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Over the past decades, advanced high-throughput technologies have continuously
contributed to genome-wide association studies (GWASs). GWAS meta-analysis has
been increasingly adopted, has cross-ancestry replicability, and has power to illuminate
the genetic architecture of complex traits, informing about the reliability of estimation
effects and their variability across human ancestries. However, detecting genetic variants
that have low disease risk still poses a challenge. Designing a meta-analysis approach that
combines the effect of various SNPs within genes or genes within pathways from multiple
independent population GWASs may be helpful in identifying associations with small effect
sizes and increasing the association power. Here, we proposed ancMETA, a Bayesian
graph-based framework, to perform the gene/pathway-specific meta-analysis by
combining the effect size of multiple SNPs within genes, and genes within subnetwork/
pathways across multiple independent population GWASs to deconvolute the interactions
between genes underlying the pathogenesis of complex diseases across human
populations. We assessed the proposed framework on simulated datasets, and the
results show that the proposed model holds promise for increasing statistical power
for meta-analysis of genetic variants underlying the pathogenesis of complex diseases. To
illustrate the proposed meta-analysis framework, we leverage seven different European
bipolar disorder (BD) cohorts, and we identify variants in the angiotensinogen (AGT) gene
to be significantly associated with BD across all 7 studies. We detect a commonly
significant BD-specific subnetwork with the ESR1 gene as the main hub of a
subnetwork, associated with neurotrophin signaling (p = 4e−14) and myometrial
relaxation and contraction (p = 3e−08) pathways. ancMETA provides a new
contribution to post-GWAS methodologies and holds promise for comprehensively
examining interactions between genes underlying the pathogenesis of genetic diseases
and also underlying ethnic differences.
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1 INTRODUCTION

Themain goals of trait mapping studies, including genome-wide association studies (GWASs), are to
understand the genetic architecture of diseases, pinpoint the number of loci associated with a
particular trait, and approximate the underlying heritability rate (Hirschhorn and Daly, 2003; Cantor
et al., 2010; Wray et al., 2010; Garfield, 2020). Once the disease-causing variants and genes are
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identified, this information will help researchers who are working
in clinical, medical, or public health fields to establish prevention
strategies, predict risks, and adapt therapeutic measurements
Hirschhorn and Daly (2003); Cantor et al. (2010); Tam et al.
(2019); Nguyen and Eisman (2020); Legge et al. (2021).
Regardless of the successes, GWASs are still confronting many
challenges and limitations Hao et al., 2019); Zhu et al. (2017) and
have received considerable criticism (Zuka et al., 2012; Cantor
et al., 2010). The challenges faced by GWASs include 1) the
translation of the associated loci into suitable biological
hypotheses (Zuka et al., 2012); 2) the issue of missing or
hidden heritability (Kang et al., 2010; Hirschhorn and Daly
2003), which has now been partially tackled; 3) the
understanding of how multiple modestly associated variants
within genes interact to influence a phenotype (Wang et al.,
2007; Hao et al., 2019; Tam et al., 2019); 4) the imperfection of
asymptotic distribution of the current mixedmodel association or
logistic regression in the specific case of low-frequency variants
(Chimusa et al., 2012; Hao et al., 2019); and 5) the inefficiency in
distinguishing between inflation from bias (from cryptic
relatedness and population stratification) to the true signal
from polygenicity (Chimusa et al., 2012; Hao et al., 2019; Tam
et al., 2019).

