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Hepatocellular carcinoma (HCC) is a prevalent malignancy cancer worldwide with a poor
prognosis. Hepatic resection is indicated as a potentially curative option for HCCpatients in the
early stage. However, due to multiple nodules, it leads to clinical challenges for surgical
management. Approximately 41%–75%of HCC cases aremultifocal at initial diagnosis, which
may arise frommulticentric occurrence (MO-HCC) or intrahepaticmetastasis (IM-HCC) pattern
with significantly different clinical outcomes. Effectively differentiating the two mechanisms is
crucial to prioritize the allocation of surgery for multifocal HCC. In this study, we collected a
multifocal hepatocellular carcinoma cohort of 17 patients with a total of 34 samples. We
performed whole-exome sequencing and staining of pathological HE sections for each lesion.
Reconstruction of the clonal evolutionary pattern using genome mutations showed that the
intrahepatic metastogenesis pattern had a poorer survival performance than independent
origins, with variants in the TP53, ARID1A, and higher CNV variants occurring more
significantly in the metastatic pattern. Cross-modality analysis with pathology showed that
molecular classification results were consistent with pathology results in 70.6% of patients,
and we found that pathology results could further complement the classification for undefined
patterns of occurrence. Based on these results, we propose a model to differentiate the
pattern of multifocal hepatocellular carcinoma based on the pathological results and genome
mutations information, which can provide guidelines for diagnosing and treating multifocal
hepatocellular carcinoma.

Keywords: hepatocellular carcinoma, whole exome sequencing, whole slide images, molecular profiling and
subtyping, hepatitis B virus

INTRODUCTION

Liver cancer is ranked as the sixth most commonmalignancy cancer, and its incidence is rising (Sung
et al., 2021). Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting
for approximately 90% of liver cancer cases (Llovet et al., 2021). Roughly 41%–75% of patients with
HCC present with multiple intrahepatic tumors (Miao et al., 2014; Vogel et al., 2018). Despite there
existing standardized guidelines for multifocal HCC and indications for surgical resection, surgical
suggestions for individual patients remain complicated owing to the difficulty of accurately
predicting future tumor progression. These uncertainties for the recurrence of primary lesions
or metastatic possibility provide challenges to the prognosis after surgery for individual patients
(Viganò et al., 2019).
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Multifocal HCC may arise synchronously or metachronously
as a separate primary tumor (multicentric occurrence) or develop
due to intrahepatic metastases from the same primary cancer
(Baffy, 2015). Since the prognosis of hepatocellular carcinoma
patients under these two types varies greatly, it is crucial to
construct the correct diagnostic approach for these patients.
Several assessment methods, including pathological
examination, integration of hepatitis B virus (HBV) DNA by
PCR and DNA blot analysis, and heterozygosity analysis of DNA
microsatellite loci, have been recently developed to distinguish
between these two types of multifocal HCC (Study, 2012).
However, the combination of molecular and pathological
profiling with analytical methods systematically used to
distinguish between these two patterns are still lacking.

The advantage and rapid progress of next-generation
sequencing, such as whole-exome sequencing (WES), has
made it possible to comprehensively characterize the disease
mechanisms and altered genes in multiple cancers (Ally et al.,
2017; Yan et al., 2018; Nanki et al., 2020). This approach allows
the identification of novel molecular markers and the definition
of underlying biological mechanisms, thus facilitating the
stratification and characterization of cancers (Cortés-Ciriano
et al., 2022). In this study, we selected representative patients
of HBV-associated multifocal HCC who underwent tumor
resection and exhibited a variable postoperative course.

These HCC samples were conducted whole-exome sequencing
(WES) to obtain a complete genetic alteration profiling for each
patient. We then performed a systematic analysis of integrated
genomics and further correlated these with clinic pathological
data. We sought to comprehensively unravel the molecular
differences between the two multifocal HCC models as well as
differences in pathological features and identify molecular
markers for diagnostic, prognostic, and potential therapeutic
targets to guide the clinical diagnosis and treatment of
multifocal hepatocellular carcinoma.

