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Objectives: Early diagnosis and detection of acute rejection following kidney
transplantation are of great significance for guiding the treatment and improving the
prognosis of renal transplant recipients. In this study, we are aimed to explore the biological
characteristics of biopsy-proven acute rejection (BPAR) and establish a predictive model.

Methods:Gene expressionmatrix of the renal allograft samples in the GEO databasewere
screened and included, using Limma R package to identify differentially expressed
transcripts between BPAR and No-BPAR groups. Then a predictive model of BPAR
was established based on logistic regression of which key transcripts involved in the
predictive model were further explored using functional enrichment analyses including
Gene Ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, and Gene Set Enrichment Analysis (GSEA).

Results: A total of four studies (GSE129166, GSE48581, GSE36059, and GSE98320)
were included for extensive analysis of differential expression. 32 differential expressed
transcripts were observed to be significant between two groups after the pooled analysis.
Afterward, a predictive model containing the five most significant transcripts (IDO1,
CXCL10, IFNG, GBP1, PMAIP1) showed good predictive efficacy for BPAR after
kidney transplantation (AUC = 0.919, 95%CI = 0.902–0.939). Results of functional
enrichment analysis showed that The functions of differential genes are mainly
manifested in chemokine receptor binding, chemokine activity, G protein-coupled
receptor binding, etc. while the immune infiltration analysis indicated that immune cells
mainly related to acute rejection include Macrophages. M1, T cells gamma delta, T cells
CD4 memory activated, eosinophils, etc.
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Conclusion: We have identified a total of 32 differential expressed transcripts and based
on that, a predictive model with five significant transcripts was established, which was
suggested as a highly recommended tool for the prediction of BPAR after kidney
transplantation. However, an extensive study should be performed for the evaluation of
the predictive model and mechanism involved.

Keywords: biopsy-proven acute rejection (BPAR), kidney transplantation, bioinformatics analysis, predictive model,
gene expression omnibus

INTRODUCTION

With the significant improvement of quality of life for patients with
end-stage renal disease, Kidney transplantation has been recognized
as one of the most effective ways to treat end-stage renal disease
(Garcia et al., 2012). However, various complications, such as acute
rejection (AR), chronic allograft dysfunction, and
immunosuppressive-related nephrotoxicity, still severely limit its
wide application and endanger the outcome of allografts and
recipients (Joseph et al., 2001). In recent years, with the
application of various immunosuppressive drugs, the incidence of
rejection after kidney transplantation has dropped dramatically (Wu
et al., 2009). However, due to the occurrence of rejectionmediated by
various immune cells and antibodies, the function loss of the
transplanted kidney is still the main problem, accounting for
approximately 30% of the renal allograft loss, as well as the
increased risk of chronic allograft dysfunction, and poor long-
term results. Kidney transplant biopsy, an invasive procedure, is
currently considered to be the gold standard for diagnosis of
rejection. In order to diagnose AR, clinicians would refer to
clinical tests, such as serum creatinine, the elevation of proteinuria
(Solez et al., 2008; Singh et al., 2019). Therefore, it is important to
understand the mechanism of AR and early prediction models.

In recent years, with the application and development of gene
sequencing technology and large-scale data analysis technology in
genetic diagnosis and analysis, a growing number of differential
genes have been used for disease prediction and diagnosis. With
the widespread application of next-generation sequencing
technology, a deeper understanding of rejection reactions was
observed after kidney transplantation. From the previous
appearance to the cellular level, more attention was gained for
gene expression. The impact of the differences in the genetic level
to explain the mechanism of various rejection reactions has
become the current mainstream (Sadowski et al., 2015; Chen
et al., 2018; Haas et al., 2018). Rejection after renal
transplantation includes three main types of allograft rejection:
hyperacute rejection that occurs a few minutes after
transplantation, AR that occurs a few days to a few months
after transplantation, and chronic allograft rejection that occurs
long after transplantation. Rejection. AR is further divided into
antibody-mediated rejection (ABMR), T cell-mediated rejection
(TCMR), C4d negative ABMR and mixed rejection, etc (Dorr
et al., 2018).

