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Blood-brain barrier (BBB) is a major barrier to drug delivery into the brain in the treatment of
central nervous system (CNS) diseases. Blood-brain barrier penetrating peptides (BBPs), a
class of peptides that can cross BBB through various mechanisms without damaging
BBB, are effective drug candidates for CNS diseases. However, identification of BBPs by
experimental methods is time-consuming and laborious. To discover more BBPs as drugs
for CNS disease, it is urgent to develop computational methods that can quickly and
accurately identify BBPs and non-BBPs. In the present study, we created a training
dataset that consists of 326 BBPs derived from previous databases and published
manuscripts and 326 non-BBPs collected from UniProt, to construct a BBP predictor
based on sequence information. We also constructed an independent testing dataset with
99 BBPs and 99 non-BBPs. Multiple machine learning methods were compared based on
the training dataset via a nested cross-validation. The final BBP predictor was constructed
based on the training dataset and the results showed that random forest (RF) method
outperformed other classification algorithms on the training and independent testing
dataset. Compared with previous BBP prediction tools, the RF-based predictor,
named BBPpredict, performs considerably better than state-of-the-art BBP predictors.
BBPpredict is expected to contribute to the discovery of novel BBPs, or at least can be a
useful complement to the existing methods in this area. BBPpredict is freely available at
http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl.

Keywords: blood-brain barrier, random forest (RF), nested cross-validation, computational method, blood-brain
barrier penetrating peptides (BBPs)

1 INTRODUCTION

Blood-brain barrier (BBB) highly protects the central nervous system (CNS) (Nance et al., 2022),
preventing 98% of small molecules and 100% of large molecules from entering the brain (Sánchez-
Navarro et al., 2017). It is the main obstacle for drug delivery into the brain (Banks, 2016). Therefore,
exploring methods for drugs to penetrate BBB is a research hotpot in the development of drugs for
CNS disorders (Terstappen et al., 2021).

Blood-brain barrier penetrating peptides (BBPs) can cross the BBB through various mechanisms
without destroying the integrity of BBB (Van Dorpe et al., 2012; Oller-Salvia et al., 2016). It has been
reported that partial BBPs can transfer drugs into the brain, which provides a new avenue for the
development of drugs for CNS diseases (Zhou et al., 2021). Furthermore, because of their
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characteristics of easy synthesis, satisfactory effect, low toxicity
and wide selectivity (Muttenthaler et al., 2021), BBPs show broad
application prospects as carriers or therapeutic agents for CSN
diseases treatment (Zhou et al., 2021). Nonaka et al. reported that
IF7, an annexin A1-binding peptide, could overcome BBB and
deliver chemotherapeutics to target brain tumors (Nonaka et al.,
2020). Xie and coworkers demonstrated that d-peptide ligand of
angiopep-2 modified nanoprobes could cross BBB and locate
glioma sites (Xie et al., 2021). Lim and collaborators found that
dNP2 peptide could penetrate BBB and deliver ctCTLA-4 protein
to ameliorate autoimmune encephalomyelitis in mouse models
(Lim et al., 2015). Kurzrock and Drappatz et al. showed that
ANG1005 or GRN1005, a conjugate of angiopep-2 and paclitaxel,
has reached clinical study for the treatment of glioma (Kurzrock
et al., 2012; Drappatz et al., 2013).

There have been two BBP databases published to date,
Brainpeps (Van Dorpe et al., 2012) and B3Pdb (Kumar et al.,
2021b), since BBPs became candidates for developing peptide
agents for managing CNS disorders. These studies are
undoubtedly a strong boost to the development of
medications for CNS diseases. However, the discovery of
BBPs by wet-lab experiment is time-consuming and
complex, and only hundreds of BBPs have been identified
experimentally to date. Construction of computational
methods for the identification of BBPs is very valuable for
developing therapeutics for CSN diseases. Machine learning
methods have been successfully applied to the classification of
various peptides, such as cell-penetrating peptides (Wei et al.,
2017a; Wei et al., 2017b; Kumar et al., 2018), antimicrobial
peptides (Bhadra et al., 2018), anticancer peptides (Li and
Wang, 2016). There are also two BBP predictors, BBPpred (Dai
et al., 2021) and B3Pred (Kumar et al., 2021a), have published
successively for identifying BBPs. BBPpred is based on logistic
regression to identify BBPs, while B3Pred uses random forest
(RF) to predict BBPs. Considering the low sample complexity
of these two classifiers, the performance of computational
models for identifying BBPs can be improved.

