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Citrus fruit contains rich nutrients which is edible and of officinal value. Citrus flavanones are
widely used in the treatment of cardiovascular and other diseases, and they are a
foundational material of Chinese medicine. The chalcone-flavanone isomerase (CHI)
plays a key role in flavanone synthesis. Therefore, we comprehensively analyzed CHI
genes in Citrus species. Here, thirty CHI genes were identified for the first time in six Citrus
species, which were divided into CHI and FAP groups. Evolutionary analysis showed that
CHI gene members were highly conserved and were an ancient family. All CsCHI genes
showed the highest expression level after the second physiological fruit-falling period in C.
sinensis. CsCHI1 and CsCHI3 were highly expressed at 50 days after the flowering (DAF)
stage in albedo. The expression of CsFAP2 and CsCHI3 genes at the 50 DAF stage was
16.5 and 24.3 times higher than that at the 220 DAF stage, respectively. The expression of
CsCHI1, CsCHI3, and CsFAP2 genes in the peel was higher than that in the pulp,
especially in common sweet orange. The CsCHI3 gene maintained a high expression level
in the epicarp and juice sac at all periods. The members of CHls interacted with chalcone
synthase (CHS), flavonol synthase/flavanone 3-hydroxylase (FLS) and naringenin, and 2-
oxoglutarate 3-dioxygenase (F3H) to form heterodimers, which might together play a
regulatory role and participate in the flavonoid pathway. This study will provide the basis for
the selection of flavonoids in plant tissues and periods and fundamental information for
further functional studies.

Keywords: Citrus species, chalcone-flavanone isomerase, phylogenetic analysis, gene expression pattern,
flavanones

INTRODUCTION

The Citrus fruit belongs to the Rutaceae family and is one of the most widely cultivated fruit crops
worldwide (Wu et al., 2018). Many researchers believe that citrus originated in Southeast Asia and
began to be cultivated 4,000 years ago (Scora, 1975; Gmitter and Hu, 1990; Xu et al., 2013). Globally,
the annual output of citrus fruit is more than 120 million tons (FAO statistics, see URLs), which is not
only a nutritional source for human health but also rich in medicinal ingredients (Tocmo et al., 2020;
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Zhao et al,, 2020). Vitamin C, as an important part of human
nutrition, mainly comes from Citrus fruits (Xu et al, 2013).
Moreover, phytochemical studies report that the Citrus plant
has constituents including flavonoids, limonoids, and carotenoids
(Zibaee et al., 2020; Addi et al., 2022). Citrus extracts were widely
used in the treatment of cardiovascular, gastrointestinal, and
other diseases and have anti-oxidant, anti-inflammatory, and
nerve-protective effects (Szczepaniak et al., 2020; Zibaee et al,,
2020; Rao et al., 2021).

Flavonoids are a kind of important secondary metabolites
in plants, mainly in the form of glycosides (Winkel-Shirley,
2001; Kumar and Pandey, 2013). Phe and malonyl-coenzyme
A form flavonoids through the fatty acid pathway and
flavonoids constitute a diversified aromatic molecular family
(Winkel-Shirley, 2001). The characteristic of fruit flavanones
is that a disaccharidic moiety is connected to the 7 position of
aglycone. Narirutin and naringin in grapefruit, hesperidin and
narirutin in orange, and eriocitrin in lemon are the most
representative flavanones (Peterson et al., 2006; Chanet
et al, 2012; Kumar and Pandey, 2013). Citrus flavanones
positively influence the cardio-metabolic system and
prevent cardiovascular disease (Dauchet et al., 2005;
Dauchet et al., 2006; He et al., 2006). For example, the
positive effects of Citrus flavanones on the cardiovascular
system are mainly manifested in the reduction of
endothelial dysfunction, improvement of vascular function,
and lipid level reduction (He et al., 2006; Testai and Calderone,
2017). The beneficial mechanism of Citrus flavanones on the
cardiovascular system is mainly manifested in the vasodilator
activity, anti-ischemic activity, glucose tolerance, and anti-
oxidant and anti-inflammatory actions (Testai and Calderone,
2017). In addition, flavanones also have other pharmacological
properties, such as anti-aging and anti-tumor activities, anti-
oxidation, and immunity regulation (Yin et al., 2019).

