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In microbiome studies, researchers measure the abundance of each operational taxon unit
(OTU) and are often interested in testing the association between the microbiota and the
clinical outcome while conditional on certain covariates. Two types of approaches exists
for this testing purpose: the OTU-level tests that assess the association between each
OTU and the outcome, and the community-level tests that examine the microbial
community all together. It is of considerable interest to develop methods that enjoy
both the flexibility of OTU-level tests and the biological relevance of community-level
tests. We proposedMiAF, a method that adaptively combines p-values from the OTU-level
tests to construct a community-level test. By borrowing the flexibility of OTU-level tests, the
proposed method has great potential to generate a series of community-level tests that
suit a range of different microbiome profiles, while achieving the desirable high statistical
power of community-level testing methods. Using simulation study and real data
applications in a smoker throat microbiome study and a HIV patient stool microbiome
study, we demonstrated that MiAF has comparable or better power than methods that are
specifically designed for community-level tests. The proposed method also provides a
natural heuristic taxa selection.

Keywords: human microbiome, association test, community-level test, OTU-level test, adaptive combination of
p-values

1 INTRODUCTION

Investigating the function of the microbiome in human health has become a burgeoning study field
in recent years, which is attributed to the advent of new technologies for profiling complex microbial
communities by 16 S rRNA gene sequencing (Lasken, 2012) or shotgun metagenomic sequencing
(Hasan et al., 2014). Various microbial communities live throughout the human body and are
associated with several diseases, such as colorectal cancer (Ahn et al., 2013), inflammatory bowel
disease (Kostic et al., 2014) and obesity (Ley, 2010). Understanding the association between the
microbiome and human disease may push back the frontiers of medical treatment.

Although the shotgun metagenomic sequencing enjoys higher resolution of taxonomic
identification (Hasan et al., 2014), the reduced cost of 16 S rRNA gene sequencing makes it a
more commonly used technology for microbiome studies to date. Using standard pipelines, 16 S
sequences are clustered based on a prespecified similarity threshold (typically 97%) into operational
taxonomic units (OTUs), each of which represents a taxonomic unit at a certain taxonomic rank,
such as order, family, or genus (Nguyen et al., 2016). We note that some pipelines such as DADA2
(Callahan et al., 2016) and Deblur (Amir et al., 2017) generate amplicon sequence variants (ASVs)
instead of traditional OTUs. ASVs can be viewed as OTUs with the exact same sequences, and are
sometimes referred as 100% OTUs. Because the analysis methods discussed here can be applied to

Edited by:
Himel Mallick,

Merck, United States

Reviewed by:
Kalins Banerjee,

University of Michigan, United States
Siyuan Ma,

University of Pennsylvania,
United States

*Correspondence:
Shili Lin

shili@stat.osu.edu
Chi Song

song.1188@osu.edu

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 30 December 2021
Accepted: 28 March 2022
Published: 19 May 2022

Citation:
Chen Q, Lin S and Song C (2022) An
Adaptive and Robust Test for Microbial

Community Analysis.
Front. Genet. 13:846258.

doi: 10.3389/fgene.2022.846258

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8462581

METHODS
published: 19 May 2022

doi: 10.3389/fgene.2022.846258

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.846258&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/articles/10.3389/fgene.2022.846258/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.846258/full
http://creativecommons.org/licenses/by/4.0/
mailto:shili@stat.osu.edu
mailto:song.1188@osu.edu
https://doi.org/10.3389/fgene.2022.846258
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.846258


both OTUs and ASVs, we will not differentiate them and refer to
both as OTUs in the rest of this paper. Since the initiation of
Human Microbiome Project (Turnbaugh et al., 2007) in 2007,
researchers have developed a variety of statistical methods to
detect the possible association between microbiome diversity and
an outcome of interest, such as a disease status.

There are two general categories of approaches for detecting
associations—OTU-level methods and community-level
methods. OTU-level methods test whether each individual
OTU is associated with the outcome, while community-level
methods test whether the microbial community in its entirety
is associated with the outcome. Typically, the OTU-level methods
test the association between a clinical outcome and the abundance
of each OTU as a univariate covariate one-by-one. This univariate
approach allows the development of many sophisticated OTU-
level methods that can carefully accommodate the discrete and
sparse nature of OTU-level abundance data. For example, QIIME
(Caporaso et al., 2010), as a comprehensive pipeline, have the
capability of performing OTU differential abundance tests using
metagenomeSeq zero-inflated Gaussian (Paulson et al., 2013) and
DESeq2 negative binomial Wald test (Love et al., 2014). The
former developed a zero-inflated Gaussian distribution mixture
model to avoid biases due to undersampling of the microbial
community, while implementing a normalization method to deal
with uneven sequencing depth. The later adapted the negative
binomial model that has been popular in gene differential
expression study to analyze microbiome data. In addition,
QIIME also contains several classic statistical tests, such as
ANOVA, Kruskal-Wallis, G-test, Mann-Whitney test, as well
as the parametric and nonparametric t-test.

In practice, it is frequently more biologically relevant to
perform community-level analysis, which jointly tests the
association between a clinical outcome and a microbial
community as a whole. These methods are often based on
alpha diversity or beta diversity. Alpha diversity characterizes
the complexity of the microbial community within each sample.
Among them, the Inverse Simpson Diversity (Simpson, 1949),
Shannon Indexes (Shannon, 1948) and Faith’s phylogenetic
diversity that incorporates phylogenetic relationships (Faith,
1992) are some of the most popular choices. After
summarizing the complexity of the microbial community into
a single alpha diversity metric, univariate methods such as
regression models can be applied to detect the possible
association between the alpha diversity and the clinical
outcome. Adaptive microbiome α-diversity-based association
analysis (aMiAD) (Koh, 2018) used the minimum p-value
from association analyses based on different alpha diversity
metrics as its test statistic, and assessed the p-value of the
proposed test via a residual-based permutation method. Beta
diversity, on the other hand, measures the distance or
dissimilarity between each pair of biological samples. For
example, Bray-Curtis dissimilarity measures the differences
between two microbial communities by quantifying the non-
overlapping OTU abundances (Bray and Curtis, 1957). Jaccard
distance can be viewed as an “unweighted” version of Bray-Curtis
dissimilarity, since it only relies on the presence or absence of
OTUs without taking abundance information into account