In this study, we retrieved data sets related to AR after kidney
transplantation from the Gene Expression Omnibus (GEO)
database, including (GSE129166, GSE48581, GSE36059, and
GSE98320). We set up the first three data sets as the

validation set and the fourth data set as the training set. R
language was used to analyze differential genes, combined with
immune cell infiltration and pathway enrichment analysis,
established a biopsy-proven acute rejection (BPAR) prediction
model, and explained its signal pathway.

MATERIALS AND METHODS

Data Retrieval and Organization
The whole process is shown in Supplemental Figure S1. We
searched the dataset with “Kidney transplant and Acute rejection”
as the search term fromGEO official website. Finally, GSE129166,
GSE48581, GSE36059, and GSE98320 were selected as research
objects by us after being screened (Halloran et al., 2013; Reeve
et al., 2013; Reeve et al., 2017; Van Loon et al., 2019). The samples
in the four data sets are all kidney biopsy specimens. The data
processing process includes original data download, probe
annotation, missing value completion, and p difference
removal. This process is jointly completed by two professional
bioinformatics analysts. The samples in each data set are divided
into BPAR and No-BPAR groups respectively, and the detailed
information of the grouping is shown in Table 1.

Differential Gene Analysis
The differential genes in the data set are extracted by us, through
the “limma” package in the R language, with logFoldChange =
0.5, adjustP = 0.05 as the filter value, then take the intersection of
the differential genes of these four gene sets, and find the common
differential genes for the next step of the analysis. All statistical
data and figures were analyzed by using R 4.0.4. Limma is an R
package for the analysis of gene expression microarray data,
especially the use of linear models for analyzing designed
experiments and the assessment of differential expression.
Limma provides the ability to analyze comparisons between
many RNA targets simultaneously in arbitrary complicated
designed experiments. Empirical Bayesian methods are used to
provide stable results even when the number of arrays is small.
The normalization and data analysis functions are for two-color
spotted microarrays. The linear model and differential expression
functions apply to all microarray technologies including
Affymetrix and other single-channel oligonucleotide platforms
(Ritchie et al., 2015; Phipson et al., 2016).

Establishment of the Prediction Model
Based on the differential genes found in the first step, we divide
the training set samples into BPAR and No-BPAR according to
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the puncture results of the samples and perform single-factor
logistic regression model predictions in turn, and the random
forest graph reduces the dimensionality to find the correlation.
For stronger genes, the logistic regression prediction model is
finally used to determine the final prediction model gene. In all
the processes, the p-value is less than 0.05.

Immune Cell Infiltration
We use the CIBERSORT algorithm to quantify 22 kinds of
immune cell infiltration analysis for each sample in the
training set, and then use the ggstatsplot package in the R
language to draw the immune cell infiltration map (Bindea
et al., 2013; Finotello and Trajanoski, 2018).

Functional Enrichment Analysis
In order to find out the pathways of differential genes, we
performed Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, and GSEA functional enrichment analysis on the
differential genes in each data set. GO Analysis: The R
package: clusterProfiler, was applied. OrgDb = org. Hs.eg.db,
pvalueCutoff = 0.05, qvalueCutoff = 0.05, KEGG enrichment
analysis, organism = “hsa”, pvalueCutoff = 0.05, qvalueCutoff =
0.05, GSEA analysis application GSEA 4.1.0, set up conditions
(number of permutation:1,000; permutation type:phenotype;
enrichment statistics; weighted; metric for ranking genes:
signal2noise; gene list sorting mode:real; gene list ordering
mode; descending; max size; exclude larger sets:500; min size:
exclude smaller sets:500; plot graphs for the top sets of each
phenotype:20). In addition, in order to explore the interaction of
differential genes in the acute rejection of kidney transplantation,
we applied protein interaction network analysis to illustrate the
possible associations between differential genes through the
STRING website.