In this work, we collected more BBPs from existing databases
(Van Dorpe et al., 2012; Kumar et al., 2021b) and published
literatures to construct a new BBP predictor named BBPpredict,
which is an online web service and freely available at http://i.
uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl. By comparing
the results of the nested five-fold cross-validation and
independent testing dataset of various machine learning
predictors, the RF-based model showed the best prediction
performance. Thus, BBPpredict was implemented by using RF.
We expect BBPpredict will help researchers find more
novel BBPs.

2 MATERIALS AND METHODS

2.1 Datasets
In this work, we selected experimentally validated BBPs as
candidate positive samples that were collected from Brainpeps
(Van Dorpe et al., 2012), B3Pdb(Kumar et al., 2021b), public
datasets of BBPpred (Dai et al., 2021) and B3Pred (Kumar et al.,

2021a), and other published literatures from PubMed with query
“(((Brain [Title/Abstract]) OR (blood–brain barrier [Title/
Abstract])) AND peptide [Title/Abstract]) AND (transport
[Title/Abstract] OR transfer [Title/Abstract] OR permeation
[Title/Abstract] OR permeability [Title/Abstract])”, covering
the period 2011–2021. BBPs were then preprocessed as
follows: 1) the repetitive sequences were eliminated; 2) peptide
sequences with ambiguous residues (“X”, “B” and “Z”, etc.) were
deleted (He et al., 2016). Finally, 425 BBPs were remained as
positive samples. We also collected 1,304 non-BBPs that were
obtained by the following three steps: 1) collect initial sequences
from UniProt with the query “peptides length: [5 TO 50] NOT
blood brain barrier NOT brain NOT brainpeps NOT b3pdb NOT
permeation NOT permeability NOT venom NOT toxin NOT
transmembrane NOT transport NOT transfer NOT membrane
NOT neuro NOT hemolysis AND reviewed: yes” (Dai et al.,
2021), 2) remove redundant sequences by using CD-HIT
(sequence identity cut-off of 10%) (Dai et al., 2021), 3)
exclude the peptide sequences with ambiguous residues (“X”,
“B,” and “Z”, etc.).

2.2 Training and Independent Testing
Datasets
To evaluate the performance of our predictor and existing
predictors (BBPpred and B3Pred), 99 BBPs that collected
through published literatures and 99 non-BBPs randomly
selected from candidate negative samples construct an
independent testing dataset that was completely
independent of the training dataset of the three predictor
models (BBPpred, B3Pred and our proposed BBPpredict)
(Table 1). The remaining 326 BBPs were used as the
positive training dataset. To balance the sample size for
training, we randomly selected 326 non-BBPs as the
negative training dataset (Table 1), whose length
distribution is the same as the positive training dataset. All
datasets are available for download from http://i.uestc.edu.cn/
BBPpredict/download.html.

2.3 Feature Extraction
Feature extraction refers to the transformation of peptide
sequences into fixed-length feature vectors, which is an
indispensable step for the construction of predictors. In this
study, we selected five feature encoding methods, including
amino acid composition (AAC), dipeptide composition (DPC),
composition of k-spaced amino acid group pairs (CKSAAGP, k =
3), pseudo-amino acid composition (PAAC) and grouped amino
acid composition (GAAC) to extract the characteristics of peptide
sequence. Here we set the length of a peptide to be N, and all
feature extraction methods are based on 20 natural amino acids

TABLE 1 | List of training dataset and independent testing dataset.

Dataset Number of BBPs Number of Non-BBPs

Training dataset 326 326
Independent testing dataset 99 99
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(i.e., “ACDEFGHIKLMNPQRSTVWY”). Feature extraction was
implemented by an in-house script.

2.3.1 Amino Acid Composition
AAC calculates the frequency of each amino acid in the peptide
sequence (Bhasin and Raghava, 2004). It can be calculated as:

f(i) � N(i)
N

, i ∈ {A,C,D, ...Y} (1)

where N(i) is the number of the amino acid type i.

2.3.2 Dipeptide Composition
DPC gives 400 descriptors (i.e.“AA,AC,AD, . . .YY ”)
(Saravanan and Gautham, 2015). It is defined as:

D(r, s) � Nrs

N − 1
, r, s ∈ {A,C,D, ...Y} (2)

where Nrs is the number of the dipeptide consisting of amino
acids r and s in the peptide sequence.