(Jaccard, 1901, Jaccard, 1912). Among many available distance
metrics, the UniFrac distance incorporating phylogenetic
information is one of the most popular metrics (Lozupone
et al., 2007). It calculates the fraction of sums of branch
lengths with their corresponding taxa only in one sample to
both samples. Both weighted and unweighted versions of UniFrac
are commonly used in microbial ecology, where the former
accounts for abundance information of the taxa, while the
latter only considers their presence or absence. Moreover,
generalized UniFrac distances were proposed as a series of
distance metrics—from unweighted to weighted UniFrac by
assigning different weights on the branches (Chen et al.,
2012). Based on the beta diversity or a distance metric, various
community-level association testing methods have been
proposed. Permutational Multivariate Analysis of Variance
(PERMANOVA) (McArdle and Anderson, 2001), one of the
pioneer community-level tests, is a non-parametric method
that fits multivariate models for microbial community data to
test whether the samples significantly differ across a categorical
factor. It bears some resemblance to ANOVA but operates on a
dissimilarity matrix and assesses p-values based on permutation.
However, PERMANOVA usually adopts only one of the many
available distance metrics with no confounder adjustment and
cannot easily accommodate continuous traits (unless categorized
arbitrarily). Microbiome Regression-based Kernel Association
Test (MiRKAT) (Zhao et al., 2015), a more comprehensive
method, was proposed to extend the outcome of interest to
the continuous case. The phylogenetic dissimilarity matrix is
transformed into a kernel matrix which measures the similarity of
microbial communities between samples. MiRKAT regresses the
clinical outcome on this semiparametric kernel machine while
adjusting for potential confounders. It should be noted that
MiRKAT is equivalent to PERMANOVA when no covariates
are included. Besides, MiRKAT can combine multiple distance
metrics by selecting the one that generates the smallest p-value.

Although OTU-level methods and community-level methods
tackle the association testing problem from different angels, they
are in fact related to each other. The statement that the microbial
community is associated with the clinical outcome is equivalent
to that at least one of the OTUs differs across the outcome status.
Therefore, theoretically, the results of all the OTU-level tests can
be summarized across the observed taxon units to draw a
community-level conclusion about whether the microbial
community is associated with the clinical outcome.
Considering the vast availability of univariate models for
different study designs that can be directly applied to OTU-
level analysis, as well as the sophisticated OTU-level methods that
accommodate unique aspects of microbiome data, it would be
beneficial to combine them into community-level tests.

However, simply putting all OTU-level tests together without
proper weighting or OTU selection will suffer from power loss,
because not all OTUs may be associated with the outcome, and as
thus, a naive combination may accumulate noises that eventually
surpass association signals. Moreover, the number or proportion
of OTUs that are not associated with the outcome is often
unknown in practice. In contrast, adaptively and wisely
assigning weights to the taxon units according to their
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importance is a key to achieving greater statistical power. Some
efforts have already been put into this area. For example, adaptive
Microbiome-based Sum of Powered Score (aMiSPU) test (Wu
et al., 2016) extended the aSPU test (Pan et al., 2014) to
accommodate unique features of microbial data. This method
adaptively combines the score statistics for two versions of
generalized taxon proportions and resembles MiRKAT with
weighted and unweighted UniFrac kernel. OMiAT (Koh et al.,
2017) combines aSPU and MiRKAT by taking the minimum
p-value from all the score tests of the two methods. aSPU used in
OMiAT implements on standard compositional microbial data
without incorporating phylogenetic information. However, the
requirement of score statistic for taxon units in aMiSPU and
aSPU may limit their applicability to different study designs
where the score statistics may not be readily available. This
requirement also makes aMiSPU and OMiAT inflexible to
combine more sophisticated OTU-level testing methods that
are specifically designed for microbiome data. Compared to
score statistic, p-value is a more universally available statistic
in OTU-level association tests, thus making it a more suitable
target to combine, for the sake of flexibility. MiHC (Koh and
Zhao, 2020), adapted from higher criticism test which aims to
detect highly sparse signals, was tailored to accommodate
different sparsity levels and incorporate phylogenetic
information. It was more powerful for sparse microbial
association signals than abundant ones. In this paper, inspired
by Adaptive Fisher (AF) method (Song et al., 2016), we propose a
p-value combination approach, Microbiome Adaptive Fisher
method (MiAF), to aggregate p-values of OTU-level tests into

a novel community-level association test. It should be noted that
the focus of MiAF is to test whether the OTU community is
associated with the outcome, instead of estimating the parameters
of the association model. We compare the performance of MiAF
to methods specifically designed for detecting community-level
associations, and demonstrates comparable or better power for
MiAF. We also discuss the potential of MiAF as a general p-value
combination framework for microbial community-level tests
under various study designs.

2 MATERIALS AND METHODS

2.1 Statistical Model and OTU-Level Tests
Suppose n subjects are observed and their microbial communities
are profiled. For the ith subject, Yi denotes the outcome of interest
which can be binary or continuous, and Zi = (Zi1, . . ., Zic) denotes
c covariates such as age and gender that are potentially associated
with both the clinical outcome and microbial community, which
we need to adjust for as potential confounders. We construct an
“extended” OTU table containing all nodes (terminal and
internal) in the phylogenetic tree. Let Xi = (Xi1, . . ., Xim) be
the counts of “extended” OTUs which consist of both leaf nodes
and internal nodes (except for root node) for subject i, wherem is
the total number of “extended” OTUs. The count of an internal
node is derived by summing up all the counts of the leaf node
OTUs belonging to this taxon (see Figure 1 for an illustration).
Note that our method is not limited to bifurcating phylogenetic
trees, it is applicable to multifurcating trees. The relative
abundance of extended OTU k, k = 1, . . ., m, in subject i, i =
1, . . ., n, is Aik � Xik/∑q

j�1Xij, where q is the number of leaf
nodes, and the Xij’s are arranged such that the first q entries in Xi

are the leaf nodes in the same order for all individuals.
OTU abundance varies greatly in a microbial community.

