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Endometriosis (EM), an estrogen-dependent inflammatory disease with unknown etiology,
affects thousands of childbearing-age couples, and its early diagnosis is still very difficult.
With the rapid development of sequencing technology in recent years, the accumulation of
many sequencing data makes it possible to screen important diagnostic biomarkers from
some EM-related genes. In this study, we utilized public datasets in the Gene Expression
Omnibus (GEO) and Array-Express database and identified seven important differentially
expressed genes (DEGs) (COMT, NAA16, CCDC22, EIF3E, AHI1, DMXL2, and CISD3)
through the random forest classifier. Among these DEGs, AHI1, DMXL2, and CISD3 have
never been reported to be associated with the pathogenesis of EMs. Our study indicated
that these three genes might participate in the pathogenesis of EMs through oxidative
stress, epithelial–mesenchymal transition (EMT) with the activation of the Notch signaling
pathway, and mitochondrial homeostasis, respectively. Then, we put these seven DEGs
into an artificial neural network to construct a novel diagnostic model for EMs and verified
its diagnostic efficacy in two public datasets. Furthermore, these seven DEGs were
included in 15 hub genes identified from the constructed protein–protein interaction
(PPI) network, which confirmed the reliability of the diagnostic model. We hope the
diagnostic model can provide novel sights into the understanding of the pathogenesis
of EMs and contribute to the clinical diagnosis and treatment of EMs.
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INTRODUCTION

Endometriosis (EM) is an estrogen-dependent inflammatory disorder, which afflicts about 10%–15%
of women of childbearing age (Parasar et al., 2017). It is defined as the presence of endometrial-like
tissue outside of the uterine cavity, which can lead to chronic pelvic pain, and infertility (Drabble
et al., 2021). However, the true prevalence of EMs is uncertain as visual laparoscopy is the gold
standard for the diagnosis of EMs (Taylor et al., 2018). At the moment, Sampson’s theory of
menstrual blood reflux observed in most patients is commonly accepted in the pathophysiology of
EMs, while only a small portion will develop into this disease (Burney and Giudice, 2012). However,
it could only explain a portion of EMs. Therefore, it’s necessary to further investigate a
comprehensive understanding of the pathogenesis of EMs and find effective molecular
biomarkers to improve the early diagnosis and treatment of EMs.

DNA microarray technology is a high-throughput detection method that can be used to provide
gene expression profiles and thus can help to screen disease-related genes and biomarkers (Yoo et al.,
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2009). With the rapid development of DNA microarray
technology, a large amount of high-throughput data has
accumulated available on public platforms. However, how to
make effective use of these data to screen critical disease-related
genes for the diagnosis of EMs is a great challenge. At present,
random forest and neural network are widely applied for disease
prediction (Yigit and Isik, 2018; Khan et al., 2019; Shaia et al.,
2019; Kugunavar and Prabhakar, 2021). Among them, random
forest algorithm can perform random sampling to screen the
target variables (Schonlau and Zou, 2020) and has high predicted
accuracy (Byeon, 2019; Chen et al., 2020). Furthermore, the
artificial neural network can be used to evaluate the accuracy
of predicted model with divided training and validation datasets
(Curchoe et al., 2020). Currently, there are some useful
visualization and analysis tools for neural networks, such as
NeuralNetTools (Beck, 2018), spiking neuronal networks
(Galindo et al., 2020), and Net2Vis (Bauerle et al., 2021).

Therefore, the combination of random forest and artificial neural
network would have better classification performance and more
meaningful selected features (Kong and Yu, 2018; Tian et al.,
2020). In this study, we firstly identified some differentially
expressed genes (DEGs) between EMs and normal samples from
public datasets in the Gene Expression Omnibus (GEO) database.
Through the random forest classifier, we screened these DEGs and
obtained seven important DEGs (COMT, NAA16, CCDC22, EIF3E,
AHI1, DMXL2, and CISD3). Then, we put these seven DEGs into an
artificial neural network to construct a novel diagnostic model and
verified its diagnostic efficacy in two public datasets (See the detailed
process in Figure 1). We hope this diagnostic model can provide
novel sights into the pathogenesis of EMs and improve the early
diagnosis and treatment of EMs.