2.3.3 Grouped Amino Acid Composition
For the GAAC encoding, 20 natural amino acids are firstly
divided into five categories according to their
physicochemical properties: amino acid groups g1
(GAVLMI), g2 (FYW), g3 (KRH), g4 (DE) and g5
(STCPNQ). Group g1 belongs to the aliphatic group, g2
aromatic group, g3 positive charge group, g4 negative
charged group and g5 uncharged group, respectively.
GAAC represents the frequency of each amino acid group
(Lee et al., 2011) and can be described as:

f(g) � N(gi)
N

, i ∈ {g1, g2, g3, g4, g5}
N(gi) � ∑N(i), i ∈ {g1, g2, g3, g4, g5}

(3)

whereN(gi) is the number of amino acids in group g, N(i) is the
number of the amino acid type i.

2.3.4 Composition of K-Spaced Amino Acid Group
Pairs
CKSAAGP is based on CKSAAP (Chen et al., 2007a; Chen et al.,
2007b, 2008; Chen et al., 2009) descriptor and GAAC descriptor,
which calculates the frequency of k-spaced group pairs. And the
detailed calculation of CKSAAGP can refer to (Chen et al., 2018).
In this study, we set k as three by default. And when k = 0,
CKSAAGP can be calculated as:

(Ng1g1

Ntotal
,
Ng1g2

Ntotal
,
Ng1g3

Ntotal
, ...

Ng1g5

Ntotal
)25 (4)

Where Ntotal describes N-1, Ngg is the number of 0-spaced
group pairs.

2.3.5 Pseudo-Amino Acid Composition
PAAC describes the information of two residues order and
properties in the peptide sequence. The computation of PAAC
is available in (Chou, 2001; 2005).

After feature extraction, each peptide was encoded by a 550-
dimensional feature vector, which was generated by
concatenating five types of feature vector.

2.4 Feature Scoring and Selection
Generally, not all features make contribution to the model
construction. Partial features make remarkable contributions,
while some others make slight contributions (He et al., 2019).
Therefore, feature selection is a very vital step for accomplishing a
classifier model with promising classification performance (Zhao
et al., 2016). In this study, F-score method was employed to
estimate each feature’s contribution. The feature with a greater
F-score implies its larger contribution for prediction model. We
conducted the following procedures to select more informative
features from the 550 features that were extracted from the
training dataset. In the first stage, we evaluated the five-fold
cross-validation performance of top 92, 184, 275, 367, 458, 550
features for various classification algorithms. In the five-fold
cross-validation, the training dataset was equally divided into
five subsets, among these five subsets, a subset was used as the
testing-set and the other four subsets as the training-set. The
division of top 92, 184, 275, 367, 458, 550 features based on the
training-set was determined by making (count_max-
count_min)/6 as the cut-off point of feature division, where
“count_max” represents the maximum dimension of feature
(550 features), and “count_min” is the minimum dimension of
feature (1 feature). In the second stage, according to the five-fold
cross-validation results of different classification algorithms, we
obtained the number of features n with the highest accuracy. In
the third stage, we selected top n features from the 550 features
extracted from the training dataset and ranked by F-score in
descending order to construct the final model.

2.5 Classification Model Construction
Eight traditional machine learning algorithms, including decision
tree (DT), RF, k-nearest neighbors (KNN), adaptive boosting
(AdaBoost), gentle adaptive boosting (GentleBoost), adaptive
logistic regression (LogitBoost), linear support vector machine
(linearSVM) and radial basis function (RBF) kernel SVM
(rbfSVM) were used to build the predictive models based on
the features selected by feature selection (see in Supplementary
Table S3), respectively. LIBSVM 3.24 (http://www.csie.ntu.edu.
tw/~cjlin/libsvm/) was utilized to accomplish linearSVM and
rbfSVM (Chang and Lin, 2011). DT, RF, KNN, AdaBoost,
GentleBoost and LogitBoost are respectively implemented by
MATLAB R2021a built-in functions fitcTree, TreeBagger,
fitcknn and fitcEnmbles. To compare with deep learning
method, a long-short term memory (LSTM) network that
realized based on Keras 2.3.1 (tensorflow 2.1.0 as backend)
package of python 3.6 was also utilized to construct the
classification model (Hochreiter and Schmidhuber, 1997). The
LSTM classification model consisted of one LSTM layer with
eight hidden neurons. The non-linear activation function
hyperbolic tangent (tanh) was applied to LSTM layer. It
should be noted that for LSTM, the vectored sequence of
peptide was utilized as classification features and no feature
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selection was applied. The pseudo code for final model
construction can be found in the Supplementary Material.