Some microbes are dominant, but most are rare. In practice, the
underlying association patterns are unknown a priori. We do not
have the knowledge of the characteristics of the truly associated
OTUs nor their phylogenetic relationships that are captured by
phylogenetic trees. Therefore, we incline to integrate the
abundance information and phylogenic relationships
adaptively to achieve a robust test under diverse underlying
situations. When the associated OTUs are indeed
phylogenetically related, incorporating phylogenetic
information may boost the performance of an association
analysis to a great extent. To accommodate such a situation,
we define unweighted and weighted taxon proportions as Mu

ik �
I(Aik > 0) and Mw

ik � Aik respectively for “extended” OTU k, k =
1, . . ., m. The unweighted taxon proportion only considers the
presence or absence of an OTU, whereas the weighted one takes
the magnitude of the abundance information into account.
Inspired by the generalized UniFrac distance metric (Chen
et al., 2012), we also define a square-root transformed taxon
proportion to attenuate the contribution by highly abundant
OTUs as M.5

ik � Aik
0.5.

We also consider a taxon proportion restricted to leaf nodes
only for situations where the associated OTUs are not
phylogenetically related, since incorporating phylogenetic

FIGURE 1 | An example of a rooted phylogenetic tree. This is a simple
rooted phylogenetic tree containing 5 leaf nodes and 4 internal nodes. The
counts for leaf nodes—OTU1–5 — can be obtained via standard pipelines.
We assign the counts to internal nodes by summing up the counts of
their children and refer to them also as “OTUs”: For three of the four
abundance representations used in this paper, OTU7 = OTU1 + OTU2, OTU6
= OTU7 + OTU3, and OTU8 = OTU4 + OTU5. We construct the extended
OTU matrix containing all nodes (except the root) in this phylogenetic tree.
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information in this scenario may adversely affect testing
performance. That is, we only include the weighted taxon
proportion of leaf nodes in original OTU table defined as
Ma

ik � Aik, k = 1, . . ., q.
We use the following generalized linear model to depict the

association between the compositions of microbes in a
community and the health outcome taking confounding
covariates into consideration:

h E Yi[ ]( ) � α0 + Ziα +∑d
k�1

Mikβk, (1)

where α � (α1, . . . αc)⊤ represents the effects of the c covariates,
β � (β1, . . . βd)⊤ are the effects of the OTUs, and Mik can be any
of the four abundance representations defined above (Mu

ik, M
w
ik,

M.5
ik or Ma

ik); thus d = q for Ma
ik and d = m for the other three

measures. Finally, h (·) is the link function, which is the logit
function for binary outcomes or the identity function for
continuous outcomes.

We are interested in determining whether there is an
association between the outcome of interest and any OTU,
which is equivalent to testing the following hypotheses:

H0: β � 0 vs. H1: β ≠ 0.

The score statistics U = (U1, . . . , Ud) for β can be calculated as
U � ∑n

i�1(Yi − μ̂i)(Mi − M̂i), where μ̂i is the expectation of Yi

under H0, and M̂i � (M̂i1, . . . M̂id) are the fitted values of Mi by
regressing M·k = (M1k, M2k, . . . , Mnk), for each k = 1, . . . , d,
separately on the covariates Z. UnderH0,U ~N (0, V), where V is
the corresponding Fisher information matrix. Then the marginal
OTU-level p-values p = (p1, . . . , pd) for β can be obtained based
on ~U � ( ~U1, . . . , ~Ud), where ~Uk � Uk/Vkk and Vkk is the kth
diagonal element of V. We noted that in this paper, we choose to
combine the one-sided p-values (i.e., pl

k � Φ( ~Uk) for the lower-
tail and pu

k � 1 −Φ( ~Uk) for the upper-tail), because they account
for the directionality of effects and can help boost statistical
power when many OTUs have effects of the same direction. We
also note that in rare situations whereVkk = 0 for some OTU k, we
remove these OTUs from any subsequent analysis.

2.2 Combining P-Values from OTU-Level
Tests
After getting p-values for all the OTUs (either the “extended” set
or the original set), we combine them as follows. Let

Rk � −logpk, (2)
where pk is the p-value for testing OTU k, which can be pl

k or p
u
k

as defined above, for a particular abundance representation
M(Mu, Mw, M.5 or Ma). Since the taxa in the phylogenetic tree
represent different classification levels and the abundance
dispersion of different OTUs varies drastically, not all
OTUs in a microbial community contribute, let alone
contribute equally, to the clinical outcome of interest.
Therefore, assigning different weights to OTUs according to
their potential importance may enhance the statistical power
of the association test. In our method, when including internal

nodes, i.e., using Mu
ik, M

w
ik, or M.5

ik, we use a UniFrac-like
weight

ωk � SD M·k( ) × bk, k � 1, . . . , m, (3)
where bk is the length of the branch that leads to the kth OTU in
the phylogenetic tree, and SD (·) stands for standard deviation.
Our choice of weights takes into account both the dispersion of
OTUs and their positions in the phylogenetic tree, and it is the
same as that used inMiSPU andMiRKAT with UniFrac kernels if
these methods are viewed as combining standardized score
statistics. For Ma

ik, since only leaf nodes are considered, the
branch length is no longer relevant; thus, we use

ωk � SD M·k( ), k � 1, . . . , q. (4)
Given the weights ω = (ω1, . . ., ωd) for all d OTUs, we can
calculate

Wk � ωkRk. (5)
Then we sortW1, . . .,Wd in descending order, such thatW(1) ≥/
≥W(d). Let S = (S1, . . ., Sd) be the partial sum ofW(1), . . .,W(d), i.e.