MATERIALS AND METHODS

Data Download and Processing
The GSE51981, GSE6364, and GSE7307 datasets were
downloaded by the R package “GEOquery” (2.60.0) (Davis
and Meltzer, 2007) to obtain the expression profile data. Then,
the E-MTAB-694 dataset was downloaded through the Array-
Express database. The related annotation information
including the platforms, the probes, and ID conversion was
obtained from the GEO database. When multiple probes
corresponded to one gene symbol, the average expression
level of multiple probes was used as the expression level of
the corresponding gene. ID conversion was conducted with the
R package “org.Hs.eg.db” (v3.13.0). Furthermore, the
“removeBatchEffect” function in the R package “LIMMA”
(v3.48.3) (Ritchie et al., 2015) was used to adjust batch
effects, which were evaluated by principal component
analysis (PCA).

Differential Expression and Functional
Enrichment Analysis
Differential expression analysis was conducted on 77 EM
disease and 71 normal samples of the GSE51981 dataset

through the Bayesian analysis of the R package “LIMMA”.
The log2FoldChange > 1.5 and p-value < 0.05 were set as the
threshold of DEGs. The R package “pheatmap” (v1.0.12) was
used to perform clustering analysis of DEGs for the heatmap.
To explore the biological significance of these DEGs in the
pathogenesis of EMs, GO and KEGG pathway enrichment
analyses were performed through the R package
“clusterProfiler” (v4.1.3) (Wu et al., 2021) to identify
significantly enriched GO terms and significantly enriched
KEGG pathways with the threshold of p-value < 0.05.

The Construction of Hub Gene Network
The STRING (v11.5) (https://string-db.org/cgi/input.pl)
(Szklarczyk et al., 2021) has been widely applied to construct a
protein–protein interaction (PPI) network. Based on those DEGs,
the “Multiple proteins” option was selected. In the PPI network,
the minimum required interaction score was set as “high
confidence (0.700)”. Then, the cytoHubba (Chin et al., 2014)
was employed to identify hub genes. The eccentricity algorithm
was selected and 15 top-ranked genes were chosen as hub genes.
Finally, the hub gene network was visualized with Cytoscape (v3.
9.0) (Demchak et al., 2014).

Screening Differentially Expressed Genes
With the Random Forest Model
The R package “randomForest” (v4.6.14) (Liaw et al., 2014)
was used to construct a random forest model to screen DEGs.
The number of random seeds and decision trees was set as
1–5,000 and 3,000 in the random forest classifier originally,
respectively. Finally, the number of random seeds and decision
trees was set as 4,543 and 219, respectively, which represented
higher accuracy of the constructed model and stable model
error. The Gini coefficient method was used to obtain the
dimensional importance value of all variables from the
constructed random forest model. Those DEGs with an
importance value greater than 4 were screened as important
genes of EMs for subsequent model construction and
verification. The R package “pheatmap” was used to
perform clustering analysis of the screened important genes
for the heatmap in this dataset.

The Construction and Verification of the
Artificial Neural Network Model
The GSE6364 dataset downloaded through the R package
“GEOquery” was selected as the training set for the
construction of the artificial neural network model. After
the data normalization, the R package “neuralnet” (v1.44.2)
(Fritsch and Guenther, 2016) was used to construct an
artificial neural network model of those important
variables. The number of hidden neuron layers should be
two-thirds of the number of the input layer plus two-thirds of
the number of the output layer. Therefore, six hidden layers
were set as the model parameter to construct a classification
model of EMs through the predicted gene weight information.
The R packages “pROC” (v1.18.0) (Robin et al., 2011) and
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“ggplot2” (v3.3.5) (Gómez-Rubio, 2017) were used to
calculate the verification results of AUC classification
performance and draw the ROC curve. Another two
datasets E-MTAB-694 and GSE7307 were used to verify the
accuracy of the constructed neural network model for the

diagnosis of EMs. The R package “pROC” was used to draw
ROC curves for each dataset, and the AUC value was
calculated to verify the classification efficiency. Meanwhile,
the sensitivity and specificity in distinguishing the disease
samples from normal samples were calculated.

FIGURE 1 | Flow chart.

FIGURE 2 | Differential expression analysis. (A) Volcano plot of the result of differential expression analysis. The x-axis is log2 (fold change) and the y-axis is −log10
(adjusted p-value). The red dots represent significant upregulated expressed genes. The green dots represent significant downregulated expressed genes. The gray
dots represent genes expressed with no change. (B) Heatmap of these DEGs. The colors in the graph from red to pink indicate the change from high to low expression
levels. On the upper part of the heatmap, the blue band indicates the disease samples and the red band indicates the normal samples.
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RESULTS