These limitations reflect a gap in our understanding of the
mechanisms underlying the pathogenesis of complex traits and
diseases. The major source of these shortcomings is the method
of GWAS itself as restricted to a single-marker-based testing
approach (Wang et al., 2007; Hao et al., 2019; Tam et al., 2019).
Various post-GWAS approaches have been proposed to
address the single-SNP-based GWAS limitation (Jia et al.,
2011; Wu et al., 2009; Wang et al., 2010; Peng et al., 2008),
which are different in many aspects, but all are driven by the
need to extract useful information from the GWAS summary
statistics. The GWAS meta-analysis has become an
increasingly adopted method that leverages association
summary statistics to fostering a culture of compulsory in
silico replication to maintain reliability in genetics association
findings Ilya et al. (2017); Duarte et al. (2019); Shen and Tseng
(2010); Lu et al. (2018). A meta-analysis framework combines
results from different GWAS cohorts and puts them in one
analysis framework to recover signals that one single GWAS
cohort study mighty be missed and address the between-study
and between-population heterogeneity Kavvoura and
Ioannidis (2008); Thompson et al. (2011). In the last
decade, the use of meta-analysis method has increased due
to different interests from both the medical researchers and
statisticians Shi and Lee (2016); Fan et al. (2016); Turley et al.
(2018). Recently, meta-analysis has shown remarkable
discovery results and helped to more understand and
validate association results from different studies. The meta-
analysis is considered as post-genome-wide association study
method Chimusa et al. (2012); Han and Eskin (2011); Lu et al.
(2018); Shi and Lee (2016). Despite the instrumental findings
from single-SNP-based meta-analysis, there remains a need for
a single comprehensive analysis that can both aggregate from
the diverse population GWAS and incorporate the effect of
multiple markers and other potential factors at a gene or

pathway level. Heterogeneity among the GWAS meta-
analyses remains an issue, particularly when the number of
studies increases Han and Eskin (2011); Kavvoura and
Ioannidis (2008); Thompson et al. (2011). This raised
challenge on the power of GWAS meta-analysis across
diverse population cohorts of differing genetics ancestry.
Moreover, critical caution is required since incomplete
replication can also be informative as several studies
reported lack of interpopulation replicability, indicating that
some risk variants are population-specific Hirschhorn and
Daly (2005); McCarthy et al. (2008); Newton-Cheh and
Hirschhorn (2005). For example, comparing the Asian and
European associations with major depression, the failure of
replication is largely due to the difference in the partner of
linkage disequilibrium (LD), which reduces power in one
population since the proportion of attributable risk declines
with a population-specific minor allele frequency Newton-
Cheh and Hirschhorn (2005). A caveat, however, is that
fewer GWASs conducted in the non-European ancestry
usually constitute of fewer samples Newton-Cheh and
Hirschhorn (2005), raising the question as to how the
clinical utility of GWASs can be made equitable across
multi-ethnic populations Martin et al. (2021); Torkamani
et al. (2018) and, specifically, how to accurately predict
health and disease risks in the African populations.
Furthermore, variation of the cohort size across
independent studies is challenging, especially when these
studies have been conducted from distinct populations of
different ancestries and patterns of LD Chimusa et al.
(2012); Han and Eskin (2011); Kavvoura and Ioannidis
(2008); Thompson et al. (2011).

While the factors may raise heterogeneity Chimusa et al.
(2012); Han and Eskin (2011); Kavvoura and Ioannidis (2008);
Thompson et al. (2011), designing a gene-based and
subnetwork/pathway-based meta-analysis may be helpful in
pooling information from multiple population GWASs and
multiple variants within a gene or genes within pathways or
subnetworks Shi and Lee (2016); Fan et al. (2016); Turley et al.
(2018); Ilya et al. (2017); Duarte et al. (2019); Shen and Tseng
(2010); Lu et al. (2018). This may reveal larger effects and
provide valuable information to prioritize the most important
results across human populations. We refer to this approach as
gene- or subnetwork/pathway-specific meta-analysis.
Similarly, the list of new post-GWAS tools, such as multi-
marker analyses, which go beyond single SNP tests, or the
inclusion of functional evidence to reweight GWAS results, is
growing by the day Newton-Cheh and Hirschhorn (2005);
Chimusa et al. (2012); Shi and Lee (2016); Fan et al. (2016);
Turley et al. (2018); Ilya et al. (2017); Duarte et al. (2019); Shen
and Tseng (2010); Lu et al. (2018). Although many methods for
meta-analysis have been developed over the past decades, the
methodology still faces significant limitations. In particular,
the challenge of low statistical power is still unresolved, as
demonstrated by the fact that meta-analyses have not
necessarily resulted in an increased statistical power Li et al.
(2012). This is, in part, due to the analysis methods failing to
optimally account for the high degree of between-study
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heterogeneity that characterizes most meta-analyses of the
datasets Shi and Lee (2016); Fan et al. (2016); Turley et al.
(2018); Duarte et al. (2019); Lu et al. (2018). Apart from power
considerations, another important challenge is the translation
of statistical association in meta-analyses into biologically
meaningful insights.

