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A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes
are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio
whole-exome sequencing was performed to detect causative variants. A de novo variant of
TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential
functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction
was used to exclude the parental mosaicism and to verify the phasing of the de novo variant.
Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the
de novo variant was paternally derived. Here, we describe a fetus with a de novo likely
pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular
phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We
propose a method for solving genetic disorders in which the responsible genes have not yet
gone through ClinGen curation, particularly for prenatal cases.
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INTRODUCTION

The TAO kinase family consists of three genes, TAOK1, TAOK2, and TAOK3, which encode
TAOK1, TAOK2, and TAOK3, respectively (Dan et al., 2001; Miller et al., 2019). TAO kinases
play multifunctional roles in many molecular and cellular events and can regulate neuronal
survival and development in the nervous system (Fang et al., 2020; Hu et al., 2021). TAOK1 is
highly expressed in the human brain and plays a role in the establishment of neuronal polarity,
neuronal differentiation, and early brain development (Biernat et al., 2002; Timm et al., 2006;
Draviam et al., 2007; Breuss and Keays, 2014; Poon et al., 2016). Many studies have provided
evidence that TAOK1 dysfunction can result in neurodevelopmental disorders (NDDs) (Cooper
et al., 2011; Xie et al., 2016; Deciphering Developmental Disorders Study, 2017; Dulovic-Mahlow
et al., 2019; Satterstrom et al., 2020; van Woerden et al., 2021; Hunter et al., 2022). However,
dysfunction of this kinase in prenatal cases has not been reported.

Here, we report structural brain abnormalities in a fetus with a de novo variant of TAOK1. To our
knowledge, this is the first report of TAOK1 dysfunction as a prenatal diagnosis.

Case Presentation
A healthy 32-year-old gravida 3, para 2 (G3P2) woman underwent a prenatal examination at
GuangdongWomen and Children Hospital. She delivered two normal male infants, in 2013 and
2018, through uncomplicated vaginal deliveries. At 25 weeks of gestation for the current
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pregnancy, routine ultrasound scanning showed that the left
lateral ventricle of the fetus was widened (10.1 mm compared
to a reference of <10 mm) (Figure 1A). Common factors, such
as infection and anemia, were ruled out, and COVID-19
nucleic acid tests were negative. Noninvasive prenatal
testing (NIPT) indicated a low risk of fetal trisomy 13, 18,
and 21. At 31 weeks of gestation, ultrasound scanning showed
slight widening of the left lateral ventricle (11.0 mm compared
to reference of <10 mm), with the umbilical cord surrounding
the neck, of the fetus (Figure 1B). As shown in Figure 1C,
magnetic resonance imaging (MRI) revealed poor bilateral
and frontal operculum formation and shallow bilateral lateral
fissures, which were more obvious on the right side. Bilateral
polymicrogyria of the lateral fissure area could not be ruled
out. The left ventricle was slightly wider. No abnormalities
were observed in the corpus callosum, septum pellucidum,
cerebellar vermis, or posterior fossa. Due to the abnormal

cortical structure detected by MRI, interventional prenatal
diagnosis was performed, along with chromosomal
microarray analysis (CMA) and trio whole-exome
sequencing (trio WES), simultaneously. The CMA result
was negative, but trio WES detected a de novo missense
variant of TAOK1 in the fetus. Whole-genome sequencing
(WGS) and droplet digital polymerase chain reaction
(ddPCR) was then performed to identify the source of the
variation. Finally, the de novo variant of TAOK1 was found to
originate from the paternal allele.