Sk � ∑k
l�1

W l( ). (6)

For each Sk, its p-value can be defined as Psk � Pr(Sk ≥ sk), where
sk is the observed value of Sk, for k = 1, . . . , d. This leads to our
proposed AF statistic

TAF � min
1≤k≤d

Psk, (7)

The minimizer in Equation 7 casts some light on the
associated taxa, thus, we provide a heuristic taxon selection
procedure. Suppose h � argmin1≤k≤dPsk, we select h taxa
corresponding to the h largest Wks as associated with the
outcome. However, we caution against over-interpreting the
taxon selection results, which we will further explore in
Section 3.1.2 and Section 3.2.

2.3 Assessing Statistical Significance by
Permutation
Since the asymptotic distributions of Sk and TAF are intractable
when the OTU abundances are correlated, we propose to carry
out the following permutation algorithm to access the null
distribution of TAF and estimate its corresponding p-value.

Step 1. Regress each OTU column ofM,M·k, iteratively on the
covariates Z to obtain the fitted OTU matrix M̂ and the
corresponding residual matrix ~M � M − M̂ � {M̃ij}. Calculate
marginal p-values p for the OTUs according to model Eq. 1
using ~M as M. Set p(0) = p.

Step 2. Permute rows of ~M for a large number of times, B, to
get a set of permuted residual matrices { ~M(1)

, . . . , ~M
(B)}. Obtain

the permutation set of p-values {p(1), . . ., p(B)}, by refitting the
regression model with the permuted residuals for b = 1, . . ., B.

Step 3. Follow Equations 2–6 to obtain S(b) � (S(b)1 , . . . , S(b)d ),
for b = 0, 1, . . ., B, where S(0), corresponding to p(0), denoting the
statistic based on the original data.
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Step 4. For each b = 0, 1, . . ., B and k = 1, . . ., d, calculate

P b( )
Sk

≈
1

B + 1
∑B
b*�0

I S b*( )
k ≥ S b( )

k{ }.
Then we can get the observed and permuted AF statistics
T(b)
AF � min1≤k≤dP

(b)
Sk
, for b = 0, 1, . . ., B.

Step 5. The p-value P(b)
AF of the AF statistic T(b)

AF can be
approximated by

P b( )
AF � Pr TAF ≤T b( )

AF{ } ≈ 1
B + 1

∑B
b*�0

1 T b*( )
AF ≤T b( )

AF{ },
where b = 0, 1, . . ., B.

Note that in Step 1 and 2, we permute the residuals of
regression M·k on Z and fit a generalized linear model using
the permuted residuals, which preserves the correlation among
covariates Z and abundance representation M even after
permutation. We also noted that we used index b = 0 to
denote the statistics calculated from the original observed data.
Therefore P(0)

AF is the final p-value of our proposed AF statistic if
there is only one list of OTU-level p-values p = (p1, . . . , pd) to
combine, e.g., only pl using Mu. Besides, we also calculated P(b)

AF
for b = 1, . . ., B, which are B permutations of the AF p-value.
These permutations can be further used to combine the results of
multiple AF p-values generated by combining p-values from our
multiple OTU abundance representations, which we discuss next.

2.4 Combining Multiple AF Tests
In the method described in the previous subsections, there are
multiple variations or factors that can affect the performance
of the test under different scenarios, including the choice of
OTU-level tests, the transformation from relative abundance,
A, to an abundance representation, M, the usage of one-sided
or two-sided p-values, and the weights used in the combination
step. Therefore, to construct a statistical test that is robust
under various scenarios, it is often desirable to combine the
results from multiple tests based on different parameter
choices. We therefore, propose to combine the results of
multiple AF tests with different parameter selections to
form a unified test.

The p-value combination approach that we described
previously in Section 2.2 can be viewed as a general method
for combining multiple p-values with or without weights, as long
as we can obtain a permuted sample while preserving the
correlation among them. We define operation AF{p[; ω]} as
the procedure that combined a p-value vector p with optional
weight vector ω, which defaults to ones when omitted. By using
this AF operator, we can redefine our MiAF method that
combines results from different choices of OTU-level test
p-values, weights, and abundance representations. For
illustration purpose, in the rest of our paper, we combine
results from lower- and upper-tail p-values using the
unweighted (Mu), weighted (Mw), square-root (M.5) abundance
representations for “extended” OTUs and their corresponding
weights as defined above, as well as the abundance
representations for leaf nodes only (Ma) and its corresponding
weights. Specifically, pul and puu denote the lower- and upper-tail

p-values of the OTU-level tests using Mu. Similarly, we use pwl

and pwu for Mw, p.5l and p.5u for M.5, and pal and pau for Ma.
With the associated weights denoted as ωa, ωw, ω.5 and ωa,

respectively, we can obtain the p-value for each of the eight
community-level MiAF tests by combining the corresponding
OTU-level p-value vectors and the corresponding weight vectors
using the AF operator defined above; details are given in the 5th

and 6th columns of Table 1. The two one-sided community-level
tests are then combined to form a two-sided test, again using the
AF operator, for each of the four abundance measure tests
(column 7 of Table 1). Our eventual test statistic, MiAF,
combines the unweighted UniFrac-like test p-value PMiAFu, the
weighted UniFrac-like test p-value PMiAFw, the generalized
UniFrac-like test p-value PMiAF.5 and the leaf-nodes-only test
p-value PMiAFa, again using AF operator (last row of Table 1). We
declare that the microbial community is significantly associated
with the clinical outcome if PMiAF is smaller than a prespecified
significance level α.

3 RESULTS

3.1 Simulation Study
3.1.1 Simulation Strategy
We conducted simulation studies to investigate whether MiAF
correctly controls type I error and to evaluate the performance of
MiAF in a wide range of scenarios. We generated unobvserved
absolute abundances and read counts of OTUs using the R
package SparseDOSSA2 which can parameterize real microbial
profiles and then simulate new profiles based on the estimated
parameters (Ma et al., 2021). SparseDOSSA2 depicts the
unobserved absolute abundance via a Gaussian copula model
with zero-inflated log normal marginal distributions. To address
the identifiability issue, it imposes L1 penalization on the
correlation matrix. Using SparseDOSSA2 package, we first
parameterized a real upper-respiratory-tract microbiome data
set consisting of 856 OTUs and 60 samples (Charlson et al., 2010).
The penalizing tuning parameter was chosen to be 0.1 since it
achieved the largest likelihood among {0.1, 0.2, . . ., 1}. 616 OTUs
remained after discarding the OTUs with only one non-zero
count across the samples. Then the microbial community profiles
for 616 OTUs and 100 samples, including unobserved absolute
abundance and read counts, based on the estimated parameters
were simulated. We denoted the simulated absolute abundance
matrix by X, where Xij was the absolute abundance of OTU j in
sample i.