Here, we addressed some GWAS meta-analysis limitations by
proposing a Bayesian graph-based framework to perform the
gene/pathway-specific meta-analysis by combining the effect size
of multiple SNPs within genes, and genes within subnetwork/
pathways across multiple independent population GWAS to
deconvolute the interactions between genes underlying the
pathogenesis of complex diseases across diverse populations
(Figure 1).

We assessed the proposed framework on simulated datasets,
and the results show that the proposed model holds promise for
increasing statistical power for meta-analysis of genetic variants
underlying the pathogenesis of complex diseases. We illustrated it
in 7 different European bipolar disorder (BD) cohorts, and we
finally outlined the implications, challenges, and opportunities
that cross-ancestry meta-analyses present in the GWAS era. The
proposed method has been implemented in the ancMETA tool
https://github.com/echimusa/ancMETA, providing a new
contribution to post-GWAS methodologies, and holds promise
for deconvoluting interactions between genes underlying the
pathogenesis of genetic diseases and underlying ethnic
differences.

2 MATERIALS AND METHODS

2.1 Details of Gene/Subnetwork-Specific
Meta-Analysis
Here, we discuss the proposed meta-analysis framework,
ancMETA. It performs meta-analysis at two different levels by

aggregating multiple independent population GWAS summary
statistics datasets. It uses an integrative analysis through Bayesian
posterior probability and combines the results into known
biological protein–protein network datasets. Lastly, ancMETA
performs the meta-analysis at the subnetwork level and identifies
the most significant subnetworks to understand the biological
pathways (Figure 1).

We describe six different steps of the proposed meta-analysis
framework as follows:

Step 1: Collection of N-independent studies.
This step requires N ≥ 2 independent GWAS summary

statistics datasets, from the same phenotype or trait. GWAS
summary statistics are defined here as per-genetic locus effect
sizes (log odds ratios) together with their standard errors,
p-values, or z-scores for the affected–unaffected traits de
Leeuw et al. (2015); Il-Youp and Wei (2015); Huang et al.,
2016); Wang et al. (2017).

Step 2: Mapping SNPs to the associated genes.
This is an intermediate step, and it is similar to our previous

approach Chimusa et al. (2015), where all the SNPs are
mapped to their related genes. It is common practice to
assign SNPs to the genes based on a distance cutoff, and
the previous studies use a variety of cutoffs, such as distance
from 2 to 500 Kbps Conti et al. (2009); Brodie et al. (2016);
Chimusa et al. (2015); Wang et al. (2010, 2007). ancMETA
allows users to specify the distance cutoffs of assigning SNPs
down-/upstream to a specific gene (see the Supplementary
Material). At this step, the combined statistical outcomes
(i.e., the effect size and the standard error) are computed, as
illustrated in Figure 1.

We assume that the ith study (i = 1, 2,. . ., N) has Ji genes
Gi
j (j � 1, 2, . . . , Ji), each having a set of specific SNPs, where N

is the total number of studies. Let S � ∪i,jS
i
j denote the set of all

SNPs, where Sij is the set of SNPs at the jth gene of the study i. For
an SNP s ∈ Sij, let β

i
j(s), ζ ij(s), and pi

j(s) represent the effect size,

FIGURE 1 | Flowchart of ancMETA.
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the standard error, and the p-value, respectively. The proposed
meta-analysis framework assumes that the SNPs related to
one gene are correlated. This assumption is due to the fact
that each gene contains a large number of SNPs mostly under
LD; therefore, the magnitude of the statistical outcomes for
each SNP within a gene from each study is considered to be
approximately the same. Thus, the effect size and the p-value
will follow a normal distribution. Let μij be the unknown true
effect size at the jth gene Gi

j of study i (i = 1, 2,. . ., N; j = 1,
2,. . ., Ji). Thus, a fixed-effects model can be applied to
estimate the combined effect size at the gene level from
each study i = 1, 2, . . . N. We construct a linear function
of parameters μij as follows:

x � y β, μ( ) � ∑
s∈Sij

βij s( )μij.