METHODS

Mutation Analysis
First, we aligned the exome sequencing clean reads against the
human reference genome hg19 download from UCSC (http://
www.genome.ucsc.edu/) using BWA (Li and Durbin, 2009) with
the default parameters. To reduce systematic (non-random)
technical error, we applied base quality recalibration with the
Genome Analysis Toolkit (GATK) 4.0 (McKenna et al., 2010).
The duplicated reads was removed from the alignment files using
the Picard tools. Somatic variants, including single nucleotide
variants (SNVs) and small insertions and deletions changes
(Indels), were detected by Mutect2 of GATK 4.0 on the paired
tumor and normal samples. High confidence variants were
screened using the criteria of TLOD >10, and then they were
annotated by the vcf2maf tool (https://github.com/mskcc/
vcf2maf) to obtain nine types of mutations, including
“Missense Mutation”, “Nonsense Mutation”, “Nonstop
Mutation”, “Splice Site”, “Splice Region”, “In Frame Ins”, “In
Frame Del”, “Frame Shift Ins” and “Frame Shift Del” mutations.

Copy Number Analysis
The bioinformatics tool facet-suite (R package) (Shen and Seshan,
2016) was utilized to detect CNVs on paired sequencing reads of
tumor and normal samples from the same patient. We first
assessed the copy number of different segments and then
filtered those segments with a total copy number greater than
twice the DNA ploidy level as the amplification (AMP), and
segments with a total copy number equal to zero as deletions
(DEL). These AMP or DEL segments were the annotated with
genes located in the genome context to obtain gene-level copy
number alteration. To summarize total copy number variation at
the level of the whole exome, we calculated a CNV score, which is
similar to the TMB, simply by multiplying the length of CNV
segments by their relative average altered weight.

Tumor Mutational Burden Analysis
As the predictive biomarker in solid tumors (Wu et al., 2019), the
tumor mutational burden (TMB), was calculated for all tumor
samples by counting the non-synonymous mutation rate per
megabases. We screened nine types of non-silent mutations from
the analysis of the vcf2maf annotation tool. Those nine types of
variants include “Splice Site”, “Splice Region”, “Missense
Mutation”, “Nonstop Mutation”, “Nonsense Mutation”,
“Frame Shift Ins” and “Frame Shift Del”, “In Frame Ins”, “In
Frame Del”. Then these variants were all counted for TMB
calculation, and the values were normalized by the total length
of the CDS regions (36 Megabases) covered by the Agient V6
whole exome (Wang et al., 2020).

Microsatellite Instability and Mutational
Signature Analysis
We evaluated the MSI status of the tumor samples with the
bioinformatics tool Msisensor (Niu et al., 2014), and screened
MSI-H samples with the criteria of an MSIsensor score greater
than 20 (Shimozaki et al., 2021). We determined the frequency of
96 mutated triplets per tumor sample based on the distribution of
the six substitution patterns (C > A, C >G, C > T, T > A, T > C, T
> G) and the neighbor 5′ base and 3′ base (Alexandrov et al.,
2013). Together with their frequency, these triplets were
summarized to construct a 96 × N mutation type frequency
matrix, where N is the number of variants. We took the matrix as
the input to determine the 1–30 mutational signatures
(Alexandrov et al., 2020) from the Cosmic database (Tate
et al., 2019) and to assess the proportion of specific mutational
signatures in the samples using the bioinformatics tool
DeConstructSig (Rosenthal et al., 2016). 30 mutational
signatures were then reduced and classified to mutational
signature 1, mutational signature 3, mutational signature 6,
mutational signature 10 and others according to their different
frequencies in the HCC samples (others represent the less
frequently mutated mutational signatures in the HCC samples).

Phylogenetic Analysis
Phylogenetic analyses were performed to elucidate genes essential
for promoting tumor recurrence. We compared mutant variants
in samples from different cancer samples, counted unique and
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shared mutations, and used the common and unique mutations
in two cancer samples to construct a phylogenetic tree. The
phylograms were inferred using the R Bioconductor package
phangorn (Schliep, 2011). Through phylogenetic tree analysis,
we were able to identify early driver mutations and de novo
mutations at different stages, thus providing a comprehensive
interpretation of the relationships between different tumors.