METHODS AND RESULTS

Trio Whole-Exome Sequencing
Genomic DNA was extracted from amniotic fluid and
peripheral blood from the fetus and parents, respectively,

FIGURE 1 | (A,B) Enlarged left lateral ventricle (10.1 and 11 mm) at 25 and 31 gestational weeks. (C) Axial T2-weighted imaging at 32 weeks of gestation shows
poor bilateral and frontal operculum formation and shallow bilateral lateral fissures (arrows). The left ventricle is slightly wider.
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using the QIAamp DNA Mini Kit (Qiagen), following the
manufacturer’s instructions. Trio WES was performed to
detect genetic variants (see Supplementary Methods), and
a de novo variant of TAOK1 [GRCh37/hg19 chr17: 27802710,
NM_020791.2: c.227A>G (p.Glu76Gly)] was found. No
other variants were considered to contribute to the
phenotype.

The de novo variant c.227A>G is absent in the general population
according to public databases (gnomAD, 1000 Genomes Project,
NHLBI Exome Sequencing Project 6500, and Exome Aggregation
Consortium). This variation has not been previously reported in the
ClinVar or PubMed databases (retrieved 15 January 2022). A variety
of prediction tools (SIFT, DANN, and REVEL) were used to evaluate
the possible functional impact of c.227A>G, and it is predicted to be a
damaging variation by all three tools. Furthermore, various algorithms
(GERP, phyloP, phastCons, and SiPhy) and multiple sequence
alignments from the UCSC genome browser predicted that this
position is conserved across multiple vertebrate species (from
zebrafish to human). The variant p.Glu76Gly is located in the
“Protein kinase” domain of TAOK1 (UniProt ID #Q7L7X3) in
which benign variants are not found in ClinVar database.
Although the protein structure of TAOK1 was not available in the
PDB database, the structure of the kinase domain (amino acids
28–281) was predicted with the I-TASSER server, as illustrated in
Figure 2 (Roy et al., 2010). The model with the highest confidence
(C-score) and topological similarity (Tm-score) is used. The identified
variant p.Glu76Gly is predicted to be located in an alpha-helix of the
protein (Figure 2).

Whole-Genome Sequencing
To identify the phase of the de novo variant, WGS was
performed for the proband (see Supplementary Methods).
A heterozygous variant, c.306+468G>T (GRCh37/hg19 chr17:

27803257G>T), in TAOK1 was found, which is 547 bp
downstream of c.227A>G and was used as the reference for
ddPCR analysis.

To validate the de novo variant c.227A>G and the reference
variant c.306+468G>T, Sanger sequencing was performed for the
family (see Supplementary Methods). The results showed that
the proband carried c.227A>G but that neither parent did
(Figure 3A); c.306+468G>T was found in the proband and
mother but not in the father (Figure 3B).

Droplet Digital PCR
ddPCR was used to assess parental mosaicism (see Supplementary
Methods). As shown inFigure 4, the peripheral blood samples of the
parents did not show mosaicism at the site of the de novo variant of
TAOK1.

To determine whether the mutant alleles of the variants,
c.227A>G and c.306+468G>T, in the proband were located on
the same chromosome, ddPCR was used to verify the phase (see
Supplementary Methods). First, the T allele of c.306+468G>T was
used as a reference, and phasing was performed. The results showed
that these alleles were not located on the same chromosome
(Figure 5A). Subsequently, the wild-type allele (G) of
c.306+468G>T was used as a reference. The results showed that
the G allele of c.306+468G>T and themutant allele (G) of c.227A>G
were located on the same chromosome (Figure 5B). The phasing
analysis confirmed that the de novo variant c.227A>G derived from
the paternal chromosome.

DISCUSSION

To the best of our knowledge, only six studies have reported variants
of TAOK1 in 40 patients with NDDs (Xie et al., 2016; Dulovic-
Mahlow et al., 2019; Satterstrom et al., 2020; Basel-Salmon et al., 2021;
vanWoerden et al., 2021; Hunter et al., 2022). The phenotypes of the
affected individuals are summarized in Table 1. All had NDDs,
mainly involving global developmental delay, intellectual disability,
hypotonia, and behavior problems, as well as brain MRI
abnormalities and eye/visual problems. In this study, the fetus
with a variant of TAOK1 had a dilated left lateral ventricle, and
brainMRI imaging in six previously reported postnatal cases revealed
dilated lateral ventricles. However, the published studies did not
differentiate between unilateral and bilateral ventricular dilation.
Therefore, it is uncertain whether variants of TAOK1 are
associated with asymmetric ventricles.