2.6 Prediction Assessment
Five evaluation indexes, including accuracy (ACC), sensitivity (SN),
specificity (SP), Matthews correlation coefficient (MCC) and the
area under the receiver operating characteristic (ROC) curve
(AUC), were utilized to quantify the performance of each
predictive model. The first four indicators are calculated as follows:

SN � TP

TP + FN
(5)

SP � TN

TN + FP
(6)

ACC � TP + TN

TP + FN + FP + TN
(7)

MCC � TP × TN − FP × FN																																					(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (8)

where TP describes the number of genuine BBPs which are
predicted as BBPs. FN represents the number of genuine BBPs
that are identified as non-BBPs. Denote TN as the number of true
non-BBPs classified as non-BBPs and FP the number of true non-
BBPs identified as BBPs. SN and SP primarily assess the ability of

a predictive model to identify positive and negative samples
respectively, while ACC and MCC investigate the
comprehensive capacity of a prediction model to classify both
positive and negative samples (Wang et al., 2019). The AUC score
is often utilized to judge the merits and demerits of classifiers. In
this study, we selected the optimal predictive model according to
the AUC value. The model construction and evaluation were
performed at a computational server (Sugon I840-G20, Dawning
Information Industry Co., LTD., Beijing, China).

2.7 Reproducible Analysis
Data analysis reproducibility plays a vital role for achieving an
independent verification of the analysis results (Walzer and
Vizcaíno, 2020). In this work, we constructed 100 testing
datasets and corresponding training datasets to verify the
robustness of the construction method of the BBP predictor. To
avoid high similarity between the independent testing dataset and
the testing dataset of the reproducible analysis, here each testing
dataset consisted of 50 BBPs randomly selected from candidate
positive samples (114 BBPs) that are independent of the training
datasets of BBPpred and B3Pred and 50 non-BBPs with the same
selection rules with BBPs. Themodel building process based on 100
reconstructed datasets for different classification algorithms (RF,
rbfSVM, linearSVM, etc.) is consistent with the above method. The

FIGURE 1 | The framework of BBPpredict. (A). Dataset Construction. (B). Feature extraction. (C). Feature selection. (D). Model construction. (E). Model evaluation.
(F). Web service.
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result of the reproducibility analysis can be found in the
Supplementary Material.

3 RESULT

3.1 Overall Workflow
The framework of this study is depicted in Figure 1. In the first
stage, two benchmark datasets, including a training dataset and
an independent testing dataset, were constructed. In the second
stage, five feature extraction methods were utilized to encode each
peptide sequence, and then a 550-dimensional feature vector was
generated. In the third stage, feature scoring methods and grid
search with five-fold cross-validation strategy was used for feature
selection. In the fourth stage, multiple machine learning methods
were employed to build different models. In the fifth stage, we
evaluated the predictive performance of the nine models by using
a nested five-fold cross-validation and an independent testing
dataset, respectively. Finally, the RF model outperformed other

models was selected as the final model, which was implemented
into a web server.

3.2 Performance of Nine Classifiers in
Nested Five-Fold Cross-Validation
The performance of the nine predictive models in the nested five-fold
cross-validation is shown in Table 2, and the ROC curves are
illustrated in Figure 2A. For a detailed description of nested five-
validation cross-validation, please refer to the Supplementary
Material. In Table 2, RF model outperformed the other eight
machine learning models. All five evaluation metrics reached the
highest level. It has an AUC score of 0.9030, ACC value of 81.90%,
MCCvalue of 0.6390, SN value of 79.14% and SP value of 84.66% (see
Table 2). Moreover, compared with the eight conventional machine
learning classifiers, the performance of LSTM is not satisfactory.
Except for SP, the values of the other four evaluationmetrics of LSTM
model were the lowest. The overall performance of traditional
machine learning algorithms is generally better than LSTM.

TABLE 2 | The prediction performances of different classifiers in nested five-fold cross-validation.