Many studies have shown that naringenin plays an
important role in the synthesis of flavanones (Yin et al,
2019). Meanwhile, CHI is a key enzyme in the synthesis of
naringenin by the isomerization of 4, 2/, 4/, 6'-
tetrahydroxychalcone (Shirley et al., 1992). In 1986, the first
CHI gene was successfully cloned in Pisum sativum L. (Mehdy
and Lamb, 1987). So far, more than 3,000 nucleotide sequences
have been registered on the National Center for Biotechnology
Information (NCBI) GenBank, involving 290 species in 71
families (Yin et al., 2019). Among all these species, medicinal
plants account for a large proportion, such as Glycyrrhiza
uralensis, Ginkgo biloba L., and Mirabilis himalaica (Zhang
et al., 2009; Zhao et al., 2012; Lan et al., 2016). Arabidopsis
studies have shown the function of CHI as a unique enhancer
in the flavone pathway (Jiang et al., 2015). The CHI gene
promotes fruit yellowing in fresh-cut Chinese water-chestnut
(He and Pan, 2017). In addition, the study also found that the
expression of the CHI gene was positively correlated with
flavonoid accumulation in plants (Wang et al.,, 2010; Guan
et al., 2014; Guo et al.,, 2015).

At present, the regulation of flavonoids in the genus Citrus
mainly focuses on the identification and function of key
transcription factors and some enzymes. However, the
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systematic analysis of the CHI gene family in genus Citrus has
not been reported. Recently, a type IV CHI gene was identified in
Citrus reticulata cv. Suavissima, which enhances the
accumulation of flavanones and flavones (Zhao et al., 2021).
This study further supports the importance of comprehensively
identifying and analyzing the CHI gene family in Citrus,
including gene structure, molecular characterizations,
molecular evolution, and genes expression patterns. To
conclude, this study improves the understanding of Citrus CHI
genes and provides a reference for selecting tissue and period for
flavonoid extraction. This study will be of great significance for
further understanding the mechanism of flavonoid synthesis in
Citrus species.

MATERIALS AND METHODS

Identification and Characterization of
Putative CHI Proteins in Citrus

The Citrus genome and genome annotation files were obtained
from the Citrus Pan-genome to Breeding Database (CPBD) (Xu
et al,, 2013; Wang X. et al.,, 2017; Wang et al., 2018; Huang et al,,
2021), including Citrus clementina, Citrus grandis, Citrus
reticulate, Citrus media, Citrus ichangensis, and Citrus sinensis.
The Arabidopsis and rice genome and genome annotation files
were downloaded from The Arabidopsis Information Resource
(TAIR) and Rice Genome Annotation Project (RGAP),
respectively (Kawahara et al, 2013; Berardini et al., 2015).
Selaginella moellendorffii and Physcomitrium patens genome
files were obtained from Phytozome (Rensing Stefan et al,
2008; Banks et al., 2011; Goodstein et al., 2012).

The chalcone domain proteins were identified from six Citrus
species using the HMMER software according to the chalcone
domain, with a threshold of e-value < e~ (Johnson et al., 2010).
The domain of chalcone-flavanone isomerase (CHI) proteins
(PF02431) was downloaded from the Pfam database and
confirmed by the Swiss-Prot database (El-Gebali et al., 2019
UniProt, 2019). We validated candidate protein sequences again
using the SMART database, and removed protein sequences with
obvious errors, of length smaller than 150 aa, and/or >95%
identity (Sun et al, 2015; Letunic and Bork, 2018). The
molecular weight (MW) and isoelectric point (pI) of chalcone
domain proteins were calculated by using the ExPASy online tool
(Bjellgvist et al., 1993). The subcellular localization of chalcone
domain proteins was predicted by using the Protein Subcellular
Localization Prediction Tool (PSORT) (Peabody et al., 2020).

Gene Structure and Motif Analyses

The sequences and annotation information of CHI genes were
obtained from the genome database. We identified the gene
structures, including exon, intron, and 3’ UTR and 5’ UTR
regions, according to the genome annotation file using the
TBtool software (Chen et al., 2020). We retrieved motifs of
CHI protein sequences using the Multiple Em for Motif
Elicitation (MEME) tool with the following parameters: the
motif width was set to 6-50, the motif number was set to 12,
and any number of repetitions (Bailey et al., 2015).
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Phylogenetic and Synteny Analyses

The phylogenetic trees were conducted according to neighbor-
joining (NJ) and maximum likelihood (ML) methods,
respectively (Saitou and Nei, 1987; Jones et al, 1992). To
categorize CHIs, six referential A. thaliana CHIs were used:
AtCHI1 (AT3G55120), AtCHI2 (AT5G66220), AtCHI3
(AT5G05270), AtFAP1 (AT5G66230), AtFAP2 (AT2G26310),
and AtFAP3 (AT1G53520) (Berardini et al, 2015). The
phylogenetic trees of the NJ method were conducted using
MEGA 7.0 with the following parameters: 1,000 bootstrap
resampling,  pairwise  deletion = option, and  the
Jones-Taylor-Thornton (JTT) model. The phylogenetic trees
of the ML method were conducted using MEGA 7.0 with the
following parameters: 1,000 bootstrap resampling, complete
deletion option, and the Jones-Taylor-Thornton (JTT) model
(Kumar et al., 2016).