Data Processing and Differential
Expression Analysis
The R package “GEOquery” was used to download the GEO
dataset GSE51981 (77 EM disease samples and 71 normal
samples) and obtain detailed information. We used the
“removeBatchEffect” function in the R package “LIMMA” to
adjust batch effects and then conducted principal component
analysis (PCA) analysis to evaluate the performance of batch
effect adjustment. PCA results (Supplementary Figure S1)
indicated that the disease samples were mixed with the normal
samples, which suggested the challenge of diagnosing. We also
used the R package “LIMMA” to perform differential expression
analysis for the dataset GSE51981 through the Bayesian test. We
finally identified 2,267 significantly upregulated and 285
significantly downregulated expressed genes between the
disease samples and the normal samples with the threshold of
fold change values of >1.5 and p < 0.05. The detailed information
of all DEGs is listed in Supplementary Table S1. The results of
these DEGs and the heatmap of these DEGs are visualized in
Figures 2A and 2B, respectively.

Functional Enrichment Analysis for DEGs
and the Construction of PPI Network
To explore the biological significance of these DEGs in the
pathogenesis of EMs, we performed GO and KEGG pathway
enrichment analyses through the R package ‘clusterProfiler’. GO
terms were classified into three categories: biological process
(BP), cellular component (CC), and molecular function (MF).
The top five GO terms of genes with significantly upregulated and
downregulated expression levels were visualized in Figures 3A,B.
The GO enrichment analysis results indicated that these
significantly upregulated expressed genes were mainly involved
in the transmembrane transporter activity, ATPase activity,
metallopeptidase activity, aldehyde dehydrogenase NADP+

activity, and lipid transporter activity (Supplementary
Table S2), while these significantly downregulated expressed
genes were mainly involved in the flavin adenine dinucleotide
binding, acyl-CoA dehydrogenase activity,
phosphatidylcholine transporter activity, extracellular
matrix structural constituent, and ATPase-coupled
intramembrane lipid transporter activity (Supplementary
Table S3). For KEGG pathway enrichment analysis, the
results indicated that these upregulated expressed genes
were significantly associated with the cAMP signaling
pathway, adrenergic signaling in cardiomyocytes,
aldosterone synthesis and secretion, ABC transporters, and
salivary secretion (Supplementary Table S4), while these
downregulated expressed genes were significantly associated
with fatty acid degradation and metabolism; valine, leucine,
and isoleucine degradation; lysosome; the PPAR signaling
pathway; and the Hippo signaling pathway (Supplementary
Table S5). Furthermore, we constructed a PPI network
through the STRING database. The hub genes selected from
the PPI network are shown in Supplementary Figure S2.

According to the eccentricity scores, we identified 15 hub
genes from the network, which had highest confidence scores.

Constructing the Random Forest Model to
Screen Differentially Expressed Genes
To screen DEGs, we put these DEGs into the random forest
classifier and set the number of random seeds to 4,543. By
referring to the relationship between the model error and the
number of decision trees (Figure 4A), we selected 219 trees as the
parameter of the random forest model, which represented a stable
error in the model. In the modeling process, we used the Gini
coefficient method to measure the importance of all variables
according to decreased mean square error and model accuracy
(Figure 4B). Finally, we selected seven DEGs (AHI1, DMXL2,
NAA16, CCDC22, CISD3, COMT, and EIF3E) with a mean
decrease of Gini index greater than 4 as important variables
for subsequent analysis. Interestingly, all these DEGs were
included in the 15 hub genes identified from the constructed
PPI network. Among these variables, AHI1 was the most
important, with the mean decrease of the Gini index being
much higher than other variables (Supplementary Table S6).
A small number of variables meant a small out-of-band error,
which represented a high accuracy of the constructed random
forest model. Based on these seven variables, we performed the
k-means clustering of the dataset. The results suggested that these
seven genes could be used to distinguish the disease sample from
the normal samples (Figure 4C). Furthermore, AHI1, DMXL2,
and NAA16 genes were clustered as a group with low expression
in the normal sample and high expression in the disease sample.
On the contrary, CCDC22, CISD3, COMT, and EIF3E were
clustered as another group with high expression in the normal
sample and low expression in the disease sample.