Let Vi
j(s) be the variance. Then, the estimation of the

combined effect size is given as follows:

p x|Bi
j, μ

i
j, V

i
j( ) � N x|Bi

jμ
iT
j , V

i
j( )

~ ∏
s∈Sij

1�������
2Vi

j s( )π
√ exp − βij s( ) − μij( )2

2Vi
j s( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (1)

Note Eq. 1 is the likelihood when μ ≠ 0. Although the solution,
which corresponds to the maximum true effect size μij at gene G

i
j,

can be approximated from sampling approaches, Eq. 1 can be
solved analytically by differentiating the log likelihood and setting
it to 0, that is,

z log p x|Bi
j, μ

i
j, V

i
j( )( )

zμij
� 0

or

∑
s∈Sij

βij s( ) − μij
Vi

j s( )
⎡⎣ ⎤⎦ � 0. (2)

Eq. 2 can be written as∑
s∈Sij

Vi
j s( )( )−1βij s( ) − ∑

s∈Sij

Vi
j s( )( )−1μij � 0.

Hence, the estimated effect size of gene Gi
j is given as

μ̂ij �
∑s∈Sij

Vi
j s( )( )−1βij s( )∑s∈Sij
Vi

j s( )( )−1 .

Therefore, its standard error is derived as

sd μ̂ij( ) � ��������∑
s∈Sij

Vi
j s( )

√⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠−1

.

Step 3: Meta-analysis at the gene level.
Let βij and ζ ij be the combined statistical outcomes

(i.e., effect size and standard error, respectively). Since the
effect size may be different across the studies, the heterogeneity
between the studies may be high. A parameter σ2j , which
accounts for between-study variability, is introduced.
Because the maximum-likelihood method underestimates
the variance when the number of studies is small
DerSimonian and Laird (1986), we use the unbiased method
of moments Borenstein et al. (2010) to compute the variance
components as follows:

σ2
j �

1
N

∑N
i�1

βij −Hj[ ]2,
where Hj � 1

N∑N
i�1β

i
j. It is assumed that the true effect size of

the gene Gj is μj + σ2j , where μj is an unknown parameter. The
same calculations as in step 2 are applied to estimate the effect size
of the gene Gj across the studies, which is calculated as follows:

μ̂j �
∑N

i�1 σ2
j + Vi

j( )−1βij∑N
i�1 σ2

j + Vi
j( )−1 ,

and its standard error is given as follows:

sd μ̂j( ) � ����������∑N
i�1

σ2j + Vi
j[ ]√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠−1

.

If the precision ρi of the study ith for i = 1, 2,. . ., N is equal to
1

(μi)2, then the heterogeneity statistic, using Cochrane’s test (Q) is
given as follows:

Q � 100 × ∑N
i

ρi μ̂j − θ( )2, (3)

where θ � ΣN
i ρ

iμ̂j
ΣN
i ρ

i is a weighted estimator, and Q ~ χ2N−1 under the
null hypothesis that the between-study variance τ2 = 0. If we
consider the expectation of Eq. 3, the between-study variance is
given as

τ2 � Q − N − 1( )
ΣN
i ρi − ΣNi ρ2i

ΣNi ρi
( ).

Since the test statistics in Eq. 3 has N − 1 degree of freedom
(df), then forQ < df (which means τ2 < 0), the maximum between
0 and τ2 is considered, so that τ2 is non-negative. Recalling that in

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8385184

Chimusa and Defo Dissecting Meta-Analysis in GWAS Era

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


step 2, we pointed out that SNPs within one gene are correlated.
Therefore, to perform meta-analysis, a fixed-effects model is used
Borenstein et al. (2010).

Step 4: Mapping genes to biological networks.
For this step, all the genes and their related statistical outcomes and

gene–gene combined LD are mapped into a PPI network database
(Supplementary Material), which contains information on
interactions among the genes. Therefore, the genes are considered
asweighted nodeswith their related statistical outcomes (i.e., effect size
and standard error), and the edges represent the interactions between
the genes (nodes), which are weightedwith the combined LD, for each
pair-wise genes (nodes) that have a link. More details can be found in
Supplementary Materials. The details of the combined LD can be
found in Supplementary Text S1.