RESULTS

Detection of Differential Expressed Genes
We have reviewed a total of four datasets in the GEO database,
and four studies with BPAR and its control group were included
in our study for further analysis, Then, 32 common differential
genes were obtained in the pooled analysis, the information and
expression of which were shown in Figures 1A–E.

Establishment of Predictive Model
To establish the predictive model, the datasets (GSE98320) was
identified as the training set and 30 target genes were obtained.
The result is shown in Figures 2A, Next, random forest
dimensionality reduction was performed and 30 target genes
were arranged in descending order according to their correlation
with BPAR (Figures 2B). To reduce dimensionality through
random forest modeling, the first 10 target genes were
included to construct a multi-factor model for the training set,
includingGBP1, CXCL9, CXCL11, PMAIP1, IFNG, VSIG4,
CD69, GBP4, CXCL10, IDO1 (Figures 2C) (Mosey and
Mitchell, 2020). During the process, the prediction results of
the last five target genes (IDO1, CXCL10, IFNG, GBP1, GBP1)
were obtained with regard (Figures 2D). These five prediction
models have a good diagnostic effect on BPAR The AUC value for
the comprehensive diagnosis of the five target genes was 0.919,
and the 95% CI was 0.902–0.939. Furthermore, the area under the
curve (AUC) value and 95% CIs of each gene alone and the
comprehensive diagnosis are calculated (IDO1: AUC = 0.92.95%
CIs, 0.902–0.939; CXCL10: AUC = 0.905,95% CIs, 0.886–0.927;
IFNG: AUC = 0.859,95% CIs, 0.837–0.881; GBP1: AUC =
0.896,95% CIs, 0.875–0.917; PMAIP1: AUC = 0.827,95% CIs,
0.804–0.853. The AUC value for the comprehensive diagnosis of
the five target genes was 0.919, and the 95% CI was 0.902–0.939.
The predictive diagnosis results of these five target genes for
BPAR in the verification set are shown in Figures 2E. The area
under the curve (AUC) value and 95% CI of each gene alone and
the comprehensive diagnosis is calculated. IDO1: AUC =
0.74,95% CIs, 0.705–0.774; CXCL10: AUC = 0.733,95% CIs,
0.697–0.768; IFNG: AUC = 0.72,95% CIs, 0.682–0.754; GBP1:
AUC = 0.622,95% CIs, 0.581–0.658; PMAIP1: AUC = 0.651,95%
CIs, 0.617–0.692. The AUC value for the comprehensive
diagnosis of the five target genes was 0.786, and the 95% CI
was 0.754–0.817.

We validated the data from each of the three datasets in the
validation set and obtained good results, which are shown in
Supplemental Figure S3A–C. In addition, we also performed
precision/recall analysis on the training and validation sets, and
the results are shown in Supplemental Figure S3D–E.

We extracted the ABMR and TCMR from the training set
validation set separately for modeling analysis, and also obtained
good results, which are shown in Supplemental Figure S4A–D.

Finally, expression levels of these five target genes in the
samples were extracted, and it was found that the expression

TABLE 1 | GEO dates.

GEO no Platform Species Tissues No-BPAR BPAR Total Group

GSE129166 GPL570 Homo sapiens kidney biopsy 160 52 212 validation set
GSE48581 GPL570 Homo sapiens kidney biopsy 222 84 306
GSE36059 GPL570 Homo sapiens kidney biopsy 281 130 411
GSE98320 GPL15207 Homo sapiens kidney biopsy 774 434 1,208 training set
GSE129166 Gene expression profiling in patients with a kidney transplantation
GSE48581 Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: the INTERCOM study
GSE36059 Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies; Molecular diagnosis of antibody-mediated rejection in human

kidney transplants
GSE98320 Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes
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levels of these five genes in the samples of the BPAR group were
significantly higher than those of the No-BPAR group
(Figures2F–J).