The Construction of the Artificial Neural
Network Model and the Evaluation of the
ROC Curve
Based on the R package ‘neuralnet’, we use the GSE6364 dataset
(21 disease samples and 21 normal samples) as the training set to
construct the artificial neural network model. Firstly, we
performed the preprocessing and normalization of this dataset.
According to the output results of the neural network model
(Figure 5A), it is illuminated that the entire training was
performed in 11,684 steps. Among the output results, the
predicted weights of each hidden neuron layer were −3.97906,
1.04457, 2.76611, −2.00181, −11.84206, and −0.90829
(Supplementary Table S7). Next, we drew the ROC curve to
evaluate the predicted performance; the AUC values of AHI1,
COMT, DMXL2, CISD3, NAA16, EIF3E, and CCDC22 were
0.7150, 0.7809, 0.6927, 0.7266, 0.7217, 0.7093, and 0.7050,
respectively (Figure 5B). The larger the AUC value of each
DEG is, the higher the credibility of the constructed diagnostic
model will be. We also used another two datasets E-MTAB-694
(18 disease samples and 17 normal samples) and GSE7307 (18
disease samples and 23 normal samples) to verify the accuracy of
the constructed neural network model. In the E-MTAB-694
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dataset (Figure 5C), the AUC values of the seven DEGs were
0.8226, 0.6623, 0.6836, 0.6625, 0.8367, 0.8471, and 0.8617. In the
verification results of the GSE7307 dataset (Figure 5D), the AUC
values of the seven DEGs were 0.7464, 0.6484, 0.7020, 0.6300,
0.9075, 0.8295, and 0.8327. In general, we constructed a novel
diagnostic model of EMs and verified its diagnostic efficacy
through the constructed artificial neural network in two public
datasets.

DISCUSSION

The combination of random forest and artificial neural
network can be used to construct a reliable predictive
model for the diagnosis of some diseases, such as polycystic
ovary syndrome (PCOS) (Xie et al., 2020) and ulcerative colitis

(Li et al., 2020). In this study, we identified 2,552 DEGs
associated with EMs in the GSE51981 dataset. Based on the
random forest classifier, seven important candidate DEGs
(COMT, NAA16, CCDC22, EIF3E, AHI1, DMXL2, and
CISD3) were screened. Then, we used the GSE6364 dataset
as the training set to construct the artificial neural network
model and evaluated the classification efficacy of the model in
E-MTAB-694 and GSE7307 datasets. The AUC values of the
ROC curve were about 0.7, which had great efficiency and
verified the diagnostic efficacy of the model. Furthermore, we
constructed a 15-hub-gene-based PPI network and confirmed
the reliability of the prediction model. Compared with the
Nnet package, we found that the neuralnet package had higher
accuracy of the predicted model (86.5% vs 81.1%). In total, the
constructed diagnostic model could provide new insight into
our understanding of the pathogenesis of EMs and identify

FIGURE 3 | The results of GO and KEGG enrichment analyses. (A) The top five GO terms of genes with significantly upregulated expressed level. (B) The top five
GO terms of genes with significantly downregulated expressed level. (C) The top 10 KEGG pathways of genes with significantly upregulated expressed level. (D) The top
10 KEGG pathways of genes with significantly downregulated expressed level.
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crucial biomarkers as diagnostic and therapeutic targets
of EMs.

Among these seven genes, COMT, NAA16, CCDC22, and
EIF3E have been reported to be associated with the
pathogenesis of EMs. Catechol-O-methyltransferase
(COMT) is highly expressed in the placental, adrenal gland,
ovary, and other tissues. The degradative pathways of the
catecholamine transmitters can relieve painful uterine
contractions (D’Astous-Gauthier et al., 2021). COMT
polymorphism may contribute to the risk of EMs and
adenomyosis (Li et al., 2018) and has a relationship with
EM susceptibility (Ji et al., 2017; Zhai et al., 2019). N-alpha-
acetyltransferase 16 (NAA16) is highly enriched in bone
marrow, testis, endometrium, and other tissues. It can alter
NAT 2 enzyme activity and thus contribute to the
susceptibility of EMs (Nakago et al., 2001). Coiled-coil
domain containing 22 (CCDC22), a membrane-binding
protein, is highly enriched in the spleen, lymph node, and

other tissues. Studies have demonstrated that there is also a
relationship between CCDC22 polymorphisms and EM
susceptibility (de Oliveira Francisco et al., 2017). Eukaryotic
translation initiation factor 3 subunit E (EIF3E) is highly
expressed in the ovary, lymph node, endometrium, and
other tissues. Its downregulation may be involved in
epithelial–mesenchymal transition (EMT) in EMs, possibly
through the preferential translation of snail (an inhibitor of
E-cadherin) (Cai et al., 2018) and involved in the development
of adenomyosis through activating the TGF-β1 signaling
pathway (Cai et al., 2019).