For the purpose of identifying the synteny of CHI genes, the
genome sequence of C. grandis and C. sinensis was downloaded
on a local server. First, we merged the genomic data
corresponding to the two species. The protein sequences
were aligned using the BLAST software with the following
parameters: e-value < le”> and number threads = 10 (Ye et al.,
2006). We analyzed the genome-wide synteny using the
MCScanX software with alignment significance (E-value <
le™) (Wang et al, 2012). The gene pairs of synteny were
extracted from the collinearity and tandem files. We visualized
synteny gene pairs at the whole chromosome level using the R
package circlize.

Expression Pattern Analysis of CHI Genes
RNA-seq data for C. sinensis were obtained from the NCBI GEO
DataSets under accession numbers PRJNA689213 and
PRJNA517400 (Feng et al., 2021; Huang et al, 2021). The
transcriptome data of pulp and peel contained two types of
sweet oranges (Valencia orange and common sweet orange),
involving six varieties. The Valencia orange included “Rohde
Red Valencia,” “Delta Valencia,” and “Cutter Valencia” oranges.
The common sweet orange included “Xianfeng,” “Jincheng,” and
“Taoye” oranges (Huang et al, 2021). Compared with the
common sweet orange, Valencia orange belonged to late-
ripening sweet oranges which had poor mastication traits (Wu
et al, 2020). The transcriptome data of fruit development
included four tissues (albedo, epicarp, juice sac, and segment
membrane), involving four periods (the second physiological
fruit-falling period, the expansion period, the coloring period,
and the full-ripening period), which were divided into six time
points (Feng et al., 2021). We extracted the expression of CHI
genes and analyzed the expression pattern using the R package
pheatmap.

To further verify the specific expression of genes, we detected
the relative expression of CsCHI genes in fruit tissue by real-time
quantitative PCR. The isolation of total RNA and the
construction of the cDNA library were carried out using the
TaKaRa kit (Code No. 9767 and Code No. RR047A). Specific
primers of CsCHI genes for qRT-PCR were designed using
Primer3Plus tools (Supplementary Table S1). We calculated
the relative expression of CsCHI genes using the delta—delta
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CT method with the actin gene from sweet orange as the
reference gene.

CHI Genes Involved in Flavonoid

Metabolism Analysis

Based on the genome sequence and annotation file, the protein
sequence and annotation information of CHI proteins were
extracted by TBtool software (Chen et al., 2020). We predicted
protein interactions in the STRING database by homologous
sequence alignment (Szklarczyk et al, 2017). Molecular
regulatory pathways were analyzed by the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). The
chemical molecular structure of matter was visualized using the
MolView tool (Smith, 1995).

RESULTS

Characterization of Chalcone Domain

Proteins in Citrus Species

By combining BLAST and HMM searches, a total of 30 chalcone
domain proteins were identified across six Citrus species
(Table 1). Then, each putative protein was assigned to their
closest Arabidopsis  orthologous proteins and named
(Supplementary Figure S1; Table 1). In total, this Citrus
chalcone domain included 13 CHI and 17 fatty acid-binding
protein (FAP) genes (Table 1). We obtained five CHI genes in
each species, but C. clementina contained two CHI3 (CcCHI3;1
and CcCHI3;2) genes without FAPI genes. The sequence lengths
varied between 169 and 640 amino acids (aa), the isoelectric point
(pI) ranged from 4.81 to 9.23, and the molecular weight (MW)
varied from 18.98 to 70.85 kDa (Table 1). Subcellular localization
prediction results showed that all CHI subfamily members were
predicted to be targeted to the cytoplasm, whereas, CrCHII,
CmCHII, and CgCHI1 were predicted to be located in the
cytoplasm and nucleus, and CcCHI3; 2 was predicted to be
located in the cytoplasm and mitochondria (Table 1).