Functional Enrichment Analysis
We performed GO/KEGG/GESA functional enrichment analysis
on the 32 differential genes common to these four data sets, and
obtained the main functional enrichment pathways of these
differential genes.

Firstly, through GO functional enrichment analysis, It is found
that these differential genes are mainly enriched in the following
pathways (chemokine receptor binding, chemokine activity, CXCR
chemokine receptor binding, cytokine receptor binding, peptide
antigen binding, cytokine activity, G protein-coupled receptor
binding, MHC class II receptor activity, MHC class II protein
complex binding, MHC protein complex binding (Figures 3A).
Next, KEGG enrichment analysis was also performed on these
differential genes, and the following pathways were observed to be
mainly enriched: Systemic lupus erythematosus, Staphylococcus
aureus infection, Toxoplasmosis, Inflammatory bowel disease,
Pertussis, Leishmaniasis, Antigen processing and presentation,
Allograft rejection, Th1, and Th2 cell differentiation, Graft-
versus-host disease, Type I diabetes mellitus (Figures 3B).

After setting the filtering conditions and filtering to a single
node, protein interaction network based on the 32 DEGs was
detected and a protein interaction network diagram of 30 nodes
and 110 relationship pairs is obtained (Figures 3C). Figures 3D

showed the number of interactions between each
differential gene.

Immune Cell Infiltration
For immune cell infiltration in BPAR, CIBERSORT algorithm
was used. Combined with the risk value of our previous
prediction model, four types of immune cells, including M1
Macrophages, gamma. delta T cells activated CD4 memory
T cells, and eosinophils, were observed to be positively
involved in the pathogenesis of BPAR (Figures 3E). Also, four
types of immune cells, including T cells. Regulatory Tregs, Mast.
cells. resting, B. cells.naive, Macrophages.M2, The infiltration of
these types of immune cells shows a negative correlation with
acute rejection.

Gene Set Enrichment Analysis
Using GSEA software to perform KEGG function enrichment
analysis on the training set, it is observed that its functions are
mainly enriched in the following pathways: T cell receptor
signaling pathway, natural killer cell-mediated cytotoxicity,
B cell receptor signaling pathway, and endocytosis
(Supplemental Figure S2). Detailed information of these
pathways is shown in Table 2.

By consulting the literature and combining the results of the
previous analysis, we hypothesized the potential interaction and
mechanism of the five genes in the prediction model during the
pathogenesis of BPAR (Figure 4).

FIGURE 1 | Differential gene expression, (A): GSE129166 (B): GSE48581 (C): GSE36059 (D): GSE98320 (E): Common differential gene expression of the four
data sets. (A–D): Red represents up-regulated differential genes, green represents down-regulated differential genes.
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DISCUSSION

Kidney transplantation is considered to be the most effective
treatment for end-stage renal disease (Garcia et al., 2012).
However, Various rejections after kidney transplantation are a
major problem (Rodrigo et al., 2020). In this study, we first
applied the Limma R package and the related analysis to analyze
the target data set in the GEO database, analyzed the differential
genes of the puncture samples, found the differential genes, and

then established the BPAR prediction model. This prediction The
model includes five genes (IDO1, CXCL10, IFNG, GBP1,
PMAIP1). Specific information is shown in Table 3. These
prediction models have good prediction results for BPAR. In
addition, our analysis of differential genes also explains the
possible mechanism of BPAR after kidney transplantation,
which provides a reference value for further research.

