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Background: Prior studies have separately demonstrated that magnetic resonance
imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of
antipsychotic medication treatment outcomes in schizophrenia. However, it remains
unclear whether MRI combined with PRS can provide superior prognostic
performance. Besides, the relative importance of these measures in predictions is not
investigated.

Methods:We collected 57 patients with schizophrenia, all of which had baseline MRI and
genotype data. All these patients received approximately 6 weeks of antipsychotic
medication treatment. Psychotic symptom severity was assessed using the Positive
and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these
patients into responders (N = 20) or non-responders (N = 37) based on whether their
percentages of PANSS total reduction were above or below 50%. Nine categories of MRI
measures and PRSs with 145 different p-value thresholding ranges were calculated. We
trained machine learning classifiers with these baseline predictors to identify whether a
patient was a responder or non-responder.

Results: The extreme gradient boosting (XGBoost) technique was applied to build binary
classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of
86%with all MRI and PRS features. Other metrics were also estimated, including sensitivity
(85%), specificity (86%), F1-score (81%), and area under the receiver operating
characteristic curve (0.86). We found excluding a single feature category of gray matter
volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could
lead to amaximum accuracy drop of 10.5%. These three categories contributedmore than
half of the top 10 important features. Besides, removing PRS features caused a modest
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accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature
categories.

Conclusions: Our classifier using both MRI and PRS features was stable and not biased
to predicting either responder or non-responder. Combining with MRI measures, PRS
could provide certain extra predictive power of antipsychotic medication treatment
outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower
than GMV, ALFF, and surface curvature, but higher than measures of cortical
thickness, cortical volume, and surface sulcal depth. Our findings inform the
contributions of PRS in predictions of treatment outcomes in schizophrenia.

Keywords: schizophrenia, treatment prediction, XGBoost, polygenic risk score, magnetic resonance imaging

1 INTRODUCTION

Pharmacological therapy has long been the cornerstone of
schizophrenia management, which aims to relieve psychotic
symptoms, such as delusions, hallucinations, and disorganized
thinking, et al. (Kane and Correll, 2010; Patel et al., 2014;
Tarcijonas and Sarpal, 2019). Whereas, the treatment
outcomes of antipsychotic medications generally vary
significantly. According to statistics, approximately 10–30% of
schizophrenia patients achieve little symptomatic amelioration
after receiving multiple trials of typical antipsychotics.
Meanwhile, an additional 30–60% of patients with
schizophrenia show partial or inadequate improvement in
psychotic symptoms (Patel et al., 2014). Further, the long-term
disease courses in schizophrenia are even heterogeneous, which
are formulated over time (Tarcijonas and Sarpal, 2019). There are
twelve treatment trajectories summarized in an over 20-years
follow-up study involving more than 500 patients with
schizophrenia (Huber et al., 1980). The great variations of
treatment outcomes are also confirmed in more recent studies
(Carbon and Correll, 2014; Tarcijonas and Sarpal, 2019).
Although varying degrees of remission are acquired in a great
number of patients with schizophrenia, substantial evidence
suggests that antipsychotic medications can lead to various
adverse effects (Muench and Hamer, 2010; Patel et al., 2014;
Stroup and Gray, 2018). To date, no clinical reliable quantitative
markers can be employed to accurately predict the treatment
response to antipsychotic medications of a patient with
schizophrenia. Therefore, to avert unnecessary side effects,
enable early intervention, and adopt appropriate treatments, it
is critical to identify prognostic measures that can inform
individual treatment outcomes in advance.

Toward this target, considerable efforts are made to identify
predictors of antipsychotic treatment outcomes. Recently,
magnetic resonance imaging (MRI) has been broadly applied
in psychiatry researches, which provides quantitative in vivo
measures of the brain (Quinlan et al., 2020; Voineskos et al.,
2020; Kraguljac et al., 2021). Particularly, one significant area of
these applications is the prediction of antipsychotic treatment
responses or outcomes in patients with schizophrenia. Overall, a
large number of studies focused on structural MRI measures. A
longitudinal study of individuals with first-episode schizophrenia

