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Endothelial cell (EC) plays critical roles in vascular physiological and pathological
processes. With the development of high-throughput technologies, transcriptomics
analysis of EC has increased dramatically and a large amount of informative data have
been generated. The dynamic patterns of gene expression in ECs under various
conditions were revealed. Unfortunately, due to the lack of bioinformatics
infrastructures, reuse of these large-scale datasets is challenging for many
scientists. Here, by systematic re-analyzing, integrating, and standardizing of 203
RNA sequencing samples from freshly isolated mouse ECs under 71 conditions, we
constructed an integrated mouse EC gene expression omnibus (ECO). The ECO
database enables one-click retrieval of endothelial expression profiles from different
organs under different conditions including disease models, genetic modifications,
and clinically relevant treatments in vivo. The EC expression profiles are visualized with
user-friendly bar-plots. It also provides a convenient search tool for co-expressed
genes. ECO facilitates endothelial research with an integrated tool and resource for
transcriptome analysis. The ECO database is freely available at https://heomics.
shinyapps.io/ecodb/.
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INTRODUCTION

Endothelial cells (ECs) are single-layered squamous cells distributed on the inner surface of the
vasculature, constructing a barrier between the vasculature and tissues and controlling the exchange
of substances and fluids (Krüger-Genge et al., 2019). ECs are involved in many essential physiological
functions, such as regulating vasoconstriction and vasodilation, blood coagulation, paracrine action,
angiogenesis, and constitute barriers (Reglero-Real et al., 2016; Wong et al., 2017; Paone et al., 2019).
Dysfunction of EC is the driving factor for many diseases, including atherosclerosis, cancer,
hypertension, glomerular disease, and inflammation (Goveia et al., 2014; Li et al., 2019).
Uncovering the molecular mechanism of endothelial cells in these pathological conditions is
essential to understand the occurrence and treatment of diseases.
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With the rapid development of high-throughput sequencing
technologies in the last decades, especially the wide use of RNA
sequencing, the molecular level analysis of EC has increased
significantly and a variety of EC transcriptomics datasets have
been accumulated in the public domain (Khan et al., 2019; Munji
et al., 2019). Their raw RNAseq data generated by high-throughput
sequencing are deposited in the public databases, such as Gene
Expression Omnibus (GEO) (Barrett et al., 2007) and ArrayExpress
(Parkinson et al., 2007), but unfortunately, it is difficult for
researchers without bioinformatics skills to process these raw data
and extract the desired information. In some other fields, there are
already some databases that provide practical functions to greatly
promote the development of this field, such as the Allen Brain Atlas
(Lein et al., 2007) for neuroscience and ONCOMINE (Rhodes et al.,
2004) for oncology. For EC data, the effort of integrating has been
initiated, for example, EndoDB, which has made a collection of EC
data (Khan et al., 2019). However, there is still a lack of database
integrating all latest RNAseq data and also providing user-friendly
analysis functions and visualization tools.

Here, we integrated all freshly isolated EC bulk RNA
sequencing data from public sequence databases, processed
them with a standardized pipeline, and constructed a user-
friendly online database, ECO. It provides a one-click search
tool for in vivo EC profiles for each gene in various conditions
including pathological alterations, genetic modifications, and
other treatment conditions, in the form of easily
understandable bar-plots. Also, the database provides a search
function to find genes with similar expression profiles, which may
generate interesting hypothesis for future research.

METHODS

Retrieval of EC RNA Sequencing Datasets
We first conducted a systematic literature search for murine in
vivo EC bulk RNAseq studies in PubMed, the NCBI GEO
database, and the ArrayExpress database. It resulted in 19
RNA studies for EC under various conditions. They include
71 EC conditions. Each condition has multiple replicated
samples, and in total, there are 203 samples. The raw sequence
data for each condition, including the raw data for its exact
control group, were obtained from the NCBI Short Read Archive
(SRA) or ArrayExpress database.