We showed the relationships among the 30 CHI genes in the
phylogenetic tree (Figure 1A). These proteins were clustered into
five groups, which were similar to the groups of Arabidopsis CHI
(Supplementary Figure S1). A cluster analysis again verified the
differences between C. clementina CHI members and other
species. The motif analysis showed that 12 conserved motifs
were identified in 30 CHI/FAP proteins, and the length of the
12 motifs ranged from 21 to 50 aa (Figure 1B). Motifs 1, 3, and 5
together spread over the chalcone domain of CHI proteins
(Figure 1B). Even though CHIs and FAPs had the chalcone
domain, their amino acid sequences were not completely
consistent. Although most of the FAP2 members shared the
11 conserved motifs, CrFAP2 lacked motifs 6, 10, and 12
(Figure 1B). We found that the members of each group had
similar motif characteristics. For example, motifs 5, 3, 1, and 2
joined together and appeared in the CHI3 group, whereas motifs
9,3,1,5,4, and 2 joined together and appeared in the CHI1 group
(Figure 1B). Citrus CHI genes had a rather loose gene structure,
including introns ranging from 3 to 10 (Figure 1C). Except for
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TABLE 1 | Characteristics of the CHI genes identified in Citrus.

Chalcone-Flavanone Isomerase Genes in Citrus

Name Gene ID Locus Protein length (aa) MW (kDa) pl Localization Species
CcCHI1 Ciclev10032697m Ciclev10032697m 222 23.98 5.04 Cytoplasm Citrus clementina
CcCHI3; 1 Ciclev10032749m Ciclev10032749m 209 23.23 5.01 Cytoplasm Citrus clementina
CcCHI3;2 Ciclev10032801m Ciclev10032801m 197 21.85 5.1 Cytoplasm/mitochondria Citrus clementina
CcFAP2 Ciclev10008420m Ciclev10008420m 419 45.93 8.43 Cytoplasm Citrus clementina
CcFAP3 Ciclev10021578m Ciclev10021578m 279 30.08 9.02 Mitochondria Citrus clementina
CgCHI1 Cg79005600 Cg79005600 640 70.85 5.68 Cytoplasm/nucleus Citrus grandis
CgCHI3 Cg7g003710 Cg7g003710 209 23.32 4.95 Cytoplasm Citrus grandis
CoFAP1 Cg5g035430 Cg5g035430 283 31.23 8.95 Nucleus Citrus grandis
CgFAP2 Cg4g018640 Cg4g018640 419 45.96 8.43 Cytoplasm Citrus grandis
CgFAP3 Cgbg015710 Cgbg015710 188 20.52 6.58 Cytoplasm Citrus grandis
CiCHI1 Ci123750 scaffold_98 498 55.13 5.01 Cytoplasm Citrus ichangensis
CICHI3 Ci070860 scaffold_40 209 23.23 5.01 Cytoplasm Citrus ichangensis
CiFAP1 Ci208590 scaffold_290 283 31.15 8.96 Nucleus Citrus ichangensis
CiFAP2 Ci086900 scaffold_54 419 45.90 8.58 Cytoplasm Citrus ichangensis
CiFAP3 Gi157120 scaffold_155 279 30.07 9.14 Mitochondria Citrus ichangensis
CmCHI1 Cm154640 scaffold_243 608 67.18 5.3 Cytoplasm/nucleus Citrus media
CmCHI3 CmQ078090 scaffold_79 209 23.11 5.09 Cytoplasm Citrus media
CmFAP1 Cm230370 scaffold_554 282 31.09 8.8 Nucleus Citrus media
CmFAP2 Cm086460 scaffold_94 419 45.95 8.43 Cytoplasm Citrus media
CmFAP3 Cm084050 scaffold_90 279 30.17 9.14 Mitochondria Citrus media
CrCHI1 MSYJ042510 scaffold86082_cov97 608 67.04 5.24 Cytoplasm/nucleus Citrus reticulata
CrCHI3 MSYJ145200 scaffold86030_covo2 209 23.23 5.01 Cytoplasm Citrus reticulata
CrFAP1 MSYJ218720 scaffold132_cov94 282 31.03 8.96 Nucleus Citrus reticulata
CrFAP2 MSYJ122560 scaffold294_cov92 265 29.47 7.57 Mitochondria Citrus reticulata
CrFAP3 MSYJ007070 scaffold835_cov91 279 30.14 9.14 Mitochondria Citrus reticulata
CsCHI1 Cs7928130 Cs7928130 222 23.98 5.04 Cytoplasm Citrus sinensis
CsCHI3 Cs7g29780 Cs7g29780 169 18.98 4.81 Cytoplasm Citrus sinensis
CsFAP1 Csbg31220 Csbg31220 223 24.98 8.9 Mitochondria Citrus sinensis
CsFAP2 Cs4g06290 Cs4g06290 419 45.93 8.43 Cytoplasm Citrus sinensis
CsFAP3 Csbg13060 Csbg13060 279 30.12 9.23 Mitochondria Citrus sinensis