Pathology Image Analysis
Feature extraction of cell nucleus from pathology images mainly
includes cancer region labeling, patch segmentation, color
normalization, nucleus segmentation, nucleus-level and
image-level feature extraction (Cheng et al., 2020): 1) The
whole slide images (WSIs) were labeled the cancer region
manually. 2) Non-overlapping image tiles with a size of
2048*2048 pixels with a resolution of 0.5 μm per pixel were
extracted from Whole Slide Images (WSIs). To remove the bias
of different staining procedures, all tiles were normalized based
on one reference image using the Macenko normalization
method. 3) Use a hierarchical multilevel thresholding
approach to segment the nucleus for each tile. 4) Calculate
10 features of each nucleus in each image patch. 5) For the nuclei

of all patches in oneWSI, each type of nucleus-level features was
dissected into 15 image-level features by combining a 10-bin
histogram and 5 distribution statistics (mean, std, skewness,
kurtosis, and entropy). In total, we calculated 100 image-level
features for each whole-slide image.

Statistical Analysis
We use the student t test to compare the difference between two
continuous variables. Kaplan-Meier survival analysis was used to
obtain survival curves reflecting the differences in prognosis
among tumor subtypes. Log-rank test was couducted to assess
the correlation. Mann-Whitney U test was utilized to analyze the
relationship between the two classification variables.

RESULTS

Collection of Multifocal HCC Samples
The clinical outcome of patients with HCC undergoing radical
surgery are closely related to the number of intrahepatic tumors.
The main purpose of this study was to explore genomic and
pathological characteristics among the different intrahepatic

FIGURE 1 | (A) Landscapes of frequently mutated genes in liver cancer. (B) Mutation signature of liver cancer. (C) Characterization statistics of TMB, CNV, MSI,
and Ploidy. (D) Copy number alterations in liver cancer.
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tumors and discover multiple modality indicators, thus we
specified the intrahepatic tumor numbers to be 2. Multifocal
HCC samples are collected from Peking University International
Hospital and Peking University Third Hospital, and the inclusion
criteria is as follows. The tumor satisfies the criteria for surgical
indications defined by the Chinese CSCO Guidelines for primary
HCC. Postoperative pathology confirmed that the tumor was
hepatocellular carcinoma. Tumors were radically resected (R0),
and the number of tumors was two. A total of 17 cases of patients
met the criteria, and 34 tumor samples were performed whole-
exome sequencing.

Molecular Profiling of Liver Cancer
A total of 17 patients with multifocal liver cancer were recruited
for our study, with two cancer foci collected per patient. Sixteen of
them were male, one was female, and the cohort’s median age was
45 years (distribution 43–67 years). The median follow-up time
was 42 months. WES was performed on 34 tumor samples and
paired samples of FFPE specimens, with a average 200× coverage
depth for both the tumor and normal samples. The detailed
clinical and pathological information of all patients used in this
research is given in Supplementary Table S1.

To disentangle somatic mutations andmolecular characteristics
of multifocal hepatocellular carcinoma, mutation analysis of 34
tumor samples identified 7,752 individual mutations, including
6,378 single nucleotide variants (SNVs) and 1,374 small insertions
and deletions changes (Indels) (Supplementary Table S2). The
mean number of non-synonymous mutations per sample was 77
(range: 10–176), corresponding to 3.5 non-synonymous mutations
per Megabyte (Mb), comparable to the TMB in the TCGA cohort.
To explore potential driver mutations in patients, we summarized
multiple genes with the highest mutation frequency (Figure 1A).
Themost commonlymutated genes in these patients were OBSCN,
MUC5B, TTN, ZNF469, MUC16, TP53, with VAF greater than
25%. The frequency of TP53 variants is comparable to that
observed in the TCGA cohort. Deletions were not widespread
in genes with high mutation rates, while BTN2A1, BTN3A1,
BTN3A3, BTN3A2, and FLG-AS1 were amplified in several
samples.