This is the first report of a variant of TAOK1 in the prenatal stage.
We sought to determine whether prenatal de novo variants of
TAOK1 can predict the risk of NDDs. To evaluate associations
between the de novo variant of TAOK1 we found and phenotypes in
the prenatal stage, we compared the pregnancy statuses of the
patients with variants of TAOK1 (Table 2). As shown, few
abnormal pregnancy statuses were found. MRI abnormalities in
the fetus are relatively prevalent in patients with TAOK1-associated
NDDs. We suggest that fetuses with brain MRI abnormalities
accompanied by de novo variants of TAOK1 have a higher risk
for NDDs, and should be carefully managed. Our study not only fills
the gap between the variant of TAOK1 and the prenatal phenotypes

FIGURE 2 | Structure of the kinase domain of the TAOK1 protein from
amino acids 28 to 281, showing the localization of the identified variant
p.Glu76Gly.
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but also provides valuable information for disease management,
prognosis judgment and prenatal consultation.

As shown in Table 1, de novo variants of TAOK1 have been
found in thirty-one of 40 previously reported patients
(77.5%). An additional de novo variant of TAOK1 was
detected in the fetus in this study. Variants in five (12.5%)
affected individuals, P8, P9, P23, P37, and P38, were
considered to be inherited from an affected mother or
father (Table 1), which are classified as pathogenic herein.
The very mild cognitive phenotypes of some affected parents
might be explained by incomplete penetrance and variable

expressivity (Hunter et al., 2022). Furthermore, no recurrent
variants were reported in the region of 17q11.2 (chr17:
27064286-28761847), indicating that TAOK1 is not prone
to hotspot variant, which was also mentioned by van
Woerden et al. (2021). The variant identified in this study
is located at chr17: 27802710, within the range of previous
findings. Based on the protein structure modeling result
(Figure 2), p.Glu76Gly is predicted to be located in an
alpha-helix structure, and glycine is generally considered to
destabilize an alpha-helix. Accordingly, we predicted that this
novel missense variant affects protein kinase function, though

FIGURE 3 | Validation of the de novo variant c.227A>G of TAOK1 (chr17: 27802710) identified by trio WES and the reference variant c.306+468G>T (chr17:
27803257) identified by WGS by Sanger sequencing. (A) c.227A>Gwas found in the proband, but not in either parent. (B) c.306+468G>T was detected in the proband
and mother, but not in the father.
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TABLE 1 | Overview of the identified variants of TAOK1.

Patients
(Gender)

Chromosome
position

(GRCh37/hg19)

cDNA
change
(Amino
acid

change)

Inheritance Intellectual
disability

Hypotonia Behavior
problems

Brain
MRI

abnormalities

Eye/
visual

problems

Pathogenic
(ACMG
scoring)

Reference

P1 (F) chr17: 27064286-
28761847 × 1

1.69 Mb De novo + NR NR NR NR P (PVS1,
PS2, PM2)

Xie et al. (2016)

P2 (M) chr17: 27861216 c.2442delG (p.Tyr815Ilefs*31) De novo + − + − + P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P3 (M) chr17: 27818884 c.831+1dupG (p.?) De novo + + + + NR P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P4 (M) chr17: 27837949 c.1643T>C (p.Leu548Pro) De novo + + + + − LP (PS2,
PM2, PP3)

van Woerden et al.
(2021)

P5 (F) chr17: 27822746 c.999+1dupG (p.?) De novo + − − + − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P6 (M) chr17: 27844585 c.1819C>T (p.Gln607Ter) De novo − + + + − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P7 (F) chr17: 27818877-
27818878

c.825_826insCT (p.Lys277Ter) De novo − + − NR NR P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P8 (M) chr17: 27816684 c.658G>T (p.Glu220Ter) Maternal + − + NR + P (PVS1,
PM2, PP1)

van Woerden et al.
(2021)