To evaluate our method, we implemented three simulation
scenarios where the OTUs were divided into different clusters and
related to both binary and continuous outcomes in different ways.
The clustering on OTUs was based on partitioning around
medoids (Kaufman and Rousseeuw, 1990) with cophenetic
distance (Sokal and Rohlf, 1962). We chose three cluster
numbers: 10, 22 and 29, corresponding to the first three local
maxima of the mean silhouette values shown in Supplementary
Figure S1 of Supplementary Material. Under scenario 1, the 616
OTUs were grouped into 22 clusters. The abundance varied
greatly among these 22 clusters. In order to test our new
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method in broader circumstances, we performed the simulation
analysis assuming that the outcome is truly associated with each
cluster of OTUs iteratively instead of evaluating the performance
on only a few clusters. The binary outcome Yi for sample i, i = 1,
. . ., 100, was simulated based on model

logit E Yi | Xi,Zi( )( ) � 0.5 scale Zi1 + Zi2( ) + β scale ∑
j∈C

Xij
⎛⎝ ⎞⎠.

(8)
We simulated continuous outcomes under the model

Yi � 0.5 scale Zi1 + Zi2( ) + β scale ∑
j∈C

Xij
⎛⎝ ⎞⎠ + ϵi, (9)

where ϵi ~ N(0, 1). For both binary and continuous outcomes, Zi1
and Zi2 were covariates, and C was the set of OTUs that belong to
a selected cluster. The scale(·) function standardizes the sample
mean to 0 and standard deviation to 1. Zi1 was drawn from a
Bernoulli distribution with success probability 0.5 independently.
For Zi2, we consider two situations where Zi2 and the abundance
of the microbial community Xi· are either independent or
correlated. In the independent case, Zi2 was generated from
standard normal distribution N (0, 1), and the effect size β
was set as 0.6, 0.8, 1.2, 1.6 and 2 for binary outcomes, and 0.2,
0.4, 0.6, 0.8 and 1 for continuous outcomes to mimic different
levels of association strength between the OTUs and the clinical
outcome. In the correlated case, we let Zi2 = scale(∑j∈CXij) + τ,
where τ ~ N(0, 1) and the effect size β was set to be twice as large
as the corresponding value in the independent case, in order to
show a clearer difference among the methods compared.

Under scenario 2, we divided the 616 OTUs into 10 clusters
and simulated the data on all clusters following the same settings.
For scenario 3, all OTUs were divided into 29 clusters following
the same procedure.

Under all three simulation scenarios, the performance of
MiAF was compared to MiRKAT, aMiSPU, OMiAT, aMiAD
and MiHC. We did not include PERMANOVA because it is
essentially equivalent to MiRKAT without covariates (Zhao et al.,
2015). aMiSPU combines unweighted and weighted UniFrac
versions of test. MiRKAT combines four kernels, including the
unweighted and weighted UniFrac, a generalized UniFrac with
tuning parameter at 0.5, and the Bray-Curtis. MiAF combines the
unweighted, weighted, generalized UniFrac-like and the leaf-

nodes-only test p-values. We used default setting of OMiAT,
which includes all the kernels in MiRKAT but with an addition of
the Jaccard distance. aMiAD combines six alpha diversity metrics
as its default setting, which includes Richness, Shannon, Simpson,
phylogenetic diversity (PD), phylogenetic entropy (PE) (Allen
et al., 2009) and phylogenetic quadratic entropy (PQE) (Rao,
1982). MiHC combines the unweighted higher criticism test,
weighted higher criticism test and Simes test, and the
candidate set for both higher criticism tests to modulate low
sparsity level was set as {1, 3, 5, 7, 9}. We set the significance level
to be 0.05 for each test. When evaluating the type I error under all
the simulation scenarios, we simulated data according to model
(Eqs 8 and 9) by setting β = 0. We set the number of permutation
for all five methods as 10,000 to assess their ability for correct
control of type I error. When comparing power, the number of
permutation was set to be 1,000. All simulation results were based
on 1,000 independent replicates.

We investigated the performance of the proposed heuristic
taxa selection procedure when setting β > 0 in the model (Eqs 8
and 9). Although only tip nodes were explicitly assumed to be
associated with the outcome in the simulation setting, we also
viewed the internal nodes as associated taxa if any of their
descendants was associated. Since the outcome were generated
to be positively correlated with the abundances of OTUs within
the associated cluster, we recorded the number of every taxon
being selected from upper-tail p-values in the 1,000 independent
replicates.

3.1.2 Simulation Results
Figure 2 shows the statistical power for binary outcomes under
scenario 1, where 616 OTUs were partitioned into 22 clusters, and
when both covariates Zi1 and Zi2 are independent of the microbial
community. The cluster size and mean absolute abundance varies
greatly among 22 clusters (see details in Supplementary Table
S1B of Supplementary Material), covering different underlying
association patterns. We evaluated the performance of all the
methods under situations where each phylogenetic cluster of
OTUs was set to be associated with the binary outcome
successively. The power of the six methods was plotted against
clusters sorted by the sum of estimated mean absolute abundance
of OTUs within the cluster that was truly associated from the
greatest to the least, representing the total strength of signals. As
expected, for each associated cluster community, the statistical
power increased as the effect size β increased. For aMiSPU,

TABLE 1 | MiAF implementation algorithm.