CsCHII carrying three introns, most of the CHII genes had six
introns in their genomic DNA. In the FAP2, all the genes
possessed numerous introns, with 10 or 11 introns
(Figure 1C). Combined with the phylogenetic tree, it was
found that the CHI genes closely related to evolution had
similar exon and intron structures in terms of intron number,
location, and exon length (Figure 1).

Phylogenetic Analysis of CHI Genes

The evolutionary relationships of CHI genes were further
explored by phylogenetic and syntenic analyses. Fifty two CHI
genes were obtained in 10 species, including seven dicotyledons
(C. clementina, C. grandis, C. reticulata, C. media, C. reticulata, C.
sinensis, and A. thaliana), monocotyledons (O. sativa), lycophyte
(S. moellendorffii), and moss (P. patens) (Figure 2). Here, we
identified four, four, and seven CHI genes in P. patens, S.
moellendorffii, and O. sativa, respectively. The phylogenetic
tree showed five clades, including CHI1/2, CHI3, FAP1, FAP2,
and FAP3, whereas, the phylogenetic tree of seven dicotyledons
strongly supported these subclades (Supplementary Figure S1).
Four S. moellendorffii CHI genes were distributed to clades CHI1/
2, CHI3, FAP2, and FAP3, respectively (Figure 2). Four P. patens
CHI genes were distributed to clades CHI3, FAP2, and FAP3,
respectively (Figure 2). The CHI gene might retain more ancient
genetic information in plant evolution. We found that the CHI
genes of angiosperms had a closer relationship in the subclades.
Among them, the CHI genes of Citrus species were more closely

related to A. thaliana than O. sativa. In general, CHI genes were a
good gene resource for studying plant evolution. Although each
plum plant contains five CHI genes, the CcFAPI gene was missing
in C. clementina, but two CHI3 genes (CcCHI3;1 and CcCHI3;2)
were added in the CHI3 clades, which might be related to the
expansion/contraction event of the gene family in the process of
C. clementina evolution.

Synteny Analysis

Based on the genome at the chromosome level of C. grandis and
C. sinensis, we carried out a syntenic analysis of the CHI gene.
CgCHI and CsCHI genes were located on chromosomes 4, 5, and
7, respectively. The collinear blocks 11, 22, and 18 containing
4,251 gene pairs were identified on chromosomes 4, 5, and 7,
respectively (Figure 3A, Supplementary Table S2). The
distribution of the syntenic genes across chromosomes showed
that there was an obvious correlation between the chromosomes
(Cg4g vs. Cs4g, Cg5g vs. Cs5g, and Cg7g vs. Cs7g). The checking
gene collinearity within a genome showed that 80% of CHI genes
(CsCHI3 and CgCHI3, CsFAP3 and CgFAP3, CsFAP2 and
CgFAP2, and CsFAPI and CgFAPI) were located in collinear
blocks for C. grandis and C. sinensis (Supplementary Table S3).
One tandem duplication was detected for CHI genes among C.
grandis (CgFAP2 and CgFAP2t), which were located on
chromosome 4 [(Figure 3B, (Supplementary Table S3)].
These results further proved the close relationship between C.
grandis and C. sinensis.
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Expression Pattern Analysis of CHI Genes

During the Fruit Development

We collected the expression profiles of C. sinensis (‘Fengjie 72-1')
albedo, epicarp, juice sac, and segment membrane from six fruit
development stages, including 50 days after flowering (the second
physiological fruit-falling period); 80, 120, and 155 days after
flowering (the expansion period); 180 days after flowering (the
coloring period), and 220 days after flowering (the full-ripening
period) (Feng et al., 2021). The average expression of all CsCHI
genes was the highest in the 50 DAF stage, then decreased rapidly,
and increased slightly in the 155 DAF stage (Supplementary
Table S4). As shown in Figure 4A, CsCHII and CsCHI3 were
highly expressed at the 50 DAF stage in albedo. After that, with
the continuous growth and development of fruits, the expression
level dropped during the 80 to 220 DAF stage. Surprisingly, the
expression level of the CsFAP2 gene was very high in the 50 DAF
stage, which was 12.2 times higher than that in the 220 DAF stage.
The CsFAP3 gene maintained a high expression level in the 80 to