Step 5: Meta-analysis at the subnetwork level. This step estimates
the effect size and standard error of each subnetwork from .
Supplementary Text S1 provides more details of different
concepts used in . The procedure is the same as that of step 3,
where it is assumed that there is a heterogeneity between the genes in
each subnetwork. Let ρ2j be the between-gene heterogeneity, β

i
j be the

observed effect size, and ζ ij be its standard error. If μ is the unknown
true effect size at the subnetwork level with K genes, the estimated
effect size is given by p(x|βij, μij,Vi

j + ρ2j) ~

∏
Gi
j∈K

1����������
2 Vi

j + ρ2j( )π√ e

−
βi
j
−μi

j
( )2
2 Vi

j
+ρ2

j
( )⎡⎢⎣ ⎤⎥⎦

. (4)

Since Eq. 4 is considered to be the likelihood when μ ≠ 0,
maximizing the log likelihood by solving

z log p t|βij, μ, Vi
j + ρ2j( )( )

zμij
� 0

yields

μ̂ij �
∑Gi

j∈K
ρ2j + Vi

j( )−1βj∑Gi
j∈K

ρ2j + Vi
j( )−1 , (5)

and its standard error estimated effect size is given as

sd μ̂ij( ) � ������������∑
Gi
j ∈ K

ρ2j + Vi
j[ ]√⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠−1

.

Step 6: Computing the overall statistical significance.
From step 5, we know that βij and ζ ij represent the observed

effect size and the standard error, respectively, where μ̂ij as the
unknown effect was estimated using Equation 5. For this step, let
us consider the Bayes’ theorem, which includes all the possible
effect outcomes for N studies, and let us apply the symmetrical
property of the Gaussian distribution. Therefore, the posterior
probability is approximately given as

êij �
π∫

R

N βij|μ̂ij, ζ ij( )p μ̂ij( )dμ̂ij
1 − π( )N βij|0, ζ ij( ) + π∫

R

N βij|μ̂ij, ζ ij( )p μ̂ij( )dμ̂ij
�

πN βij|X̂
i

j, ζ
i
j + V̂

i

j( )
1 − π( )N μij|0, ζ ij( ) + πN μij|X̂

i

j, ζ
i
j + V̂

i

j( ).
(6)

However, a test statistic based on the weighted sum of chi-
square can be used, under the null hypothesis that there is no
association. Thus, from the fact that eij contains the information
from all studies, it can be used as a prior weight in the weighted
sum of the chi-square statistics as follows:

χ̂j �
∑N

i�1ê
i
j��̂

eij

√ μ̂j( )2∑N
i�1ζ

i
j + τ2( ), τ2 ≥ 0,

where τ2 is the between-study variance. Recalling that Equation 6
is not normally distributed, the p-values can be evaluated through
a sampling method developed by Han and Eskin (2011). puts
together all the steps of the proposed framework.

2.2 Evaluation of ancMETA From Simulation
GWAS Data
The U.S. residents of northern and western European ancestry
(CEU), Yoruba (YRI), and Mexican (MEX) populations from the
HapMap3 Project were used to generate independent
case–control studies. Details of these populations can be found
in Supplementary Table S1. We independently performed a
population growth model on each dataset mentioned
previously (Supplementary Text S2). From the resulting
expanded datasets, we generated three independent
case–control datasets based on chromosomes 1 and 22 using
HapGen2 Su et al. (2011). Here, we randomly selected 3 SNPs on
chromosome 1 and 3 other SNPs on chromosome 22 to be
simulated as causal disease SNPs with differing effect sizes
under HapGen2 Su et al. (2011). The simulated disease effect
size parameters of those SNPs are summarized in Supplementary
Table S2. These parameters are chosen to fit small effect size in
some studies and strong in others. We simulated 1,000, 3,000, and
950 cases and 1,000, 3,000, and 1,000 controls from the haplotype
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(combination of multiple SNPs) data of CEU, YRI, and MEX,
respectively. We considered the simulatedMEXGWAS dataset as
our primary study. The simulation details can be found in
Supplementary Text S2.

We conducted a GWAS on each dataset using EMMAX Kang
et al. (2010). As expected and according to our simulation
parameters (Supplementary Table S2), the GWAS results
indicate significant, moderate, and weak signals of association
in CEU, YRI, and MEX, respectively, as per simulation
(Supplementary Table S3 and Supplementary Figure S1). We
used the resulting GWAS summary statistics as input in our
proposed model, implemented in “ancMETA,” to perform the
gene- and subnetwork-specific meta-analysis (Supplementary
Text S3).