Scoring Method Classifier SN(%) SP(%) ACC(%) MCC AUC

F-score RF 79.14 84.66 81.90 0.6390 0.9030
KNN 76.69 80.98 78.83 0.5772 0.7883
rbfSVM 78.83 83.13 80.98 0.6202 0.8872
linearSVM 75.77 83.13 79.45 0.5906 0.8690
DT 71.78 74.54 73.16 0.4634 0.7357
LSTM 65.23 75.38 70.31 0.4083 0.7313
AdaBoost 77.91 80.67 79.29 0.5861 0.8615
GentleBoost 77.30 80.06 78.68 0.5738 0.8582
LogitBoost 79.14 82.21 80.67 0.6138 0.8680

FIGURE 2 | Performance evaluation of different predictors in five-fold cross-validation and independent testing dataset. (A) ROC curves of the five-fold cross-
validation. (B) ROC curves of the independent testing dataset.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8457475

Chen et al. BBB Penetrating Peptides Predictor

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3.3 Performance of Nine Classifiers on the
Independent Testing Dataset
To determine the final model for constructing BBPpredict,
performance evaluation on the independent testing dataset is
much more convincing than five-fold cross-validation.
According to the steps in the method section, nine
classification models are established by using the training
dataset. The independent testing dataset was then utilized
to test the performance of these models. As depicted in
Table 3 and Figure 2B, in term of AUC score, the RF
model also performed best, with a score of 0.8332, higher
than rbfSVM, linearSVM, KNN, DT, GentleBoost, AdaBoost,
LogitBoost and LSTM classifiers by 0.0091, 0.0676, 0.1463,
0.1758, 0.0501, 0.0943, 0.0534 and 0.2291 respectively. In
terms of accuracy and MCC, the RF classifier also achieved
impressive values, with scores of 77.27% and 0.5455, which are
better than other eight classifier algorithm predictors.
Furthermore, the LSTM classifier had the weakest
generalization ability. In addition, results of the
reproducibility analysis for nine classifiers are highly
consistent with the above results (see Supplementary
Table S9).

3.4 Performance of the Predictions Under
the Combinations of RF With Three Feature
Scoring Methods
We also used the RF algorithm with optimal features selected by
Pearson and Lasso feature scoring methods to construct
prediction model. As shown in Supplementary Tables S4,5,
the model under the combination of RF and F-score achieved
the second highest AUC value in the nested five-fold cross-

validation and the highest AUC value in the independent
testing dataset. Therefore, we finally chose the combination of
RF and F-score to build the final model based on 184 features and
tree depth of 63.

3.5 Prediction Performance of Existing
Predictors
There are two published predictors for identifying BBPs, B3Pred
and BBPpred. These predictors and our predictor are based on
peptide sequence information. The comparison of datasets of
existing predictors and our proposed predictor can be seen in
Table 4 (Detailed comparison can be found in Supplementary
Table S8). To be fair, an independent testing dataset, which is
completely independent of three predictors’ training datasets, was
used to compare their performance. As shown in Table 5,
compared with the existing BBPs predictors, our predictor
achieved a promising performance (ACC = 77.27%, SN =
76.77%, SP = 77.78% and MCC = 0.5455), it outperformed
BBPpred and B3Pred, higher than them by 10.6% and 9.59%
in accuracy, severally, with MCC increasing 0.2121 and 0.1913,
respectively. There were remarkable improvements in sensitivity
and specificity (see Table 5). The above results demonstrate that
BBPpredict is more capable of distinguishing between BBPs and
non-BBPs than BBPpred and B3Pred.

TABLE 3 | The prediction performances of different classifiers in the independent testing dataset.

Scoring Method Classifier SN(%) SP(%) ACC(%) MCC AUC

F-score RF 76.77 77.78 77.27 0.5455 0.8332
rbfSVM 78.79 73.74 76.26 0.5259 0.8241
KNN 70.71 66.67 68.69 0.3740 0.6869
DT 69.70 61.62 65.66 0.3142 0.6574
linearSVM 64.65 74.75 69.70 0.3960 0.7656
LSTM 58.59 63.64 61.11 0.2225 0.6041
AdaBoost 64.65 68.69 66.67 0.3336 0.7389
GentleBoost 74.75 66.67 70.71 0.4155 0.7831
LogitBoost 67.68 77.78 72.73 0.4569 0.7798

TABLE 4 | Comparison of datasets for three predictors.