Data Preprocessing on Galaxy
The raw sequence data obtained from SRA and ArrayExpress
were preprocessed with the Galaxy online server (Jalili et al.,
2020) (https://usegalaxy.eu/, version: 20.09) using a standardized
procedure for all datasets. The detailed procedure is described in
the Galaxy RNA-seq analysis instruction (https://training.
galaxyproject.org/training-material/topics/transcriptomics/
tutorials/rna-seq-reads-to-counts/tutorial.html).

The sequence data were uploaded in two ways: for the data
available in SRA, the SRA-tools (Leinonen et al., 2011) (version:
2.10.8) in Galaxy were used to upload these datasets reads in the
FASTA/Q format from the NCBI; for the other datasets from
ArrayExpress, the ArrayExpress FTP download links were used.

The FASTQ sequence files were then aligned to the referenced
mouse genome assembly (GRCm38/mm10) obtained from the
UCSC Genome Browser database (Navarro Gonzalez et al., 2021)
using the HISAT2 tool (Kim et al., 2015) (version: 2.1.0) on
Galaxy. The gene annotation file GTF (2020, ncbiRefSeq, mm10)
was also obtained from the UCSC Genome Browser database,
which was consistent with the genome sequence file. The
alignment bam files were then input to the featureCounts tool
(Liao et al., 2014) (version: 2.0.1, with default parameters) to get
the raw read counts for each genes (feature count files). In total,
203 samples were quantified and their count data were processed
in R (version: 4.0.3) for downstream analysis.

Data Normalization
In order to compare the EC expression level among different
samples in different conditions, all the raw count data were
normalized using rpkm function in the edgeR package
(version: 3.32.0). The FPKM values for each sample were
calculated, and then, the average expressions and standard
deviations for each of the 32 conditions (71 bars in the FPKM
plot) were calculated in R. The result for each gene was visualized
in bar-plot using the ggplot2 package (version: 3.3.2).

Differential Expression Gene Analysis
The gene expression raw count files were imported into the limma
package (version: 3.46.0) in R, and the voom function was used to
compare the gene expression between two groups (treated versus
control) with the default parameters. To remove low-expression
genes in each sample, the genes which were detected in only one
sample were filtered out. To visualize the differential expression
profiles among the 40 comparison groups, the fold changes and the
standard deviations for each gene were visualized in bar-plots.

Correlation Analysis
To search for the genes with similar expression profiles with a
query gene, the corr.test function from psych package (version:
2.0.12) was applied. The correlation coefficient and the p values
were calculated. The sorted result was stored in a table and is
available for download through our ECO database. In addition, to
better illustrate the correlation result, we chose the 10 most
correlated genes to the query gene and generated a heatmap
with the pheatmap package (version: 1.0.12).

ECO Web Tool Construction
Our ECO database, an interactive web application, is built mainly
using the R Shiny package (version: 1.6.0), as well as the other
auxiliary packages including shinythemes (version: 1.2.0), ggplot2
(version: 3.3.3), and ggh4x (version: 0.1.2.1). The ECO database is
available for free at https://heomics.shinyapps.io/ecodb/.

RESULTS

Construction of ECO
In order to construct a comprehensive omnibus of mouse in vivo EC
RNAseq profiles, we performed literature mining and identified 19
currently available RNA studies (Supplementary Table S1), which
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cover EC in a variety of pathological alterations, genetic
modifications, and other stimulated conditions. In these studies,
freshly isolated ECs were analyzed with RNA sequencing. In total,
there are 203 samples covering 71 in vivo conditions from 10 organs.
These data composite the base for ECO, and they were processed as
shown in the workflow (Figure 1). First, their raw data were obtained
from the GEO database or ArrayExpress database, respectively. The
sequence data were aligned to a standardized mouse genome
assembly (GRCm38/mm10), and gene expression in each sample
was quantified using the Galaxy analysis platform (Jalili et al., 2020).
The gene expression levels in each condition were then summarized
(average FPKM and standard deviation) and available for bar-plot
visualization in the ECO database (https://heomics.shinyapps.io/
ecodb). Also, the gene expression in each condition was compared
with its respective control by differential expression analysis, and log
scaled fold change (logFC) and p values were calculated, which are
also illustratedwith the bar-plot in the database. Besides the display of
expression profiles in ECs, ECO can further identify the genes which
showed similar expression profiles with the queried gene by using
correlation analysis. The results were shown both as a heatmap
and table.