At the gene level, the results in Table 1 and Supplementary
Figure S2 show significant genes, including CBX7, LD0C1L,
and ASTN1 associated with our simulated causal SNPs
(Supplementary Table S2). This result indicates further
increase in the effect size across these 3 simulated
case–control studies, compared to single-SNP tests in
GWAS based on EMMAX (Supplementary Table S3).
Interestingly, at a subnetwork level, we observed a
significant convergence of effect sizes of the simulated
disease variants across all the studies (Figures 2A,B),
particularly to CBX7 (Table 1). This supports the fact that
the true effect risk-associated variants may differ across
populations at the polymorphism level, but the effect may
tend to convert at a similar magnitude at gene and pathway
levels or overlap in the same biological subnetworks/pathways
when aggregating several small polymorphism effects.

2.3 Application to Seven European With
Bipolar Disorder Cohorts
Here, we used seven European bipolar disorder (BD) GWAS
summary statistics obtained from the NIMH data repository
(Supplementary Table S1). These datasets include Irish (IRI),
Scottish (SCT), 3 European American (EUA), Norwegian
(NOR), and British (BRB) individuals. Supplementary
Table S4 provides GWAS summary results of each of these
studies. Leveraging the European reference panel from 1000
Genomes Project data, we first conducted the imputation LD
fine-mapping from the obtained GWAS summary statistics
using ImpG-Summary Pasaniuc et al. (1977) to possibly
unravel more LD-SNP association (Supplementary Figure
S3). The resulting imputation GWAS LD fine-mapping
summary statistics were used as input for ancMETA. We
performed the meta-analysis at a gene level across these 7
studies, and seven genes were identified (AGT CACNA1C,
ESR1, NCAN, BDNF, BCR, and GSK3B), of which AGT has
a strong effect across the European populations including
Irish, Scottish, Norwegian, and British in contrast to the
European American (Supplementary Figures S4,5 and
Supplementary Table S5).

Leveraging the recent version of the human PPI network
(IntAct release 239) from the IntAct database Kerrien et al.

(2012); Orchard et al. (2014), we observed a significant
connected subnetwork where the estrogen receptor 1 (ESR1)
gene is the main hub. ESR1 interacts with AGT and is connected
with the other gene hubs with known BD-associated genes such
as CACNA1C, PLCG2, NCAN, BCR, and BDNF. Supplementary
Table S5 summarizes the association of the top subnetwork
across these 7 studies. The identified subnetwork (Figures
3A,B) is significantly associated with the neurotrophin
signaling (p = 4e−14) and other interesting biological
pathways such as myometrial relaxation and contraction
(p = 3e−08), morphine addiction (p = 9.2e−08), DNA
damage response (p = 3e−05), and alcoholism (p = 2e−05).
In addition, the subnetwork (Figure 3C) is implicated in a
positive regulation of transcription from RNA polymerase II
promoter involved in neuronal differentiation (p = 7.7e−21)
and is also associated with autosomal dominant (p = 2.8e−07)
inheritance types of diseases (Figure 3C).

To evaluate the determined interconnectivity among AGT,
CACNA1C, ESR1,NCAN, BDNF, BCR, andGSK3B as well as with
the other protein-coding genes in Figure 3, and their association
with BD, we leverage GeneMania Franz et al. (2018) to
reconstruct the network shown in Figure 3 based on physical
and co-expressed interactions. The result from the reconstructed
co-expression and physical interaction network of genes in
Figure 3A confirms that the above 7 genes detected by
ancMETA (Figure 3A) are physically and co-expressly
interconnected Figure 4 and as well as with other protein-
coding genes in Figure 3A. From the enrichment analysis
based on Enrichr Kuleshov et al. (2016), the network in
Figure 4 is significantly associated with neurotrophin signaling
and other interesting biological pathways such as ErbB signaling
pathways (Figure 4). Interestingly, recent studies have revealed
that complex ErbB signaling networks regulate the assembly of
neural circuitry, myelination, neurotransmission, and synaptic
plasticity Mei and Nave (2014). Evidence indicates that there is an
optimal level of ErbB signaling in the brain, and a deviation from
it impairs brain functions. The ErbB signaling pathway may
provide therapeutic targets for specific neuropsychiatric
symptoms, and dysregulation in the ErbB signaling pathway
may explain abnormalities of neural precursor migration in
BD Mei and Nave (2014).