Indoleamine 2,3-dioxygenase 1 (IDO1) is a rate-limiting
enzyme that can degrade tryptophan through the kynurenine

FIGURE 2 | (A): the single-factor prediction model of the training set. (B): According to the expression matrix of these 30 genes in the training set, the result of
random forest dimensionality reduction. (C): the multi-factor prediction model of the expression matrix of these 10 genes in the training set. (D): ROC curve of the
prediction result of the training set. (E): ROC curve of the prediction result of the validation set (F–J): the expression levels of these five target genes in the samples. Blue
represents the expression in the No-BPAR group and orange represents the expression in the BPAR group with a p-value less than 0.05.
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FIGURE 3 | (A): GO function enrichment analysis results. (B): KEGG function enrichment analysis results. The color of the bar graph represents the p value, The
color change from light to dark means that the p value becomes larger gradually, and the size of the endpoints represents the number of genes enriched in the pathway,
the larger the endpoints the greater the number of enriched genes. (C): Protein interaction network, Protein interaction network results. (D): Statistics of the number of
protein interactions, (E): The result of immune cell infiltration. The value of the abscissa represents the correlation between the infiltration of immune cells and the
occurrence of BPAR. The color change from green to purple represents the gradual increase of p value, and the size of the bar graph represents the size of correlation
with BPAR. Correlation >0 represents immune cells positively correlated with BPAR, and correlation <0 and immune cells negatively correlated with BPAR.
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pathway (Uyttenhove et al., 2003). Ischemia-reperfusion injury is
an important cause of renal inflammatory response after kidney
transplantation. During the process of ischemia-reperfusion, the

concentration of IDO1 in the kidney tissue increases significantly,
which may be an enabler of the inflammatory response after
kidney transplantation, which is the basis for subsequent immune

TABLE 2 | Top 20 results of GSEA enrichment analysis.

Name Size ES NES NOM p-val FDR q-val

KEGG_ENDOCYTOSIS 177 0.494568 2.070416 0 0.018462
KEGG_APOPTOSIS 87 0.664266 2.019174 0 0.018245
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 68 0.656445 1.995741 0 0.01618
KEGG_PROTEASOME 42 0.704777 1.991339 0 0.012468
KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 36 0.5059 1.969003 0.005929 0.011168
KEGG_PANCREATIC_CANCER 68 0.58511 1.958309 0 0.010169
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 78 0.845453 1.924868 0 0.011828
KEGG_JAK_STAT_SIGNALING_PATHWAY 149 0.620666 1.901952 0 0.013328
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 77 0.654672 1.892084 0 0.013639
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 92 0.686529 1.89104 0 0.012276
KEGG_CELL_ADHESION_MOLECULES_CAMS 126 0.764052 1.874987 0 0.013555
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 50 0.737671 1.867418 0 0.013108
KEGG_SPLICEOSOME 123 0.527031 1.859101 0.010225 0.012661
KEGG_ACUTE_MYELOID_LEUKEMIA 55 0.656888 1.858955 0 0.011922
KEGG_NON_SMALL_CELL_LUNG_CANCER 53 0.533476 1.856737 0 0.011426
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 106 0.753891 1.856298 0 0.010712
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 98 0.780624 1.855025 0 0.010161
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 128 0.793385 1.853225 0 0.009596
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 75 0.762761 1.847685 0 0.009456
KEGG_CHRONIC_MYELOID_LEUKEMIA 71 0.537865 1.801105 0.00207 0.015214