Tests Abundance measure Relationship to
A

Phylogenetic
information

Single measure Combine multiple
measuresLower-Tail Upper-Tail

MiAFu Mu Mu
ik � I(Aik > 0)* ✓ Pul = AF{pul; ωu} Puu = AF{puu; ωu} PMiAFu � AF{(Pul ,Puu)T }

MiAFw Mw Mw
ik � Aik* ✓ Pwl = AF{pwl; ωw} Pwu = AF{pwu; ωw} PMiAFw � AF{(Pwl ,Pwu)T }

MiAF.5 M.5
M.5

ik � Aik
.5* ✓ P.5l = AF{p.5l; ω.5} P.5u = AF{p.5u; ω.5} PMiAF.5 � AF{(P.5l ,P.5u)T }

MiAFa Ma
Ma

ik � Aik
† 7 Pal = AF{pal; ωa} Pau = AF{pau; ωa} PMiAFa � AF{(Pal ,Pau)T }

MiAF — — — — — PMiAF = AF{(PMiAFu ,PMiAFw ,PMiAF.5 ,PMiAFa)T }
*k = 1, . . ., m.
†k = 1, . . ., q.
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MiRKAT and MiAF, the performance of the unweighted version
of tests was outperformed by the weighted version of tests in the
majority of the clusters, with exceptions of clusters 7, 12, 16, 20
and 22. Another observation for all methods was that the

combined tests lose only a little power compared to the best
one of their corresponding component tests, which justifies the
use of a combined or optimal test to draw a unified conclusions
from multiple parameter choices. Therefore, we focused on

FIGURE 2 | Power comparison for binary outcomes under the independent case of scenario 1. A total of 616OTUs were divided into 22 clusters. The covariates Zi2
and OTUsXi·were independent. The effect size was set as 0.6, 0.8, 1.2, 1.6 and 2. The 22 clusters were sorted by the sum of estimatedmean absolute abundance of the
OTUs within the cluster that was truly associated from the greatest to the least.
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comparing the performance of the combined version of the six
tests in the rest of this section. When the total sum of estimated
mean absolute abundance of OTUs within the associated clusters
was relatively large (around top 40% of the sum of absolute
abundance of associated OTUs among the 22 clusters), MiAF
either outperformed the other fivemethods or was commensurate
with the best of the other five.WhenMiAF was not the best, either
MiRKAT or OMiAT was always among the top, where the power

of OMiAT was predominantly driven by MiRKAT. When the
sum of estimated mean absolute abundance of the associated
OTUs was relatively small (around lower 60% among the 22
clusters), OMiAT had overall the best performance. In most
cases, MiAF outperformed the inferior methods by a large margin
even if it was not the best.

The results for binary outcomes under scenario 1 with
covariate Zi2 correlated with the OTU abundance were

FIGURE 3 | Power comparison for binary outcomes under the correlated case of scenario 1. A total of 616 OTUs were divided into 22 clusters. The covariates Zi2
and OTUs Xi· were correlated. The effect size was set as 1.2, 1.6, 2.4, 3.2 and 4. The 22 clusters were sorted by the sum of estimated mean absolute abundance of the
OTUs within the cluster that was truly associated from the greatest to the least.
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shown in Figure 3. Similar to the independent covariate case,
the weighted tests possessed relatively higher statistical power
with exceptions of clusters 7, 12, 16, 20, 21 and 22. In terms of
the combined test, the advantage of MiAF over the other
methods was more prominent than that in the independent
case. In all the clusters except for cluster 7 and 8 where several
methods were on par, MiAF achieved a dominant position over
the other five methods or was a close second. We observed

distinct advantage of MiAF in clusters 3, 9, 14 and 21, where
MiAF had moderate power even when the effect size was small.
It was interesting to see that the unweighted tests achieved
their greatest power in cluster 22 where the mean OTU
abundance was the lowest among all clusters. It confirmed
that the unweighted tests are more powerful when clinical
outcomes are associated with rare microbial taxa (Chen et al.,
2012).

FIGURE 4 | Power comparison for continuous outcomes under the independent case of scenario 2. A total of 616 OTUs were divided into 10 clusters. The
covariates Zi2 and OTUs Xi· were independent. The effect size was set as 0.2, 0.4, 0.6, 0.8 and 1. The 10 clusters were sorted by the sum of estimated mean absolute
abundance of the OTUs within the cluster that was truly associated from the greatest to the least.
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The simulation results for binary outcomes under scenario 2
and scenario 3 showed similar results, when the OTUs were
partitioned into 10 or 29 clusters respectively. The power
comparisons were shown in Supplementary Figures S2–S5.
Our method, MiAF, achieved a dominant position over other

methods consistently in correlated cases, where the existence of
correlation between microbes and covariates is more biologically
relevant in practice. MiAF performed equivalently well with
OMiAT and MiRKAT in the independent cases when the sum
of absolute abundances of the associated OTUs was relatively

FIGURE 5 | Power comparison for continuous outcomes under the correlated case of scenario 2. A total of 616 OTUs were divided into 10 clusters. The covariates
Zi2 and OTUs Xi· were correlated. The effect size was set as 0.4, 0.8, 1.2, 1.6 and 2. The 10 clusters were sorted by the sum of estimated mean absolute abundance of
the OTUs within the cluster that was truly associated from the greatest to the least.
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large (around top 70% and 30% among the 10 and 29 clusters
respectively); while when the sum of absolute abundance of the
associated OTUs was relatively small around lower 30% and 70%
among the 10 and 29 clusters respectively, OMiAT was always in
the lead. The power of MiAF was affected by the effect size and
underlying association patterns, but not the direction of the effect
(see the power comparison under the independent case of 10
clusters with positive and negative effects in Supplementary
Figure S6).