P9 (M) chr17: 27849514 c.2125C > T (p.Arg709Ter) Paternal − − + − + P (PVS1,
PM2, PP1)

van Woerden et al.
(2021)

P10 (M) chr17: 27805365 c.449G>T (p.Arg150Ile) De novo + NR NR NR NR LP (PS2, PM1,
PM2, PP3)

van Woerden et al.
(2021)

P11 (M) chr17: 27807436 c.500T>G (p.Leu167Arg) De novo + − + + − LP (PS2, PM1,
PM2, PP3)

van Woerden et al.
(2021)

P12 (M) chr17: 27849472 c.2083C>T (p.Arg695Ter) De novo − + − NR + P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P13 (F) chr17: 27805366 c.449+1G>C (p.?) De novo − − − NR − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P14 (F) chr17: 27805309 c.393dupT (p.Thr132Tyrfs*19) De novo + - + − − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P15 (M) chr17: 27849493 c.2104C>T (p.Arg702Ter) Unknown + + + − + LP (PVS1, PM2) van Woerden et al.
(2021)

P16 (M) chr17: 27822689 c.943C>T (p.Leu315Phe) De novo − − + NR + LP (PS2,
PM2, PP3)

van Woerden et al.
(2021)

P17 (M) chr17: 27829690 c.1287delA (p.Lys429Asnfs*42) De novo + + + − − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P18 (F) chr17: 27802715-
27802716

c.232_233delAA (p.Lys78Valfs*20) De novo + + − − − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P19 (M) chr17: 27848992-
27849799

c.1909-306_2148+262del (p.? [exon
17 deletion])

De novo + + − − − P (PVS1,
PS2, PM2)

van Woerden et al.
(2021)

P20 (F) chr17: 27816717 c.691A>G (p.Met231Val) Unknown + − + − − VUS (PM1,
PM2, PP3)

van Woerden et al.
(2021)

P21 (F) chr17: 27844579 c.1813C>T (p.Arg605Ter) Unknown + + − − + LP (PVS1, PM2) van Woerden et al.
(2021)

P22 (F) chr17: 27080000-
29080000 × 1

2 Mb Unknown + + − + - LP (PVS1, PM2) van Woerden et al.
(2021)

P23 (M) 264 kb Maternal NR + + − +
(Continued on following page)
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TABLE 1 | (Continued) Overview of the identified variants of TAOK1.

Patients
(Gender)

Chromosome
position

(GRCh37/hg19)

cDNA
change
(Amino
acid

change)

Inheritance Intellectual
disability

Hypotonia Behavior
problems

Brain
MRI

abnormalities

Eye/
visual

problems

Pathogenic
(ACMG
scoring)

Reference

chr17: 27670438-
27934287 × 1

P (PVS1,
PM2, PP1)

van Woerden et al.
(2021)

P24 (F) chr17: 27778616 c.50A>G (p.Glu17Gly) De novo − + + NR + LP (PS2, PM2) Dulovic-Mahlow et al.
(2019)

P25 (M) chr17: 27822638 c.892A>G (p.Lys298Glu) De novo − + + NR − LP (PS2,
PM2, PP3)

Dulovic-Mahlow et al.
(2019)

P26 (M) chr17: 27857617 c.2341G>T (p.Glu781*) De novo + − − NR − P (PVS1,
PS2, PM2)

Dulovic-Mahlow et al.
(2019)

P27 (F) chr17: 27822660 c.914A>C (p.Asp305Ala) De novo + − − NR − LP (PS2,
PM2, PP3)

Dulovic-Mahlow et al.
(2019)

P28 (M) chr17: 27837936 c.1630C>T (p.Gln544*) De novo − + + NR − P (PVS1,
PS2, PM2)

Dulovic-Mahlow et al.
(2019)

P29 (F) chr17: 27804704 c.332C>T (p.Ser111Phe) De novo + + − NR − LP (PS2, PM1,
PM2, PP3)