FIGURE 4 | the interaction of the genes in the prediction model. After kidney transplantation, early inflammation recruits various immune cells, and the secreted
CXCL10 combines with CXCR3 on various immune cells to induce the expression and secretion of IFN-γ, which in turn recruits more immune cells to gather. Then the
inflammatory storm was aggravated, and there was a positive feedback effect of CXCL10 and IFN-γ during the whole process.
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cell infiltration and a series of inflammatory storms. How to
reduce the concentration of IDO1 has become a therapeutic
direction to reduce inflammation, as described in the article by
Eleftheriadis, T (Eleftheriadis et al., 2021). In a steady state, IDO1
expression is limited to endothelial cells in the placenta and lungs,
mature dendritic cells in secondary lymphoid organs, and
epithelial cells scattered in the female reproductive tract.
(Théate et al., 2015). However, under inflammatory
conditions, interferon gamma strongly induces the expression
of IDO1 (Dai and Gupta, 1990). Many studies have shown that
the increase in IDO1 is related to the occurrence of cancer and
rejection after organ transplantation (Iversen et al., 2015; Bilir
and Sarisozen, 2017; Hornyák et al., 2018). In the early stage after
transplantation, the inflammatory response induced by various
immune cells is the main reason for the impaired function of the
graft. Dendritic cells play an important role in acute rejection as
early antigen-promoting cells. Dendritic cells (DC) Induce the
production of early inflammatory mediators through typical NF-
β signals, the expression of indole-2,3-dioxygenase (IDO) (Tas
et al., 2007). IFN-γ is one of the most powerful inducers of IDO in
human DCs (Heitger, 2011). C-X-C motif chemokine 10
(CXCL10) is a small cytokine that belongs to the CXC
chemokine family. CXCL10 is also known as interferon (IFN)-
γ-inducible protein 10 (IP-10) (Lazzeri and Romagnani, 2005),
CXCL10 participates in various immune responses such as
various autoimmune diseases of the human body, tumor
immunity, organ transplant rejection, etc (Antonelli et al.,
2014). CXCL10 is an effective chemotactic agent for a variety
of immune cells, such as activated type 1 T helper cells (Th1),
natural killer cells (NK), dendritic cells (DC), γδ T cells, and
macrophages (Bonecchi et al., 1998; Romagnani and Crescioli,
2012). It is secreted by a variety of cell types, including immune
cells (leukocytes, neutrophils, eosinophils, and monocytes) and
non-immune cells (epithelial cells, endothelial cells,
keratinocytes, and stromal cells). The increase in CXCL10
production in the circulating blood of the transplant or organ
recipient is related to the increase in the concentration of
CXCL10 in the biological fluids (both serum and plasma)
(Romagnani et al., 2001; Romagnani and Crescioli, 2012).
CXCL10, like CXCL11 and CXCL9, has an IFN-γ induction
function and exerts a biological effect by binding to CXCR3 of
the seven transmembrane G protein-coupled receptor (GPCR)
(Kouroumalis et al., 2005), CXCL10 has two secretion methods:
paracrine and autocrine (Lo et al., 2010). CXCR3 is expressed on
the surface of a variety of immune cells, including activated T cells
and NK cells, DC, macrophages, and B cells. CXCR3 may
promote the movement of immune cells in target tissues

(Loetscher et al., 1998). After kidney transplantation, early
inflammation recruits various immune cells, and the secreted
CXCL10 combines with CXCR3 on various immune cells to
induce the expression and secretion of IFN-γ, which in turn
recruits more immune cells to gather. Then the inflammatory
storm was aggravated, and there was a positive feedback effect of
CXCL10 and IFN-γ during the whole process. The specific
mechanism of action is shown in Figure 4. The concentration
of CXCL10 in urine is related to the severity of immune
inflammatory response, and it has a good role in detecting
rejection after transplantation, especially the predictive role of
TCMR is worth studying (Hu et al., 2004; Raza et al., 2017; Blydt-
Hansen et al., 2021). Interferon gamma gene (IFNG), as a classical
immune response and inflammatory response cytokine, also
plays a great role in the rejection of organ transplantation, in
the induction of Treg cells, and the immunity mediated by Tregs
that produce IFNG plays an important role in inhibition (Lazzeri
et al., 2002; Daniel et al., 2014). Guanylate-binding proteins
(GBPs) family is an important cell signaling pathway coupling
protein, which plays an important role in cell signal transduction,
immune cell apoptosis, inflammatory cell infiltration, and
bacterial virus infection rejection (Fisch et al., 2019). GBP1 is
involved in the regulation of cell membranes, cytoskeleton and
cell cycle processes. The expression of GBP1 is strongly
stimulated by inflammatory factors such as interferon-gamma
(IFN- gamma) and inhibits cell proliferation in an inflammatory
environment (Honkala et al., 2019). This also happens to be
manifested in the strong inflammatory response after kidney
transplantation. Previous studies have also used GBP1 as a
predictive model for acute rejection after renal transplantation,
and it has a good predictive effect (Van Loon et al., 2019).
PMAIP1 (phorbol ester-12-myristate-13-acetate inducible
protein 1), also known as noxa (meaning injury in Latin), or
APR (immediate early response protein), is a family of Bcl-2
proteins A member of the pro-apoptotic group (Janus et al.,
2020). Pmaip1 is a p53-responsive gene, which encodes a protein
that causes p53-dependent apoptosis caused by DNA damage
(Sodja et al., 1998).