180 DAF stage. As shown in Figure 4B, the expression of CHI
genes was higher in the epicarp than in albedo. The expression of
CsCHI1 was upregulated from the 155 DAF stage, and the
expression of the CsFAP2 gene was relatively low at the 80
DAF stage. As shown in Figure 4C, all genes had the highest
expression at the 50 DAF stage in the juice sac, and then the
expression began to decline, except the CsFAPI gene. The
expression of the CsFAP2 gene at the 50 DAF stage was
16.5 times higher than that at the 220 DAF stage. The
expressions of CsFAP2 and CsCHI3 genes at the 50 DAF stage
were 16.5 and 24.3 times higher than that at the 220 DAF stage,
respectively. As shown in Figure 4D, five CsCHI genes had the
highest expression at the 50 DAF stage in the segment membrane,
and then the expression began to decline. We found that the
expression of the CsFAPI gene increased slightly at the 155 and
180 DAF stages. The analysis of gene expression patterns showed
that CsCHI genes played a major regulatory role at the 50
DAF stage.
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fruit development

FIGURE 3| Syntenic analyses of CH/ genes in C. grandis and C. sinensis. (A) Collinear genes of C. grandis and C. sinensis. Grey lines represent all collinear genes,
red lines represent CHI genes between C. grandis and C. sinensis. (B)Tandem genes of C. grandis CgFAPZ2 genes. Expression pattern analysis of CHI genes during the
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Expression Pattern Analysis of CHI Genes in

Different Tissues

To investigate the expression pattern of CsCHI genes, 36
samples were used for the expression patterns analysis,
including peel and pulp from six varieties based on the
available transcriptome data (Huang et al., 2021). The six
varieties were selected from two categories: common sweet
orange and Valencia orange. The Valencia orange ripened later
than the common sweet orange and had a poor mastication
trait (Wu et al., 2020). We found that five CsCHI genes showed
specific expression in the pulp and peel of different varieties
(Figure 5, Supplementary Table S5). On the whole, these
genes showed higher expression levels in the peel, and the
lowest expression levels in the common sweet orange pulp.
CsCHII1 and CsFAP2 genes with similar expression patterns
were clustered into the same subset and specifically expressed
in the peel (Figure 5). Compared with pulp, the average
expression of CsCHII and CsFAP2 genes were upregulated
by 2.6 and 4.5 times in the peel, respectively. We found that the
CsFAPI gene was highly expressed in the peel and pulp, and
only the CsFAPI gene was downregulated in the peel, but the
difference was not significant (Figure 5). These results showed
that the CsFAPI gene had no tissue-specific expression pattern
in the peel and pulp. Interestingly, the CsFAP3 gene was more
likely to be upregulated in the three Valencia orange varieties.

Meanwhile, the expression of CsCHII, CsFAP2 and CsFAP3
genes was hardly detected in the common sweet orange pulp
(Figure 5).

To further examine the expression level of CsCHI genes in different
fruit tissues, we compared the expression levels of these genes in the
albedo, epicarp, juice sac, and segment membrane (Figure 6;
Supplementary Figure S2). We observed that CsCHI genes were
mainly expressed in the epicarp and juice sac. Interestingly, the
expression pattern of the CsCHI gene in the epicarp and juice sac
showed a negative correlation during fruit development. The CsCHI3
gene was highly expressed in the epicarp and juice sac, followed by the
segment membrane. The expression of the CsCHI3 gene was hardly
detected in the albedo at any developmental stage of the fruit. CsCHI1
remained highly expressed after the expansion period in the epicarp.
Meanwhile, the expression of CsCHII was detected in the albedo at
the early stage of fruit development. The expression level of CsFAP3
was relatively low in four tissues, and there was no obvious tissue-
specific expression pattern. CsFAPI and CsFAP2 genes were mainly
expressed in the epicarp, especially in the late stage of fruit
development.