Dulovic-Mahlow et al.
(2019)

P30 (M) chr17: 27861140 c.2366_2367insC (p.Leu790Phefs*3) De novo + + + NR − P (PVS1,
PS2, PM2)

Dulovic-Mahlow et al.
(2019)

P31 (M) chr17: 27861262 c.2488G>T (p.Glu830*) De novo − + − NR − P (PVS1,
PS2, PM2)

Dulovic-Mahlow et al.
(2019)

P32 (NR) chr17: 27778636 c.70C>A (p.Pro24Thr) De novo + NR NR NR NR LP (PS2,
PM2, PP3)

Satterstrom et al.
(2020)

P33 (NR) chr17: 27807436 c.500T>G (p.Leu167Arg) De novo + NR NR NR NR LP (PS2, PM1,
PM2, PP3)

Satterstrom et al.
(2020)

P34 (NR) chr17: 27822611 c.865G>A (p.Val289Met) De novo + NR NR NR NR LP (PS2,
PM2, PP3)

Satterstrom et al.
(2020)

P35 (NR) chr17: 27816682 c.656C>T (p.Ala219Val) De novo + NR NR NR NR LP (PS2, PM1,
PM2, PP3)

Satterstrom et al.
(2020)

P36 (F) chr17: 27857424 c.2149-1G>A (p.?) De novo NR NR NR NR NR P (PVS1,
PS2, PM2)

Basel-Salmon et al.
(2021)

P37 (M) chr17: 27857479 c.2203delA (p.Arg735Aspfs*6) Maternal NR + + + NR P (PVS1,
PM2, PP1)

Hunter et al. (2022)

P38* (F) chr17: 27857479 c.2203delA (p.Arg735Aspfs*6) Maternal NR + + + NR P (PVS1,
PM2, PP1)

Hunter et al. (2022)

P39 (M) chr17: 27778701-
27778704

c.132+3_132+6 delAAGT (p.?) De novo NR + + + NR LP (PS2,
PM2, PP3)

Hunter et al. (2022)

P40 (F) chr17: 2 7829727 c.1324C>T (p.Arg442Trp) De novo NR + + − NR LP (PS2,
PM2, PP3)

Hunter et al. (2022)

P41 (NA) chr17: 27802710 c.227A>G (p.Glu76Gly) De novo NA NA NA + NA LP (PS2, PM1,
PM2, PP3)

Current study

F, female; M, male; NR, not report; NA, not available; p.?, the effect on protein is unknown; +, present; −, absence; P, pathogenic; LP, likely pathogenic; VUS, variant of uncertain significance; *, Patient 38 is the older sibling of patient 37.
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TABLE 2 | Clinical features of patients with TAOK1 variants.

Previous Studies Current Prenatal Case

Gender
Male 21/36 (58.3%) NR

Pregnancy status
Normal 1/22 (4.5%) Yes
Uncomplicated 13/22 (59.1%) No
Complicated 1/22 (4.5%) No
In vitro fertilisation 2/22 (9.1%) No
Polyhydramnios 5/26 (19.2%) No
Ventricular dilatation 1/22 (4.5%) Yes
Preeclampsia 1/22 (4.5%) No
Oligohydramnios 1/22 (4.5%) No
Pregnancy-induced hypertension 1/22 (4.5%) Unknown
No prenatal care 1/22 (4.5%) No

Neurodevelopmental disorder
Global developmental delay 29/34 (85.3%) NA
Intellectual disability 24/34 (70.6%) NA
Hypotonia 22/33 (66.7%) NA
Behavior problems 21/33 (63.6%) NA
Brain MRI abnormalities 9/20 (45.0%) Yes
Eye/visual problems 9/27 (33.3%) NA

NR, fetal gender in the current case is not reported; NA, the feature is too early to observe in the prenatal case.