Figures 4, 5 displays the statistical power for continuous
outcomes under scenario 2 for independent and correlated
cases respectively, where 616 OTUs were divided into 10
clusters. The largest cluster consists of 171 OTUs (27.76%),
and the sizes of the rest clusters are between 23 (3.41%) and 68
(11.04%) (see details in Supplementary Table S1A). In
contrast to clearly different power comparison trend
between independent and correlated cases for binary
outcomes, the comparative power among the six methods
was mainly affected by the associated clusters for
continuous outcomes. MiAF continued to thrive when the
sum of estimated mean absolute abundance of the OTUs
within the selected cluster was relatively large (top 70%
among 10 clusters for independent case and all 10 clusters
for correlated case). We observed a great disparity in the
performance of MiHC between binary and continuous
outcomes, where MiHC was more capable of detecting the
association between microbial communities and a continuous
outcome. Besides, MiHC was barely able to detect the
association for small effect size scenarios, and its power
surged when the effect size raised to high level. MiHC had
the greatest power among all the methods for relatively small
sum of absolute abundance of the associated OTUs (around
lower 2/3 and 1/2 for independent and correlated case
respectively among 22 and 29 clusters), especially in some
results with 22 or 29 clusters where the associated clusters
tended to be in small size due to the large number of clustering
(see Supplementary Figures S7–S10).

Empirical Type I error rates of the six methods across different
simulation scenarios are shown in Table 2. Under the null model
of independent case where the selected OTU cluster did not play a
role, we had one unified assessment of type I error. For the
correlated case, we averaged the type I error rates over all clusters
within each scenario. The details of type I error rates for each
cluster are provided in Supplementary Tables S2–S7 for binary
and continuous responses respectively. Further, we investigated

the Type I error rates for the independent case with QQ-plot of
p-values in − log10 scale against a uniform distribution between 0
and 1 shown in Supplementary Figures S11, S12. We can see
that the error rate was conservative for MiHC under binary
responses, and that it was well under control for other
methods (~ 0.05) in general, which confirmed that our
method is statistically valid.

We compared the taxon selection results with the truth in
our simulation settings. To demonstrate the performance of
our heuristic taxon selection procedure, we took cluster 1 out
of 10 clusters for continuous outcomes under independent
case with effect size 1 as an example shown in Supplementary
Figure S13 (see more results in Supplementary Figures
S14–S16). The most often selected taxa over 1,000 replicates
tended to be in high abundance, belonging to the truly
associated cluster. MiAF had more difficulties in identifying
associated taxa with low abundance, since the selection of low
abundance taxa suffered from random noise, which renders
the selection results of low abundance taxa unstable and
unreliable. Therefore, the taxon selection result was more
useful for abundant taxa, leading to more trustworthy
insight into selecting taxa at relatively higher level of the
phylogenetic tree in general, as their counts were aggregated
from their descendants. To help navigate the taxa selection
result and focus on abundant taxa only, we provide a
visualization tool in our R package where the transparency
of each branch was set according to the abundance of its node.
The tendency to discover abundant associated taxa was
consistent with the prominent performance of MiAF when
the sum of absolute abundance of associated OTUs was large in
the previous power results. We called the 10% most often
selected taxa over 1,000 replicates as selected taxa in a
simulation scenario, or otherwise as non-selected taxa to err
on the conservative side. Under the independent case for
continuous outcomes with effect size 1 where 616 OTUs
were divided into 10 clusters, we also provided the
sensitivity and specificity for abundant taxa, specifically taxa
with abundance over 75%, 80% and 85% quantiles respectively
in Supplementary Table S8. The overall specificity was
considerably high, although the sensitivity was lower. It
suggests that a subset of the associated taxa can be
identified, and that we are unlikely to select wrong taxa
based on our heuristic taxon selection algorithm. It should
be noted that the taxa selection result is only exploratory and
should not be over-interpreted.

TABLE 2 | Type I error rates under independent case and mean type I error rates under correlated cases for both binary and continuous outcomes.

Simulation scenarios aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

Binary response Independent case 0.059 0.048 0.047 0.050 0.025 0.055
Correlated case, 10 clusters 0.046 0.042 0.046 0.043 0.032 0.051
Correlated case, 22 clusters 0.048 0.047 0.049 0.047 0.032 0.048
Correlated case, 29 clusters 0.050 0.046 0.047 0.048 0.025 0.048

Continuous response Independent case 0.049 0.047 0.059 0.055 0.038 0.050
Correlated case, 10 clusters 0.043 0.045 0.044 0.045 0.047 0.042
Correlated case, 22 clusters 0.047 0.048 0.047 0.046 0.039 0.049
Correlated case, 29 clusters 0.050 0.045 0.049 0.048 0.032 0.047
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3.2 Real Data Analysis
3.2.1 Application to a Throat Microbiome Dataset
In our first real data application to demonstrate the utility of our
proposed MiAF, we applied it and the competing methods to a
profiling study of microbial communities in the upper respiratory
tract to explore the effect of cigarette smoking (Charlson et al.,
2010). In the study, microbiota were collected from the right and
left nasopharynx and oropharynx of 29 smokers and 33 healthy
non-smokers. After PCR amplification and QIIME pipeline,
OTUs were constructed at 97% similarity. The preprocessed
dataset is included in many statistical software packages such
as GUniFrac (Chen et al., 2012), MiRKAT (Zhao et al., 2015) and
MiSPU (Pan et al., 2014) as the testing data, which contain
information on 856 OTUs in 60 samples (28 smokers and 32
nonsmokers), a slightly reduced data set from the original study.
Our application used this dataset following the papers of
MiRKAT and aMiSPU.

We applied MiRKAT, aMiSPU, OMiAT, aMiAD, MiHC and
MiAF on this dataset to test the association between smoking and
microbial community composition while controlling for gender.
Table 3 presents p-values of these six methods. The combined
MiAF generated a p-value of 0.0025, which confirmed the results
published in previous studies that the association between the
microbial community and smoking status remained significant
while adjusting for possible confounders (Brook and Gober, 2008;
Charlson et al., 2010; Schenck et al., 2016). MiHC was the only
method that failed to detect such association among the six
methods. The unweighted test of aMiSPU and MiAFu, as well
as aMiAD using alpha diversity metrics Richness, Shannon,
Simpson and phylogenetic diversity, alone failed to detect such
association at significance level 0.05, although their
corresponding combined results were significant. All the
component tests of MiHC failed to detect any association in
this dataset (see results of all the component tests of the six
methods in Supplementary Table S9).