Analysis of CHI Genes Involved in Flavonoid

Metabolism
To understand the role of CHI genes in the anthocyanin synthesis
pathway, we combined the KEGG and STRING databases and
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previous studies to analyze the molecular regulation mechanism
of CHI genes. We found that five CHI genes had similar gene
expression patterns, and there was direct interaction between
their expressed proteins (Figure 7A, Supplementary Figure S3;
Supplementary Table S6). These results indicated that the part
members of CHI genes might play a regulatory role together and
participated in the regulation of life activities. In addition, the
CHIs and TTs, F3H, and FLSs also had strong interactions, and
were the key proteins in this interaction network (Figure 7B).
TT4, belonging to the chalcone and stilbene synthase family,
encoded chalcone synthase (CHS). CHS could catalyze
p-coumaroyl-CoA to form naringenin chalcone, which was a
key enzyme involved in the biosynthesis of flavonoids.
Naringenin chalcone further formed naringenin under the
catalysis of CHI. Naringin formed apigenin and
dihydrokaempferol under the action of flavonol synthase/

flavanone 3-hydroxylase (FLS) and naringenin, 2-oxoglutarate
3-dioxygenase (F3H), respectively (Figure 7C; Supplementary
Figure $4). FLS catalyzed the oxidation of both enantiomers of
naringenin to give both cis- and trans-dihydrokaempferols. F3H
catalyzed the 3-beta-hydroxylation of 2S-flavanones to 2R, 3R-
dihydroflavonols which were intermediates in the biosynthesis of
flavonols, anthocyanidins, catechins, and proanthocyanidins in
plants. The results showed that CHIs played a key role in
flavonoid metabolism and were an essential substrate for
naringin synthesis.

DISCUSSION

Flavonoids are composed of many metabolites with different
structures, which play a key role in plant growth and development
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and have important medicinal value (Moore et al., 2014; Testai
and Calderone, 2017; Brunetti et al, 2018). Naringenin, an
aglycone called naringenin according to its chemical structure,
belongs to flavonoids (Szczepaniak et al, 2020). Naringenin
produced by CHI is an important precursor of other
flavonoids. The Arabidopsis genome contains six CHI proteins
with the chalcone domain, which are AtCHI1 (AT3G55120),
AtCHI2 (AT5G66220), AtCHI3 (AT5G05270), AtFAP1
(AT5G66230), AtFAP2  (AT2G26310), and  AtFAP3
(AT1G53520) (UniProt, 2019). In our study, 30 CHI proteins
were identified in six Citrus species, with five proteins in each
species. The CHI2 protein homologous to Arabidopsis was

missing in all Citrus species. AtCHI2 catalyzes the
intramolecular cyclization of bicyclic chalcone to tricyclic (s)-
flavanone, which has the same function as AtCHI1 (UniProt,
2019). AtCHII and AtCHI2 are considered to be two proteins,
and the identity of the sequence is only 63.6%. However, the study
of chalcone-flavanone isomerase protein genes in Arabidopsis
shows that AtCHI2 is a pseudogene (Ngaki et al., 2012). The CHI
genes of six Citrus plants showed that the pseudogene Citrus
CHI2 could not be retained in the process of evolution.

In previous studies, CHI proteins are divided into four types (Type
I, 1L, IIT, and IV) according to characteristics of the sequence structure
(Zhao et al,, 2021). Only the CHI proteins of types I and II have

Frontiers in Genetics | www.frontiersin.org 10

April 2022 | Volume 13 | Article 848141


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Wan et al.

enzymatic cyclization activity (Ralston et al., 2005). The CHI of type
IIT (FAP) is the prototype of other CHI-fold proteins, but it has a fatty
acid-binding ability (Ngaki et al., 2012). The secondary structure of
the CHI of type IV is similar to CHI of type I and II, while the key
residues are substituted (Ngaki et al, 2012). The CHI protein of
Arabidopsis contains three CHI and three FAP proteins (Ngaki et al.,
2012). At the same time, the CHI proteins of six Citrus species are
evenly divided into five subgroups according to the homologues of
Arabidopsis. Each subgroup had a similar gene structure and
conserved motif distribution. These results also further confirmed
the functional differences of different types of CHI proteins.

CHI is obviously a lack of related proteins in the primary
metabolism of the flavanone pathway (Jez et al., 2000; Jez et al,
2002), which makes the origin of CHI difficult to understand. In 2012,
Micheline et al. showed that CHI originated from FAP3 through
phylogenetic analysis (Ngaki et al., 2012). Similar results were also
confirmed in our CHI phylogenetic tree. The chalcone-binding site of
bona fide CHI and key catalytic residues lacked in CHI-like
homologues of bacteria and fungi (Gensheimer and Mushegian,
2004). At the same time, some studies showed that CHI genes are
restricted to vascular plants (Ngaki et al., 2012). The difference in the
number of CHI genes between non-seed plants and Citrus may be the
loss or increase of genes caused by species divergence events. The
phylogenetic differentiation of CHI is not significant between seed
and non-seed plants (P. patens and S. moellendorffii). The results
show that CHI genes belong to an ancient family and the CHI gene
study of soybean has the same conclusion (Ralston et al., 2005).