reported that the ventricular volume was significantly increased
in patients with poor treatment outcomes, which was not
observed in better treatment outcome patients and healthy
controls (Lieberman et al., 2001). Another independent
longitudinal study confirmed this and found schizophrenia
patients with poor treatment outcomes had greater lateral
ventricular enlargement over time (Ho et al., 2003). In a cross-
sectional comparison study, conducted in schizophrenia patients
with poor outcomes, favorable outcomes, and healthy individuals,
poor outcome patients showed significantly smaller cerebral gray
matter particularly in prefrontal regions, and increased volume in
the lateral and third ventricles (Staal et al., 2001). A voxel-based
comparison analysis of gray matter volume revealed that non-
responder schizophrenia patients demonstrated a more severe
atrophy pattern than responder patients, particularly in the
superior and middle frontal gyri (Quarantelli et al., 2014).
Compared with non-resistant schizophrenia patients,
treatment-resistant patients showed a significant decrease of
thickness in the left dorsolateral prefrontal cortex (Zugman
et al., 2013). Cortical gyrification in bilateral insula, left
frontal, and right temporal regions were significantly decreased
in non-responder patients with first-episode schizophrenia
compared with responders (Palaniyappan et al., 2013). Besides,
non-responders had smaller thickness in the occipital lobe and
smaller asymmetry in the frontal region compared with
responders (Szeszko et al., 2012).

In addition to structural MRI, resting-state functional MRI has
also been shown to provide prognostic markers. Functional
connectivity was one of the most fully investigated measures.
Using a seed-based approach, functional connectivity of the
striatum with the dorsolateral prefrontal cortex, anterior
cingulate, and limbic regions such as the hippocampus and
anterior insula, were observed positively correlated with
improvement of antipsychotic treatment in patients with first-
episode schizophrenia. This relationship was converse when
functional connectivity changed to the striatum with the
parietal lobe (Sarpal et al., 2015). The prognostic capability of
striatal connectivity was also demonstrated in other studies
(Sarpal et al., 2016, 2017). Increased functional connectivity in
the default mode network (DMN) with the ventromedial
prefrontal cortex was found associated with greater efficacy of
treatment using olanzapine in schizophrenia (Sambataro et al.,

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8482052

Wang et al. Predicting Treatment Response in Schizophrenia

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2010). Besides, functional connectivity of the superior temporal
cortex was utilized to successfully predict antipsychotic treatment
responses in first-episode drug-naïve schizophrenia patients (Cao
et al., 2020). Apart from static functional connectivity, dynamic
functional connectivity within DMN regions was proved with the
most predictive power of symptom change in schizophrenia
compared with other common measures (Kottaram et al.,
2020). Several other resting-state functional MRI derived
measures were also examined to establish their relationships
with treatment outcomes in schizophrenia, such as regional
homogeneity (Gao et al., 2018) and amplitude of low-
frequency fluctuation (Cui et al., 2019).

Schizophrenia is a highly polygenic disorder with thousands of
associated risk loci, with mostly small effects (Smeland et al.,
2020). Polygenic risk score (PRS) is a measure to assess an
individual’s genetic liability to schizophrenia, which is
calculated by combining total risk alleles with corresponding
weights derived from genome-wide association study results
(Choi et al., 2020). In a recent study, PRS was verified as a
predictor of antipsychotic efficacy in first-episode schizophrenia.
Patients with higher PRS tended to be treatment non-responders
than those with lower PRS (Zhang et al., 2019). However, it
remains unclear whether PRS can markedly improve
prognostication on the basis of MRI-derived predictors. If
indeed better prediction performance is acquired when
combining PRS and neuroimaging predictors, the precedence
of the predictive capability of these predictors requires to be
investigated.

In the present study, we worked on the problem and
hypothesized that PRS can provide additional prognostic
power combined with MRI predictors. We collected a total of
57 patients with schizophrenia, which were divided into
responders and non-responders according to their 6 weeks of
antipsychotic treatment outcomes. Various neuroimaging and
PRS features were calculated. We constructed machine learning
classifiers with these baseline features to identify responders or
non-responders. Particularly, we concentrated on 1) performance
comparison of a classifier trained using a combination of MRI
and PRS features with a classifier trained using single MRI
features; 2) relative importance or contributions of these
features to predictions.

2 MATERIALS AND METHODS

2.1 Participants and Clinical Assessments
Individuals with schizophrenia (N = 97, before screening) were
recruited from Peking University Sixth Hospital and Beijing
Huilongguan Hospital, whose imaging data were all obtained
on a 3.0T Siemens TrioTim MRI scanner. Diagnoses were made
by qualified clinicians using the Structured Clinical Interview for
DSM-IV. All participants had no history of other DSM-IV Axis I
disorders, neurological disorders, cognitive deficits, severe
physical diseases, serious head trauma, substance abuse or
dependence, and electroconvulsive therapy within the last
6 months. Each individual was treated with only a single
second-generation antipsychotic drug, although the specific

drug is not totally the same across patients (mainly including
risperidone and clozapine). The study was approved by the
Medical Research Ethics Committees of the local hospitals. All
individuals or their guardians provided written informed consent.
Participants were excluded if their clinical assessments at baseline
or follow-up were incomplete, or they lacked sMRI, rsfMRI, or
genotype data. Quality control (QC) for rsfMRI data was
completed by examining the framewise displacement (FD)
(Power et al., 2012). Individuals who had a mean FD greater
than 0.3 mm were precluded. Besides, subjects were also excluded
if they failed to genotyping QC. In total, 57 subjects remained
after the screening.