Besides an overall evaluation of association, selecting
associated taxa in a microbial community is also of interest.
MiAF provides a heuristic taxon selection by choosing the top h
taxa in the p-value combination step, where h is the minimizer of
Equation 7. Supplementary Figure S17 shows the selected
associated taxa for this throat microbiome dataset. The
phylogenetic tree was plotted using the R package ggtree (Yu
et al., 2018). MiAF detected 1 associated node to be under-
presented in the smokers based on lower-tail p-values, and it
detected 128 associated nodes to be over-presented from upper-
tail p-values as well.

3.2.2 Application to a Stool Microbiome Dataset
HIV infection induces substantial gut microbiome alterations.
Lozupone et al. (Lozupone et al., 2013) revealed that HIV

infection was associated with highly characteristic gut
microbial community changes through 16 S rRNA sequencing
of feces. In our second real data application, we downloaded the
processed OTU data consisting of 10104 100% OTUs, i.e., ASVs,
from the MicrobiomeHD database (Duvallet et al., 2017). After
matching the samples to their clinical data, our analysis was
conducted based on 22 HIV-infected individuals and 13 HIV-
negative controls. After excluding OTUs with all zero counts in
the 35 samples, 9,460 OTUs remained in the analysis. We built
the phylogenetic tree using the QIIME2 pipeline (Bolyen et al.,
2019).

We investigated the association between disease status and the
overall microbial community composition using the six methods
all based on 10,000 permutations, adjusting for potential
confounder age. Table 4 shows the p-values generated by the
six methods, where all the methods were able to detect the
association at significance level 0.01 except for aMiSPU. While
the unweighted test of aMiSPU and aMiAD using Shannon,
Simpson and phylogenetic diversity, as well as the Simes test
combined by MiHC failed to detect any association, the results of
all the other component tests were significant at the 0.05 level (see
details in Supplementary Table S10). As in the first application,
we were also interested in finding individual taxa that are thought
to be associated with HIV status. To this end, MiAF detected 224
and 57 associated nodes from under- and over-presented in the
HIV-infected individuals respectively (phylogenetic tree plot was
not included because it was hardly readable due to the large
number of OTUs).

4 DISCUSSION

In this paper, we proposed an adaptive p-value combination
approach to construct a community-level association test from
those that are OTU-level based. In general, combining OTU-level
tests without adaptation or weighting may not generate
comparable statistical power to sophisticated methods
specifically designed for community-level association test. To
demonstrate the usage and statistical power of the proposed
approach, we constructed a community-level test, MiAF, by
combining the p-values of univariate score tests using
UniFrac-like and Bray-Curtis-like transformations and
weighting scheme, and showed that its statistical power is
comparable or better than methods specifically designed for
community test. We chose to combine the p-values of score
statistics to make it a fair comparison to the competing methods,
because the performance of our method depends on the selection
of univariate tests and the aMiSPU, MiRKAT and OMiAT test
statistics can all be viewed as functions of the score statistics with
similar weight selection.

TABLE 3 | P-values of aMiSPU, MiRKAT, OMiAT, aMiAD, MiHC and MiAF for the
association test between smoking status and throat microbial community.

aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

p-value 0.0025 0.0046 0.0096 0.0167 0.2249 0.0025

TABLE 4 | P-values of aMiSPU, MiRKAT, OMiAT, aMiAD, MiHC and MiAF for the
association test between HIV infectious status and gut microbial community.

aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

p-value 0.0114 0.0002 0.0001 0.0002 0.0001 0.0003
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It should be noted that the aMiSPU test can also be viewed as a
test that combines OTU-level score test statistics. However,
comparing to score statistic, p-value is a much more readily
available statistic for various univariate testing methods.
Although we demonstrated the usage of our proposed method
using score tests, p-values are the quantities that we ultimately
combine. This leads to the flexibility to our proposed framework
since other tests can be combined into community-level tests, as
long as they satisfy two conditions: 1) p-values (ideally one-sided)
are available and can correctly control type I error; and 2)
permutation or resampling methods exist to generate a
reference distribution for the p-values while maintaining the
correlation structure among the OTUs. We note that these
two condition are met by a lot of tests, such as the tests in
various regression models, where we can adopt a similar
permutation procedure that permutes the residual of the
condition of interest that regressed on the confounding
covariates. For example, using this strategy, it will be relatively
easy to construct a community-level test for survival outcome by
combining any survival models, such as the Cox model or the
accelerated failure time model. In addition, it is also possible to
combine OTU-level tests to accommodate longitudinal outcomes
or longitudinal microbiome measurements, which is our next
topic in the future research.

A side product of our method is taxon selection, which is
naturally provided by the minimizer. By plotting the selected taxa
along the phylogenetic tree, we can see that they tend to occupy
consecutive branches that leads to much fewer OTUs, which
matches our intuition, because if a species is over-presented, the
taxa in the upper hierarchy (such as genus, family, order, etc.) that
contains the species should also be over-presented. However, this
variable selection is only heuristic and is not the focus of this
paper, because the p-values we combined are from univariate
models, which perform marginal tests not conditional on other
OTUs. Therefore, the OTUs selected are only marginally related
to the outcome. It is still possible that some of the selected OTUs
correlate to the outcome through other OTUs, which is a
limitation of the proposed method. Another limitation is the
relatively slow computational speed compared to aMiSPU,
MiRKAT, OMiAT and MiHC when there are a large number
of taxa, but it is faster than aMiAD. When analyzing the data set
of our first real data application in a laptop with 8-core CPU and
8 GB unified memory, it takes 7 s for aMiSPU, 3 s for MiRKAT,

17 s for OMiAT, 21 s for MiHC, 5 min 45 s for MiAF, and 7 min
41 s for aMiAD. Despite relatively slower computational speed, it
is still computationally feasible to apply MiAF to real data sets
given that MiAF will only need to be performed once on the data
set to test the association. Improving the computational speed of
our method is one of our future work.
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