FIGURE 4 | Droplet digital PCR (ddPCR) for mosaic variation detection. The four ddPCRs are divided by vertical dotted yellow lines for the proband, mother, father,
and negative control. The pink line is the threshold, above which are positive droplets (blue and green), and below which are negative droplets (gray) without any target
DNA. There is no target DNA for the mutant locus c.227A>G in the mother and father (top panel).
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more functional experiments are needed to validate this
assumption.

In this study, the de novo variant was confirmed to originate from
the paternal chromosome by a ddPCR phasing strategy, consistent
with the findings that de novo variants arise more frequently in
paternal germ cells than in maternal germ cells (Kong et al., 2012;
Goldmann et al., 2016). The primarily de novo variants on the
paternal chromosome could be explained by fundamental
differences in germ cell biology in the female and male lineages.
Spermatogenesis requires regular mitotic cell divisions of
spermatogonial stem cells throughout male reproductive life
(Goriely and Wilkie, 2012). However, the influence of maternal
chromosomes on de novo variants in offspring cannot be ignored
(Gao et al., 2019; Goldmann et al., 2019). In recent years, de novo
variants have been found to be a prominent cause ofNDDs, including
intellectual disability (ID), autism, and schizophrenia (SCZ)
(Veltman and Brunner, 2012; Acuna-Hidalgo et al., 2016). The
relationship between paternal-age-related de novo variants and the
risk for psychiatric and developmental disorders has been assessed,
including for autism spectrum disorder (ASD), congenital heart
disease (CHD), NDDs with epilepsy (EPI), ID, and SCZ (Taylor
et al., 2019). Recurrent risk of a de novo variant should be considered
if a germline mosaic variant is detected in parental samples, and the
sibling recurrent risk can be as low as 0.5% if absent from samples of
both parents by highly sensitive screening technology (Wright et al.,
2019).

Variants of a gene of uncertain significance should always be
classified as having uncertain significance of pathogenicity (Richards

et al., 2015). When we obtained the trio WES results in November
2020, the TAOK1 gene has not been associated with any Mendelian
disorder in the OMIM (Online Mendelian Inheritance in Man)
database. We further explored research articles and found that
Dulovic-Mahlow et al. (2019) first reported eight patients, all
with de novo variants considered pathogenic due to loss of
function of the TAO kinase family. We then evaluated the gene-
disease association following the ClinGen Gene-Disease Validity
Standard Operating Procedures (Strande et al., 2017), and curated
the TAOK1 gene to “moderate” grade. Finally, the de novo variant
c.227A>G of TAOK1 in our case was classified as likely pathogenic
(PS2+PM1+PM2+PP3) based on ACMG guidelines (Zhang et al.,
2020). A clear understanding of the clinical validity of the gene-
disease relationship is critical for accurate interpretation of variants
and successful medical decision-making based on genetic testing
results. Because of limitations of the prenatal phenotype, accurate
genetic variant classification in prenatal diagnosis is especially
important. It would benefit from cross-laboratory data sharing
and evaluating the strength of a gene-disease relationship based
on the ClinGen Gene-Disease Validity Standard Operating
Procedures. During the revision of the manuscript, the definitive
classification of the gene-disease relationship between TAOK1 and
syndromic intellectual disability was curated by the ClinGen
Intellectual Disability and Autism Gene Curation Expert Panel on
4 August 2021. In addition, the TAOK1 gene was associated with
OMIM disease (developmental delay with or without intellectual
impairment or behavioral abnormalities, MIM #619575) starting
from 19 October 2021. All of these are essential for future work.

FIGURE 5 | 2Dcluster plot of droplet fluorescence for thedenovo locus and reference locus. (A)The result of c.306+468G>Tmutant and c.227A>Gmutant probes. (B)The
result of c.306+468G>Twild-type and c.227A>Gmutant probes. FAM™ positive (Channel 1,mt−) droplets form the top-left blue cluster, HEX™ positive (Channel 2,mt+) droplets
form the bottom-right green cluster, negative droplets for both targets form the bottom-left gray cluster, and positive droplets for both targets form the top-right orange cluster.
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