Then we analyzed the immune cell infiltration in the sample
that we studied, through the CiberSort algorithm that is widely
used by everyone. (Bindea et al., 2013; Finotello and Trajanoski,
2018). This algorithm compares the gene expression matrix with
the standard immune cell infiltration gene expression matrix to
obtain the immune cell infiltration spectrum of the sample. The
results also confirmed the types of immune cells that are
positively related to the occurrence of BPAR, which provides a
direction for the following research. From our results, it can be

TABLE 3 | Introduction to the five target genes.

Id Describe The main function

IDO1 Indoleamine 2,3-dioxygenase 1 Rate-limiting enzyme of tryptophan catabolism
CXCL10 C-X-C motif chemokine 10 Recruit immune cells
IFNG Interferon gamma gene Inflammatory factors
GBP1 Guanylate-binding proteins cell signaling pathway coupling protein
PMAIP1 phorbol ester-12-myristate-13-acetate inducible protein 1 Apoptotic protein
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seen that M1 macrophages have the strongest correlation with
rejection. M1macrophages may cause damage to themicrovessels
and renal tubular epithelial cells in the transplanted kidney
through the action of TNF-α/IFN and other cytokines, The
successive amplification of the inflammatory response recruits
more T cell aggregation, forming a positive feedback effect, and
further leading to the occurrence of acute rejection. And in the
whole process, it is unscientific to use a single cell to explain the
occurrence of acute rejection. It is the joint action of multiple
immune cells, such as (Macrophages.M1, T. cells.gamma.delta, T.
cells.CD4. memory.activated, Eosinophils), which all play an
important role in this process.

In order to further study the mechanism of our prediction
model, we performed a functional enrichment analysis of these
differential genes, the enrichment results of GO/KEGG show that
the enrichment functions of the differential genes we obtained are
mainly concentrated in cell signal transduction, immune cell
recruitment, and cytokine receptors. This also happens to be
combined with our previous work to further explain the role of
immune cell infiltration in rejection after renal transplantation.,
By consulting the literature, it is found that these signaling
pathways play an important role in the immune response after
organ transplantation. In particular, the four pathways obtained
in the GSEA enrichment analysis have attracted our attention.,
(KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY, KEGG_
NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY,
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY, KEGG_
ENDOCYTOSIS). More importantly, the differential genes in our
prediction model play an important role in these pathways.

However, there are still shortcomings in our entire research
process, First of all, the description of the mechanism of action
described in this article is not specific enough. We just aggregate
the causes of acute rejection after kidney transplantation into
several immune cells and several signal pathways through the
analysis of differential genes. The description of the mechanism is
not specific enough. Secondly, the description of the signal
pathway is derived from previous studies by others and lacks
our verification process.

CONCLUSION

In summary, we analyzed the gene expression matrix of BPAR
samples in the GEO database, obtained differential genes,
established a prediction model for transplanted kidney BPAR
(IDO1, CXCL10, IFNG, GBP1, PMAIP1), and passed the
immune cell infiltration analysis to obtain the related acute
rejection Immune cells (Macrophages.M1, T. cells. gamma.
delta, T. cells.CD4. memory.activated, eosinophils), next GO/
KEGG/GSEA and other functional enrichment analysis, further

analyze the mechanism of differential genes in the prediction
model, and provide a reference value for further research.
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