BBPpred B3Pred BBPpredict

Data source Positive: Brainpeps, PepBank, articles, SATPdb Positive: B3Pdb Positive: Brainpeps, B3Pdb, BBPpred, B3Pred, articles
Negative: UniProt Negative: UniProt Negative: UniProt

Article search deadline 22 July 2020 Nov. 2021
Article number 7 271 300
Positive sample number 119 (training:100, testing: 19) 269 (training:215, testing: 54) 425 (training:326, testing: 99)
Negative sample number 119 (training:100, testing: 19) 2,690 (training: 2,152, testing:538) 425 (training:326, testing: 99)
Peptide length 5–50 6–30 5–50

TABLE 5 | The prediction performances of different predictors.

Predictor SN(%) SP(%) ACC(%) MCC

BBPpredict 76.77 77.78 77.27 0.5455
BBPpred 67.68 65.66 66.67 0.3334
B3Pred 70.71 64.65 67.68 0.3542
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3.6 Web Server Implementation
To facilitate users to identify BBPs, we established an online web
service named BBPpredict that was implemented based on
optimized features and the RF model. BBPpredict can be
accessed at http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.
pl, conveniently. The web service of BBPpredict was developed by
using Perl and Html, Python and Matlab. Users can paste peptide
sequences or upload a sequence file to predict BBPs, as illustrated
in Figure 3A. Then click the “Predict” button to make
predictions, and the predictive results are depicted in Figure 3B.

BBPpredict allows users to adjust the threshold of the
probability value (tp) to distinguish between predicted positives
and negatives, which can range from 0 to 1. As shown in Table 6,

FIGURE 3 |Web interface of BBPpredict. (A) The query sequences and threshold of the probability value (tp) are required to be submitted in the input interface. (B)
The result page returned from BBPpredict.

TABLE 6 | Performance of BBPpredict in the independent testing dataset when tp
changes.

tp SN (%) SP (%) ACC (%) MCC

0.1 100 11.11 55.56 0.2425
0.2 98.99 29.29 64.14 0.3944
0.3 94.95 44.44 69.70 0.4564
0.4 86.87 64.65 75.76 0.5284
0.5 76.77 77.78 77.27 0.5455
0.6 58.59 82.83 70.71 0.4269
0.7 45.45 90.91 68.18 0.4082
0.8 36.36 96.97 66.67 0.4191
0.9 13.13 97.98 55.56 0.2100
0.95 5.05 97.98 51.51 0.0820
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with the increase of tp, the value of SN decreases, and the SP
increases. When tp is 0.5, ACC achieves the highest score of
77.27%, MCC reaches the highest value of 0.5455.

4 DISCUSSION

In the past 30 years, many studies have demonstrated that BBPs
are promising for the treatment of CNS diseases. BBPs can pass
through the BBB and enter brain parenchyma without destroying
BBB. Them can be used as transport carriers of DNA, RNA and
protein as well as drug-assisted treatment and diagnosis of CNS
diseases. However, the discovery of BBPs is still a thorny problem.
Only a few hundreds of peptides have been experimentally
confirmed as BBPs so far, since BBPs were discovered in 1996
(Banks and Kastin, 1996). Therefore, to facilitate the treatment of
CNS diseases, it is necessary to employ computational methods to
rapidly discover and identify more novel BBPs.

At present, two BBPs predictors, BBPpred (Dai et al., 2021)
and B3Pred (Kumar et al., 2021a), have been proposed.
Compared with these two predictors, our developed
BBPpredict tool was based on a larger training dataset (as
shown in Table 4). Besides the difference of the training
dataset, a nested cross-validation strategy was utilized in the
construction of BBPpredict. For common cross-validation, the
model parameters were determined manually, and the accuracy
based on the cross-validation would be affected by the artificial
selection of model parameters, which usually overestimate the
accuracy based on the cross-validation. For nested cross-
validation, the model parameters were determined
automatically. We speculated that this might be a reason why
the previous two predictors had better performance in the cross-
validation but had poor performance in our independent testing
dataset. BBPpredict showed a large improvement in performance
with nearly 6% sensitivity, 12% specificity, 10% accuracy and 0.20
MCC increase, compared with BBPpred and B3Pred. The
elevated performance can save cost for researchers to identify
BBPs and speed up the discovery of BBPs.

The BBPpredict website allows users to set the tp value.We tested
the performance of BBPpredict in the independent testing dataset
and provided sensitivity and specificity values under different tp
values, which can serve as reference for users and increases the
confidence they can have about the positive predictions.