3 DISCUSSION AND CONCLUSION

Designing a post-GWAS meta-analysis that leverages the
combined effect of multiple SNPs within a gene or genes within
subnetworks/pathways across multiple GWAS datasets may reveal
consensus association signals and identify large effect sizes. This
may further provide valuable information in prioritizing the most
important results across different populations. Here, we proposed a
Bayesian graph-based gene- and pathway-specific meta-analysis
approach. We implemented the proposed model in ancMETA
(Figure 1), which addresses the variation in effect size across
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several independent GWAS summary statistics from distinct
populations of different ancestry background. We assessed
ancMETA through the simulation of different ancestries in
three different GWAS studies.

A well-reconstructed human protein–protein interaction
network is a powerful tool in network biology and medicine
research, which forms the basis for multi-omics and dynamic
analyses Mortezaei and Tavallaei (2020). However, the topology
of the network and their connectivity may be very sensible from

various pathway analysis methods Mazandu and Mulder (2011)
in reflecting the relationship between certain biological processes
or densely connected multi-protein complexes of biological
relevance Franz et al. (2018); Kuleshov et al. (2016). This
makes it challenging to compare the different post-GWAS
pathway-based or network-based methods Jia et al. (2011);
Chimusa et al. (2015); Wang et al. (2015); Mishra and
Macgregor (2015); Huang et al., 2016; Wang et al. (2017); de
Leeuw et al. (2015).

FIGURE 2 | Combined statistical outcomes at the subnetwork level, explaining causality relationship between the simulated phenotype and population variation
population based on 3 independent simulated GWAS datasets from CEU, YRI, and MEX, respectively. (A) Top significant meta-analysis-based sub-network from
ancMETA where nodes in blue colour denote critical hub and genes associated to the simulated causal SNPs. The size of a node denotes its statistical significance from
small to large. (B-D) Forest plot of three gene-hub from the top 3 meta-analysis sub-networks produced from ancMETA.

TABLE 1 |Meta-analysis at gene and subnetwork levels from the simulated GWAS summary statistics across 3 studies: results show convergence of effects across studies
to the simulated causal variants.

Study p-values Study M-valuesGene #Study P Q Tau square

MEX YRI CEU MEX YRI CEU

LDOC1L 3 1.33e-10 2.055 0.0007 0.012 0.00019 0.0003 0.98 0.91 0.81
PRKCZ 3 1.77e-11 2.193 0.001 0.001 0.047 0.001 0.40 0.41 0.41
CBX7 3 0.00000001 1.825 0 0.0001 0.001 0.0001 0.90 0.91 0.90
ASTN1 3 2.006e-8 2.261 0.001 0.0012 0.001 0.0006 0.81 0.91 0.91

Hub #Study P Q Tau Square MEX YRI CEU MEX YRI CEU

CBX7 3 4.25e-7 2.1 0.0002 0.0003 0.0004 0.0001 0.98 0.96 1.0
PRKCZ 3 1.93e-7 2.2 0.0002 0.019 0.04 0.021 0.59371 0.59 0.59
HNRNPA1 3 3e-08 2.09 0.00008 0.09 0.048 0.03 0.59 0.59 0.59
KRT18 3 4e-07 1.90 0 0.049 0.09 0.005 0.59 0.59 0.59
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In addition to the GWAS summary statistics, ancMETA
allows users to use any weighted biological network and
accepts a user-defined network. In case if users provide an
unweighted biological network, ancMETA leverages
case–control genotype datasets to construct the weights of
the network (Supplementary Text S1), in which the current
post-GWAS approaches Fan et al. (2016); Turley et al. (2018);
Ilya et al. (2017); Duarte et al. (2019); Shen and Tseng (2010);
Lu et al. (2018); Mishra and Macgregor (2015); Huang et al.,
2016; Wang et al. (2017); de Leeuw et al. (2015); Jia et al.
(2011); Wang et al. (2015) do not account for. Evidence shows
that many disorders are “polygenic” (many genetic loci
contribute to risk) and reflect disruptions in proteins that
participate and involve complex interactions between genes
Dudbridge (2016); Khera et al. (2018). In contrast to other
tools Shi and Lee (2016); Fan et al. (2016); Turley et al. (2018);
Ilya et al. (2017); Duarte et al. (2019); Shen and Tseng (2010);
Lu et al. (2018), ancMETA leverages the advantage of
topological properties of biological networks to ascertain the
interaction of proteins/genes that can be involved in a
pathway. Our method accounts for the correlation that
exists between the SNPs within a gene or genes within
pathways and introduces flexibility in estimating the gene-
specific and subnetwork-specific effect size, which, to our
knowledge, is a new contribution to post-GWAS