Investigation for Inter-Organ Heterogeneity
of ECs by Using ECO
ECs in different tissues have heterogeneous phenotypes for their
distinct physiological needs (Kalucka et al., 2020). For instance,
brain ECs form tight junctions and express active transporters to
restrict diffusion, known as the blood–brain barrier (BBB)

(Daneman and Prat, 2015). In contrast, ECs in the kidney are
associated with fenestrae to allow efficient passage of high-
volume fluids and formation of urine (Dumas et al., 2021). EC
profiles from 10 organs, including the brain, lung, bone, kidney
aorta, liver, eye, muscles, lymph node, and embryo, were
cataloged in ECO. Users can access and download the
expression of the gene of their interest in ECs of different
organs in ECO by simple one-click of FPKM button. Also,
users can input a customized gene list to analyze their overall
gene expression enrichment pattern in a heatmap.

We use Slc2a1 as an example to explore the inter-organ
heterogeneity of a given gene. Slc2a1, encoding Glut1, which is
highly expressed in BBB ECs but not peripheral ECs and
facilitates glucose transport over BBB (Zheng et al., 2010).
When we access Slc2a1 expression by pressing the FPKM
button after entering the gene symbol in the query interface,
we get the normalized data bar-plot visualization for 32 sub-
groups from 10 organs. As expected, Slc2a1 is highly expressed in
ECs from the brain, but almost absent in other organs (Figure 2).

Exploring EC Gene Alterations in Response
to Disease, Genetic Manipulations, or Other
Stimulations In Vivo by Using ECO
ECs participate in the regulation of multiple processes including
angiogenesis, coagulation, and inflammation. Endothelial
dysfunction is associated with many pathological alterations and
aggravates progression of multiple life-threatening diseases including
cancers, cardiovascular disease, diabetes mellitus, and renal disorders.
In ECO, we collected EC transcriptomes from eleven mice disease
models (cerebral cavernous malformation (CCM), epilepsy,
experimental autoimmune encephalomyelitis (EAE), stroke,
traumatic brain injury (TBI), diabetic nephropathy, Alport
syndrome, liver cancer, non-alcoholic steatohepatitis (NASH),
experimental autoimmune uveitis (EAU), and facioscapulohumeral
muscular dystrophy (FSHD)), seven gene-modified animal models
(Jnk1/2/3 EC-specific deficient, Cpt1a EC-specific deficient, Tsc2
mesenchyme cell-specific deficient, Zmpste24 deficient,
adrenomedullin (AD) EC-specific deficient, Tankl stroma cell-
deficient, and EC-specific Notch1 mutants), and two clinically
relevant treatments (VEGF stimulations and chemo/
radiotreatment) (Supplementary Table S1). The users can access
the alteration of the genes of their interest in response to the
abovementioned conditions compared to their control by clicking
the logFC button. The result is illustrated in a bar-plot with 40
columns; each column represents the log2 scaled fold change, and its
statistical significance (p value range) is indicated by asterisks
(Figure 3).

We use Sele as an example to demonstrate the exploration of
its regulation in different pathological conditions, genetic
modifications, and treatments in vivo. E-selectin, encoded by
Sele, is upregulated in ECs in response to pro-inflammatory
signals, promoting the rolling and adherence of immune cells
to ECs for their diapedesis (Jubeli et al., 2012). Inflammation is
closely linked in the EC dysfunction in multiple diseases (Steyers
and Miller, 2014). As shown in Figure 3, ECO provides a
comprehensive portrait for Sele in different pathological

FIGURE 1 | ECO workflow.
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conditions. Selewas upregulated in ECs from eight disease models
including CCM, EAE, stroke, TBI, epilepsy, AOD, diabetic
nephropathy, Alport syndrome, and NASH, highlighting the
broad role of Sele in multiple disease progressions (Silva et al.,
2017).