We also reconstructed the BBPs/non-BBPs classification
models with different machine learning methods using the
new feature vectors that were generated from 16 feature
extraction methods, including AAC, DPC, CKSAAGP, PAAC,
GAAC, Grouped Di-Peptide Composition (GDPC) (Chen et al.,
2018; Chen et al., 2020), Dipeptide Deviation from Expected
Mean (DDE) (Chen et al., 2020), Composition (CTDC)
(Dubchak et al., 1995; Dubchak et al., 1999; Chen et al., 2020),
Transition (CTDT) (Dubchak et al., 1995; Dubchak et al., 1999;
Chen et al., 2020), Distribution (CTDD) (Chen et al., 2020),
Amphiphilic Pseudo-Amino Acid Composition (APAAC)
(Chou, 2005; Jiao and Du, 2016), Quasi-sequence-order
(QSOrder) (Chen et al., 2020), Normalized Moreau-Broto
Autocorrelation (NMBroto) (Chen et al., 2018), Geary

correlation (Geary) (Chen et al., 2020), Moran correlation
(Moran) (Feng and Zhang, 2000; Chen et al., 2020) and
Sequence-Order-Coupling Number (SOCNumber) (Lim et al.,
2015). The detailed description of the last 11 feature encoding
approaches can be found in the Supplementary Materials.
F-score was used for feature sorting, grid search with five-fold
cross-validation was utilized to select the best feature parameters
and the best classifier parameters for different classifiers.
Supplementary Tables S6,7 illustrated the detailed results of
five-fold cross-validation and independent testing dataset of
reconstructed classification models, respectively. However, the
addition of feature encoding methods did not improve the
classification performance of the model. We speculate that it is
caused by the high correlation between the extracted features
based on different feature extracting methods, which might
induce highly correlated features in the final feature subset. As
the feature number is limited, the highly correlated features might
reduce useful information for model construction. Another
possible reason might be the limited sample size, which might
cause high false positive rate during the process of feature
selection. The increase of feature size would lead to the
increase of false positive features, which would affect the
robustness of the predictive model.

BBPs pass through BBB via six penetration mechanisms,
including diffusion transport, carrier-mediated transcytosis,
efflux transporter, receptor-mediated transcytosis, adsorptive-
mediated transcytosis and cell-mediated transcytosis (Zhou
et al., 2021). The abilities of BBPs to penetrate BBB vary
depending on their penetration mechanisms (Sánchez-Navarro
et al., 2017). Therefore, we speculate the differences in their
penetration mechanisms may affect the reliability of screening in
the procession of model construction. However, BBPs of distinct
penetration mechanisms were not further divided when
constructing the positive sample of BBPpred, B3Pred and
BBPpredict, because the number of BBPs for a specific
transport mechanism is insufficient to construct a BBP predictor.

In the present work, we utilized RF algorithm to construct BBP
predictor. The RF is an ensemble algorithm which is composed of
several weak classifiers (decision trees). Our constructed model
contains 63 decision trees. We speculate that these different
decision trees might cover different penetration mechanisms
and it might be the reason why the RF algorithm is superior
to other machine learning algorithms. In the future, if the number
of BBPs with a certain transport mechanism increase, it is possible
and preferable to construct new BBP predictors using BBPs with
the same penetrating mechanism.

5 CONCLUSION

In this study, we proposed an RF-based predictor for identifying
BBPs, called BBPpredict, which is available for free at http://i.uestc.
edu.cn/BBPpredict/cgi-bin/BBPpredict.pl. To find the optimal
classifier, eight traditional machine learning algorithms and one
deep learning algorithm were used for developing models. The RF
algorithm was selected to construct BBPpredict after comparing the
results of nine classifiers in the five-fold cross-validation and
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independent test. The RF-based model reached an AUC of 0.9030
with an accuracy of 81.90% and an AUC of 0.8332 with an accuracy
of 77.27% in the nested five-fold cross-validation and independent
testing dataset, respectively. We also compared BBPpredict with two
existing BBPs predictors, BBPpred and B3Pred. The results showed
that BBPpredict was remarkably higher in accuracy, MCC,
sensitivity and specificity than these two predictors. BBPpredict is
a promising classification model, and we expect it to play a positive
role in the discovery of BBPs to facilitate the development of drugs
for CNS diseases.
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