methodologies. The proposed framework holds promise for
comprehensively examining the interactions between genes
underlying the pathogenesis of genetic diseases.

Some improvements need to be considered in future work,
such as accurately modeling the convergence of the SNP signal to
the related subnetworks and leveraging the weakly/moderately
associated signals from different GWAS studies. It is worth
mentioning that we have applied ancMETA on old BD GWAS
with a limited sample size (see Supplementary Table S5).
However, regardless of the trait or phenotype used by the user
in using ancMETA, the validity of the outcome will benefit and be
improved by employing the powered GWAS summary statistics
from GWAS datasets associated with larger numbers of samples
(cases/controls).

There is also a need to integrate summary-level data across
multiple phenotypes to simultaneously capture the evidence of
the aggregate-level pleiotropic association. The lack of accurate
knowledge of complex traits and the sensitivity of human
protein interaction network makes it challenging to directly
compare the results from the different pathway analysis
methods. Overall, the method implemented in the proposed
framework highlights the value of identifying the effect size of
pathways associated with a disease, which may be useful in
understanding the pathogenesis, disease risk prediction, and
susceptibility to genetic diseases.

FIGURE 3 | Combined statistical outcomes at the subnetwork level, explaining causality relationship between the simulated phenotype and population variation
based on 7 independent GWAS datasets from European bipolar cohorts. (A) The top significant meta-analysis-based sub-network where the size of a node denotes its
statistical significance from small to large and large sized node are associated genes or genes interacting with known Bipolar genes. (B) Forest plot of the gene-hub from
the top meta-analysis sub-networks in (A, C) Enrichment analysi based on pathways, biological process and human phenotype associated to the top significant
meta-analysis-based sub-network in (A).
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The results obtained from the GWAS summary statistics
on the European BD cohorts found association with seven
genes, of which CACNA1C and NCAN have previously been
implicated in BD through GWAS Bellantuono et al. (2007);
Ferreira et al. (2008); Gordovez and McMahon (2020);
O’Connell and Coombes (2021). This meta-analysis
therefore strengthens these initial results and demonstrates
that ancMETA can successfully validate GWAS findings.
Interestingly, AGT has not reached GWAS significance in
the previous studies despite being considered as a candidate
in BD due to its role in the renin–angiotensin system Ferreira
et al. (2008); Gordovez and McMahon (2020); O’Connell and
Coombes (2021). The high significance for AGT from this
analysis (p = 3.2e−19) therefore strengthens its associationwith BD and
further highlights the potential impact of ancMETA as a useful tool in
discovering additional small effect variants that may be missed in the
single GWAS. Importantly, the very interestingAGT finding is due to
the innovations made in addressing population variation and to the
inclusion of a PPI framework. The results from the subnetwork
analysis revealed a strong interaction of the hub gene ESR1 with
AGT, as well as CACNA1C, NCAN, BCR, GSK3B, and BDNF,
suggesting the fact that the AGT finding here is not merely

indicative of a false positive, but rather that is valid. In addition to
a moderate link to BD, ESR1 has been related to migraine onset,
alcohol dependence, obsessive compulsive disorder, and postpartum
depression Alonso et al. (2011). The pleiotropy and genetic
overlap between BD and these and other psychiatric phenotypes is
a considerable complex Carmiol et al. (2014), suggesting that this
analysis may have identified a key hub network and genetic
underpinnings in not only BD etiology but also across several
psychiatric phenotypes.
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