Predicting the Function of Poorly
Characterized Genes Based on Correlation
Analysis Using ECO
The correlation analysis identifies the genes which have
similar expression profiles, and those co-expressed genes
may have similar function. In ECO, it provides correlation
analysis for the query gene to all other genes in all cataloged
EC groups, as well as in individual organs which have
relatively large number of samples. This facilitates
uncovering the function of novel or not much
characterized genes based on correlation analysis.

For example, we used a gene named C330027C09Rik as an
example. C330027C09Rik did not yet have a clear gene name at
the time of the gene assembly from the Ensembl database and was
named after the full-length cDNA sequences from the RIKEN project
(Hayashizaki, 2003). Among the top correlated genes, a list of well-
known cell cycle-related genes appears, for example, Mki67 and
Cenpf, indicating that this gene maybe related with cell cycle
(Figure 4). Interestingly, in the NCBI gene database,

C330027C09Rik has been formally named as cell proliferation-
regulating inhibitor of protein phosphatase 2A (Cip2a) (https://
www.ncbi.nlm.nih.gov/gene/?term=C330027C09Rik). This
confirmed the prediction from the correlation analysis.

DISCUSSION

Uncovering the EC transcriptional profile is critical to understand
the EC functions in various vascular disease conditions.
Previously, we have analyzed EC transcriptomes in normal
mice brain (Vanlandewijck et al., 2018) and lung (He et al.,
2018). It has improved the understanding of EC in these
individual organs, while, on the public domain, many
transcriptional profiling studies by different labs have
accumulated extensive datasets for EC. However, using
bioinformatics technologies to analyze these transcriptome
data is a challenging task for many researchers. As such, it is
of a great value to provide ECO, a user-friendly EC database, to
explore expression profiles. Compared with the previously
published EndoDB database (Khan et al., 2019), we have
included all nine RNAseq studies in EndoDB, as well as eleven
studies which were not presented there. ECO is a user-friendly
web-based tool making the ever-increasing amount of EC
transcriptome data easily accessible to non-bioinformatics
researchers, as well as specialists as a resource of curated data.

FIGURE 2 | Bar-plot of Slc2a1 expression in different conditions. The x-axis shows the 71 conditions, and the y-axis shows the normalized FPKM values. Each bar
shows the average expression (+/− standard deviation) in each condition. The bars are colored according to their organ origins, and all basal/control conditions are
shown with white color (high-resolution image is available in the ECO online database).
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FIGURE 3 | Sele regulation in different conditions. The x-axis shows the 40 conditions, and the y-axis shows the log2 scaled regulation fold change (logFC). Each
bar shows the average fold change with confidence interval in each condition. The bars are colored according to their organ origins (high-resolution image is available in
the ECO online database).

FIGURE 4 |Heatmap overview of the top correlated genes toC330027C09Rik. Each column shows one RNAseq sample, and its organ origin is colored on the top
of the heatmap. The top 10 correlated genes are visualized. The heatmap color shows the expression level in each sample (log2 scaled FPKM) (high-resolution image is
available in the ECO online database).
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The core feature of ECO is one-click access to EC gene expression
in different organs and alterations under different conditions for
all genes on the genome. Unlike other databases, ECO dedicates
to curate bulk RNAseq data from purified mouse EC under
different conditions. All the data are processed using a
standardized method for cross comparisons, and the results
are visualized with easily understandable bar-plots. To make
the users readily obtain the figures from ECO for presentation
or publication usage, all the figures can be downloaded in the
high-resolution PDF format.

ECO facilitates endothelial research with an integrated tool
and resource for transcriptome analysis. With the friendly
interactive interface, users can easily explore the published
endothelial datasets from a variety of conditions, which may
save some unnecessary animal experiments for vascular
researchers. Also, ECO maximizes the value of published
datasets by integrating them under a standardized
platform. It may reveal potential global patterns which
cannot be overserved from individual analysis. We expect
that ECO will be a useful tool for researchers in the vascular
community.
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