Mutation signature analysis showedmutation signature 1, 3, 6,
and 22 to be more prevalent in patients (Figure 1B). According to
published reports (Koh et al., 2021), Signature 6 is associated with
DNA mismatch repair defects and MSI tumors. Signature 1 is
associated with age at cancer diagnosis and has been detected in

FIGURE 2 | (A) Molecular typing strategy of two cancer subtypes. (B) Associations between cancer types and OS. (C) Comparison of the prevalence of altered
genes between two cancer subtypes. (D) Comparison of TMB, CNV, MSI, and Ploidy between two cancer subtypes.
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most types of cancer samples. Signature 3 is associated with
homologous repair and correlates with BRCA gene function.
Signature 22 has been found in urothelial (renal pelvis)
carcinoma and liver cancers.

We characterize molecular features of TMB, CNV, MSI, and
Ploidy. It is shown that the median TMB was around 5.15
(Figure 1C), and the median CNV was assessed at 214.9
(Figure 1C). The MSI analysis showed that most liver cancer
samples had low MSISensor scores, all less than 10 (Figure 1C).
Most of the samples had a ploidy around 2 (Figure 1C). The copy
number of chromosomes has more amplification events on
chromosomes 1 and 8 (Figure 1D).

Identification of Hepatocarcinogenesis
Pattern by Genomic Signature
We calculated the Jaccard similarity coefficient (Jaccard Index)
(Bu et al., 2021b) of two tumors in the sample patient based on the
analysis of shared mutations. An index of 0.01 was taken as the
screening threshold, and 17 patients were divided into two groups
in total. Among them, we defined those with index <0.01 as

separate primary hepatocellular carcinoma, 10 cases in total, and
those with index >0.01 as metastatic, 7 cases in total (Figure 2A).
The index of the metastatic group ranged from 0.08 to 0.7. The
analysis of PFS showed that patients with metastatic pattern
showed worse survival (p-value = 0.1142) (Figure 2B). Analysis
of differences inmutations between the two subgroups showed that
TP53 was more inclined to be present in the subgroup with the
metastatic pattern, with a p-value of 0.0212 (8/14 vs. 1/20).
ARID1A had a slight elevation in metastasis, with p-value =
0.2022 (4/14 vs. 2/20) (Figure 2C). The analysis of the
difference among TMB, CNV, MSI, and Ploidy showed a slight
increase in TMB (p-value = 0.1199, average = 6.35 vs. 5.44) and a
significant increase in CNV (p-value = 0.0327, average = 358.13 vs.
225.68) in the metastatic group. At the same time, there was no
significant difference between MSI and Ploidy (Figure 2D).

Phylogenetic Analysis of
Hepatocarcinogenesis
According to Jaccard’s similarity coefficient, seventeen
individuals were divided into two groups, of which seven were

FIGURE 3 | (A) Phylogenetic tree of patient Pt13. (B) Phylogenetic tree of patient Pt03.
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branching evolutionary (metastatic) patterns, and ten were
independent occurrence patterns (Supplementary Figure S1).
We further used phylogenetic tree analysis to show the
evolutionary patterns of different cancer lesions and discover
essential driver genes. The results shown by the phylogenetic tree
were consistent with the Jaccard similarity coefficient.

For example, in the case of Pt13, the two tumors are highly
similar according to the Jaccard similarity coefficient. Moreover,
according to the results of the phylogenetic tree, a total of 107
mutations occurred in the two lesions, of which 82 mutations
were shared in both samples (76.6%), i.e., located in the branching
part of the shared phylogenetic tree (Figure 3A). Among them,
ARID1A, TSC2, JAK3, CIC, CINNB1, and SETD2 were mutated
at the early stage of carcinogenesis, which played an essential role
in advancing early cancer development and progression.

In contrast, case of Pt03 had low level of similarity between
the two tumors. As shown by the phylogenetic tree, 345
mutations occurred in either of tumor, while only TNIP2
was a shared early mutation (Figure 3B). And TNIP2 is less
reported in cancer and is more like passenger mutation, so the
mutation sharing here may be due to technical bias of
sequencing or some accumulated alterations due to HBV
infection. The phylogenetic trees of remaining cases are
available at Supplementary Figures S1–S5.