Interestingly, we identified another three important genes
(AHI1, DMXL2, and CISD3), which have never been reported
to be involved in the pathogenesis of EMs. Abelson helper
integration site 1 (AHI1) is highly enriched in testis, adrenal
gland, brain, prostate, endometrium, and other tissues, which
has upregulated expression level in EMs. The AHI1 protein
participates in reactive oxygen species (ROS) production in the

FIGURE 4 |Screening DEGswith the random forest model. (A) The relationship between the number of decision tree and themodel error. The x-axis represents the
number of decision trees, and the y-axis represents the error rate of the constructed model. When the number of decision trees is nearly 219, the error rate of the
constructed model is relatively stable. (B) The importance of all variables in the random forest classifier through the Gini coefficient method. The x-axis represents the
mean decrease of the Gini index, and the y-axis represents all variables. (C) The heatmap of k-means clustering in the GSE6364 dataset. The colors in the graph
from red to blue indicate the change from high to low in expression level. On the upper part of the heatmap, the blue band indicates the disease samples and the red band
indicates the normal samples.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8481166

She et al. A Diagnostic Model of Endometriosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


form of protein complexes (Liu et al., 2017). Excessive
production of ROS can result in oxidative stress (OS) and
overall immune activation and inflammation (Newsholme
et al., 2016). OS represents an imbalance between ROS and
antioxidants, which may have an essential role in the
endometriosis pathogenesis in the peritoneal cavity (Samimi
et al., 2019). Hence, the AHI1 protein may participate in the
EMs pathogenesis through multiple processes such as OS and
immune and inflammatory response.

Dmx like 2 (DMXL2) encodes a protein with 12 WD
domains, which has relatively low expression in
endometrium tissue and downregulated expression in EMs.
The DMXL2 protein is demonstrated to participate in the
regulation of the Notch signaling pathway (Sethi et al.,
2010) and acts as a transmembrane protein, which can

promote EMT through hyperactivation of the Notch
signaling pathway (Faronato et al., 2015). Interestingly,
decreased Notch signaling can contribute to impaired
decidualization through the downregulation of FOXO1 (a
downstream target of Notch signaling) and thus lead to the
pathogenesis of EMs (Su et al., 2015). Furthermore, studies
indicate that a circRNA with downregulated expression can
regulate EMT in EMs via the Notch signaling pathway (Zhang
et al., 2019). Therefore, the downregulated expression of
DMXL2 may activate the Notch signaling pathway,
contribute to EMT through the interaction with circRNA,
and thus lead to the pathogenesis of EMs.

CDGSH iron sulfur domain 3 (CISD3) is a member of the
CDGSH domain-containing family, whose expression is
upregulated in EMs. The CISD3 protein is redox active and

FIGURE 5 | The artificial neural network model and the evaluation of the ROC curve. (A) The visualization of the artificial neural network model. (B) The evaluation
results of the ROC curve in the GSE6364 dataset. (C) The verification results of the ROC curve in the E-MTAB-694 dataset. (D) The verification results of the ROC curve in
the GSE7307 dataset. The x-axis and y-axis represent specificity and sensitivity, respectively. The AUC value is the area under the ROC curve.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8481167

She et al. A Diagnostic Model of Endometriosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


is thought to play an important role in mitochondrial
homeostasis (Geldenhuys et al., 2019). Studies indicate that
mitochondrial homeostasis can be considered as the
therapeutic target for the treatment of EMs via limiting
ESC migration and promoting apoptosis (Suliman and
Piantadosi, 2016; Zhao et al., 2018). Furthermore, excessive
mitochondrial fission can initiate caspase 9-related
mitochondrial apoptosis and thus lead to cell death
(Fuhrmann and Brüne, 2017; Zhou et al., 2017). Therefore,
upregulated expression of CISD3 may affect mitochondrial
homeostasis and thus play an important role in the
pathogenesis of EMs.

In this study, based on random forest and artificial neural
network algorithm, we established a novel reliable diagnostic
model and screened out three important DEGs that have never
been reported to be involved in the pathogenesis of EMs. We
aimed at the supplement of existing methods and provided an
alternative marker panel for further research in the early
screening of EMs. However, there are some limitations for
this study. Firstly, all samples are only classified as EM
(disease) and non-EM (normal) groups, which may affect
the final screening results of DEGs. Secondly, the diagnostic
model is only verified in two public datasets, which need more
samples for verification. Thirdly, we conduct data analysis only
at the mRNA level in the tissue samples of EMs, which require
further validation at the mRNA and protein levels. In general,
our approach has a certain clinical value, which can be
beneficial for the early screening of EMs.
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