The level of gene expression directly affects the content of
transcripts and the regulation of genes. GmCHI genes show root-
specific expression in soybean and differential expression by
nodulation signals (Ralston et al., 2005). In addition, LjCHI genes
show differential expression under fungal elicitor treatment in
Lasianthus japonicas (Shimada et al, 2003). The expression of
the CitCHILI gene in flower tissue was higher than that in roots,
stems, and leaves in Citrus reticulata cv. Suavissima (Zhao et al.,
2021). This study showed that the expression of CsCHI1, CsCHI3,
and CsFAP2 genes in peel was higher than that in pulp, especially in
the common sweet orange. The CsCHI3 gene maintained a high
expression level in the epicarp and juice sac at all periods. The
developing tissue of Arabidopsis, including roots, seeds, embryos,
cotyledons, tapetum, macrospores, preanthesis, and young seedlings,
shows high expression of FAPs (Ngaki et al., 2012). The expression of
the AtFAP2 gene can be detected in the whole life cycle. However,
AtFAPI and AtFAP3 genes are only expressed in developing and
reproductive tissues. These genes have a maximal expression in seeds
at 6 DAF (Ngaki et al., 2012). The expression of CitCHII, CitCHIL1/
2, and CitFAP1/3 is the highest at 30 DAF, while CitFAP2 reaches the
peak at 120 DAF (Zhao et al., 2021). In this study, all CHI genes
maintained a high expression level at 50 DAF, and then showed a
down-expression trend during fruit development. The expression
processing of CHI genes in plants is dynamic and characterized by
spatio-temporal specificity.

In plants, CHI proteins play essential roles in flavonoid
biosynthesis (Mehdy and Lamb, 1987; Winkel-Shirley, 2001;
Gensheimer and Mushegian, 2004). The expression pattern of
the CitCHILI gene was highly positively correlated with the
accumulation of flavonoids, and was highly synchronized with

Chalcone-Flavanone Isomerase Genes in Citrus

the expression of CitCHI, CitCHSI, and CitCHS2 genes (Zhao
et al,, 2021). The content of flavonoids in the peel is higher than
that in pulp (Wang Y. et al., 2017), which is consistent with the
expression of CHI genes in this study. These results also mean
that flavonoid content can be evaluated by detecting the
expression of CHI and CHS genes. The beneficial mechanism
of Citrus flavanone on the cardiovascular system is mainly
manifested in vasodilator activity, anti-ischemic activity,
glucose tolerance, and anti-oxidant and anti-inflammatory
action (Testai and Calderone, 2017). In addition, flavanones
also have other pharmacological properties, such as anti-aging
and anti-tumor activities, anti-oxidation, and immunity
regulation (Jung et al, 2003; Yamamoto et al, 2008; Testai,
2015; Da Pozzo et al, 2017; Yin et al., 2019). Flavanone
compounds are unevenly distributed in fruits, mainly in the
albedo and in the membranes separating cloves (Testai and
Calderone, 2017). The albedo and membranous parts of Citrus
fruits are usually discarded in the present processing and eating
process. The rational use of Citrus resources can not only produce
more valuable products for human beings, but also reduce
environmental pollution.

CONCLUSION

In conclusion, we comprehensively analyzed the molecular
characteristics, gene structure, evolutionary history, expression
pattern, and molecular mechanism of CHI genes in six Citrus
species. Thirty CHI genes were identified among six Citrus
species. Citrus CHI gene members were highly conserved and
are an ancient family. All CsCHI genes showed the highest
expression level after the second physiological fruit-falling
period. CsCHI1 and CsCHI3 were highly expressed at the 50
DAF stage in the albedo. The expression of CsCHI1, CsCHI3, and
CsFAP2 genes in peel was higher than that in the pulp. The
CsCHI3 gene maintained a high expression level in the epicarp
and juice sac at all periods. The expression patterns of CsCHI
genes were analyzed, which provided the basis for the selection of
flavonoids in plant tissues and periods. Our study deepens the
understanding of the structure and functions of CHIs and extends
the knowledge on the transcriptional regulation of flavanones.
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