Pathological Cross-Analysis
The results of molecular testing can provide precise results for
accurate diagnostic typing. However, more accessible in the clinic,
pathology testing require simpler processing and short time
consuming than molecular testing. Therefore, we attempted to

FIGURE 4 | (A) Pathological section of patient Pt17. (B) Pathological section of patient Pt10. (C) Associations between cancer types by pathologists and OS.
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compare pathology results from different individuals to
determine what percentage of molecular typing could be
consistently distinguished by pathology typing. In simple
words, assuming molecular typing results as the standard, we
wanted to see how much of a typing indication the pathology
could achieve. From there, we can determine the scenario in
which pathology and molecules are used in combination with
each other.

We had a mid-level pathologist interpret the pathological images
of these 17 patients and then compared the results of pathological
typing with those of molecular testing. The analysis of the results of
the 17 cases showed that 70.6% (12 cases) of the molecular typing
results could be distinguished by pathological indicators, using the
typical indicators of the nuclei of the pathological sections as
important measures. Case Pt17 was classified as metastatic by
pathological typing because the cell morphology of the two
tumors was very similar (Figure 4A). This result is consistent
with the results of molecular typing. In contrast, case Pt10 was
classified as the seperate primary HCC because the cell morphology
of the two tumors was quite different, such as the cellular atypia and
sinusoids (Figure 4B). In addition, the survival analysis results of
pathological typing showed that pathological interpretation could
slightly distinguish between the two cancer subtypes (Figure 4C).

Meanwhile, we used a machine learning approach (Cheng
et al., 2020) to extract 100 features of the pathological images,
represented by matrix vectors, to discriminate between two
subtypes by comparing the pathological features of two foci
slides. First, all features were combined to calculate the
correlation between the two foci of the same patient
(Figure 5C), and the results showed that the subtypes could
be distinguished by correlation (p < 0.001) (Figure 5A). Second,
all 100 pathological features were compared between two groups,
and we found that the features of rmean_bin4, rmean_bin5,
bmean_bin5, bmean_bin6, disMax_bin1,disMax_bin4 and
distMean_bin4 are significantly different between the two
groups (Figure 5B).

DISCUSSION

Hepatocellular carcinoma is a cancer with a high degree of
malignancy (Chidambaranathan-Reghupaty et al., 2021). In
this study, we collected a cohort of 17 patients with multifocal
hepatocellular carcinoma. Then we utilized the bioinformatics
approach to analyze the whole-exome molecular data and image
data of H&E stained histology slides. By calculating the Jaccard

FIGURE 5 | (A) Barplot of correlation from all pathological image feature. (B) Boxplot of correlation from 15 types of pathological image feature.
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Index between two tumor and reconstructing the tumor clonal
evolution, we revealed that intrahepatic metastasis and separate
primary patterns reflected from the unique gene mutations and
copy number alterations. We also utilized a machine learning
approach to extract 100 features of the pathological images, to
discriminate between two subtypes by comparing the
pathological features of two focal H&E slides.

As two standard approaches for accurate diagnosis in the clinic, we
explored the consistency between molecular testing and pathological
testing. We confirmed that the pathology results could have 70.5%
agreement with those of molecular testing. Based on these results, we
propose amulti-modality way to differentiate the pattern ofmultifocal
hepatocellular carcinoma using molecular or pathology testing in
different clinical scenarios to provide guidelines for diagnosing and
treating multifocal hepatocellular carcinoma.

Due to the scarcity of samples for multifocal hepatocellular
carcinoma, only 34 samples were collected in this study, which
may limit our construction of a more effective mathematical
model for molecular subtyping. We may not achieve a significant
outcome if the sample size is not large enough. Therefore, in this study,
we mainly took a differential comparison to discover possible
molecular biomarkers, and analyzed molecular and clinical features
to explore how well the molecules testing is consistent with the
pathology testing. Following this work, we are conducting a clinical
study of multifocal HCC, yielding a more extensive data collection in
the future. We will use advanced computational techniques such as
artificial intelligence to optimize further the mathematical model of
molecular typing (Tanaka et al., 2021), and some biological intelligent
interpreters (Bu et al., 2021a) to generate multiple biomedical
knowledge. Moreover, decision tools with multimodal
combinations (Patel et al., 2021) could also be developed to
optimize the diagnosis of multifocal HCC and thus guide the
clinical treatment of liver cancer.
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