to modify the mRNA 2′-O-methylation, thereby
regulating ROS and oxidative reactions (Elliott et al., 2019).
Diseases associated with FBL include Diffuse Scleroderma and
Systemic Scleroderma. In terms of diagnostic value, the AUC of

FIGURE 15 | The relative expression of differentially expressed mRNA and miRNA in HT22. (A) The CCK-8 cell viability assay; (B) FBL (C) RPS3; (D) RPS15 (E)
miRNA-143-3p (F) miRNA-148b-3p; (G) miRNA-125b-5p; (H) miRNA-125a-5p. The control group reflects the normal HT22 and the OGE/R group reflects the model
group. *p < 0.05, **p < 0.01, ***p < 0.001.
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these three mRNAs and four miRNAs’ genes was analyzed. All
the AUC values were in the range 0.866–0.989, suggesting that
these genes had moderate predictor performances (Akobeng,
2007) in diagnostic examinations. However, in our
investigation the qPCR results showed that miR-125a-5p, miR-
125b-5p, and miR-143-3p levels in the model control group were
significantly downregulated. Thus, these results drive us to
explore whether these miRNAs will also play a protective role
in AIS when cells viability is around 65%. The validation of
identified DEGs and DEmiRs was performed using qPCR, and
confirmed the above results, proof of the diagnostic effectiveness
of the DEGs and DEMirs.

It was further confirmed that the infiltration levels of
Macrophages M0, activated Mast cells, and Monocytes in
acute cerebral infarction samples were higher than those in
control samples. Contrarily, the infiltration levels of T cells
CD8, B cells naïve, and activated NK cells in control samples
significantly higher than those in AIS samples. Macrophages
infiltrate and promote rapid inflammatory responses in the
acute phase of AIS; however, T cells in the late phases of
cerebral infarction (Iadecola and Anrather, 2011). Animal
models of ischemic stroke results in increased number of
activated mast cells (Bot et al., 2020), and mast cells are also
involved in arteriogenesis and collateral formation (Chillo et al.,
2016). Activation of mast cells plays a proinflammatory role by
recruiting immune cells such as neutrophils and monocytes (Bot
et al., 2007; Sun et al., 2007; Chillo et al., 2016). After identifying
differential expression of hub-genes, we analyzed the correlation
between the hub genes of AIS and the level of immune
infiltration. It has been suggested that peripheral immune cells
such as neutrophils to infiltrate in the ischemic brain region after
disruption of the blood-brain barrier (BBB) in ischemic stroke
(Qian et al., 2016). In addition, elevated expression level of hub-
genes significantly correlated with T cells follicular helper, B cells
naive, NK cells, and Mast cells infiltration (p < 0.05), facilitating a
general increase the levels of infiltrating immune cells.

Four transcription factors were obtained by taking the
intersection of DEmRNA, DemiRTargetGenes, and
DEmiRTFs:CEBPD, MAFB, FOS, and STAT1. CEBPD is an
important TF that regulates the expression of multiple genes
and participates in immune and inflammatory responses (Wang
et al., 2006). MAFB avoids excess inflammation after ischemic
stroke (Shichita et al., 2017). FOS plays a s crucial role in post
ischemic inflammation and cell death (Chung, 2015). STAT1 is
activated by ROS and contributes to ischemic injury (Takagi et al.,
2002). AZD0530 is a small molecule inhibitor of Src family
kinases under investigation. Moreover, orally administered
AZD0530 is highly CNS penetrable in both mice and humans
(Kaufman et al., 2015). Recent a study shows that AZD0530
rescues deficits in memory and restores synapse density in
transgenic mouse Alzheimer disease models (van Dyck et al.,
2019). Elevated or stable Notch levels can promote neuronal
death in ischemic stroke. However, NOTCH signaling pathway is
inhibited through a gamma-secretase inhibitor (GSI) (Xu et al.,
2016). On the other hand, GSIs have been used for the treatment
of Alzheimer’s disease to prevent the cleavage of amyloid
precursor protein and the subsequent release of amyloid β

peptide. Therefore, this suggests that AZD0530 and GSI-I
(Z.LLNle.CHO) can be used as therapeutic agents in models of
Alzheimer’s disease. Whether they can be used as a therapeutic
agent for cerebral infarction remains unclear. NSC-87877 is an
effective Shp2 inhibitor, but it has a similar inhibitory effect on
Shp1. Some studies have reported that NSC-87877 is a potential
new treatment for relapsing-remitting multiple sclerosis, MuSK
antibody positive myasthenia gravis (MuSK-MG) (Huda et al.,
2020) and intracerebral hemorrhage (Liu et al., 2019). In addition,
Yinlong et al. reported that NSC 87877 treatment attenuated
ICH-induced apoptosis and neuronal death (Liu et al., 2019). In
this regard, we speculated whether NSC-87877 could not only
promote cerebral neovascularization and the brain vascular
restoration after stroke but also exert neuroprotective effects.

Our study presents few limitations. First, a comprehensive
analysis of warranted venous blood samples and brain tissue was
not performed in this study; however, it is necessary to
comprehensively diagnose the dysfunctions in acute ischemic
stroke. Second, the study includes a relatively small cohort and,
therefore, some of the data failed to reach statistical significance. To
determine better accuracy and validation of the hub genes associated
with AIS, a larger sample size for further external validation is
needed. Third, the results should be further verified by western blot
(WB), real-time PCR and immunofluorescence assays. Further
experiments are clearly warranted to fully elucidate the role of
hub genes and the underlying mechanisms of acute ischemic
stroke. Fourth, to investigate potential function and mechanisms
related to DEGs and hub genes in AIS, the study of the cell or tissue-
type specific gain-of-function and loss-of-function still needs to be
performed. Signaling pathways are more diverse in AIS than
previously thought, such as Toll-like receptor 4 (TLR4)/NF-κB/
NLRP3 signaling pathway, T cell receptor signaling pathway, and
PPAR-γ signaling pathway. Although previous studies have
identified several signaling pathways, more detail experimental
evidence is still needed to improve our understanding of the
possible phenotype and pathway regulation of these predicted
genes in AIS. Fifth, ceRNA network and interaction among hub
genes will be an exciting new field to explore and will shed new light
on ischemic cerebrovascular disease. Co-Immunoprecipitation and
pull-down assays would provide strong support to the proposed
mechanism. Further investigation is needed to explore the
intermolecular interactions responsible for the molecular
cooperativity in the progression of cerebral infarctions, such as
the ribosomal protein family (C and D). Moreover, the
contribution of the identified DEGs into the pathogenesis of AIS
should be examined in detail. Therefore, it may be necessary to test
the efficacy of activation and inactivation in more experiments to
molecular interactions. These are very valuable in understanding the
mechanisms of protein-protein interactions. Sixth, ArenaIdb
database (Bonnici et al., 2018) truly integrates the content of
starbase, mircode with other datasets that the authors have not
used. We do not currently do analysis of other datasets using
arenaidb. In the follow-up research, we will supplement the
validation of other datasets.

In conclusions, this study identified several pathways and
biomarkers in AIS consistent with current knowledge of the
pathology of this disease. We believe that new insights are
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provided on the molecular mechanisms underlying the
pathogenesis of AIS.
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