The symptom severity of patients with schizophrenia was
evaluated using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987) by trained clinical psychiatrists.
Baseline assessments were completed within 1 week of image
acquisition. Follow-up assessments were performed after
approximately 6 weeks of antipsychotic treatment. Table 1
shows demographics and clinical characteristics.

2.2 Image Acquisition and Preprocessing
All images were acquired on a 3.0T Siemens TrioTim scanner. Two-
dimension echo-planar imaging (EPI) was used for rsfMRI data with
parameters: repetition time (TR) = 2000ms; echo time (TE) = 30ms;
flip angle (FA) = 90o; field of view (FOV) = 220 × 220mm2; matrix
size = 64 × 64; voxel dimensions = 3.4375 × 3.4375 × 4.6 mm3; 240
volumes, and 33 slices. For T1-weighted (T1w) structural images,
three-dimension magnetization-prepared rapid gradient-echo
(MPRAGE) sequence was performed with parameters: TR =
2,530ms; TE = 3.5 ms; FA = 7o; inversion time (TI) = 1,100ms;
voxel dimensions = 1 × 1 × 1mm3; matrix size = 256 × 256 × 192.

Preprocessing of rsfMRI data was performed using the
BRANT toolkit (Xu et al., 2018, https://github.com/kbxu/
brant). In brief, several standardized procedures were carried
out, including discarding the first ten timepoints, slice timing
correction, realignment, coregistration, spatial normalization to
Montreal Neurological Institute (MNI) space, resampling,
regressing out nuisances of linear trends, global signal as well
as head-motion parameters, and performing temporal band-pass
filtering at 0.01–0.08 Hz.

2.3 Genotype Data Acquisition and
Preprocessing
The procedures of genotype data collection and preprocessing
were elaborately described in our previous studies (Liu et al.,
2017; Hu et al., 2021). Briefly, for all individuals, ethylene diamine
tetraacetic acid (EDTA) anti-coagulated venous blood samples
were obtained, from which genomic DNA data were extracted
using the EZgene Blood gDNAMiniprep Kit. The whole-genome
genotyping was carried out on Illumina Human
OmniZhongHua-8 BeadChips with the standard Illumina
genotyping protocol.

Genotype processing and QC was implemented using PLINK
version 1.07 (Purcell et al., 2007), following the subsequent steps:
1) excluded subjects with missing genotype rates more than 0.05;
2) identified subject pairs with highly similar genotypes and
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removed the one who had a greater missing genotype rate; 3)
removed single nucleotide polymorphisms (SNPs) if their
missing genotype rates greater than 0.05, with a minor allele
frequency less than 0.01, and significantly deviated from Hardy-
Weinberg Equilibrium (p < 0.001); 4) used EIGENSTART
(Patterson et al., 2006; Price et al., 2006) for principal
component analysis (PCA) on linkage disequilibrium (LD)
pruned set of autosomal SNPs, which were obtained from LD
pruning and removing five long-range LD regions using the
HapMap phase three reference data set (Thorisson et al.,
2005). Outliers of samples with more than six SD were
excluded after achieving 10 principal components; 5)
imputation was completed using SHAPEIT (Delaneau et al.,
2011) and IMPUTE2(Howie et al., 2009) referred to the 1,000
Genomes phase one dataset. The autosomal SNPs with
imputation quality scores greater than 0.8 were further analyzed.

2.4 Predictors and Clinical Outcome
We calculated diverse predictors (features) based on imaging and
genotype data and divided subjects into responder and non-
responder groups according to clinical outcomes.

2.4.1 Responder and Non-responder
For each individual, the clinical outcome was measured by
percentage reduction of PANSS total score relative to baseline,
which was calculated as follows:

Δ � PANSSbaseline − PANSSfollowup
PANSSbaseline − 30

× 100%

The subtracted value of 30 in the denominator indicates a
minimum score of “no symptoms” assessed using PANSS. We
defined an individual as a responder in case that the patient
achieved a at least 50% reduction of PANSS total score. Subjects
not satisfying this criterion were regarded as non-responders. The
cut-off threshold was specified at 50%, given that this value roughly
reflects a “much improved” condition for acutely ill and non-
refractory patients from a clinical perspective (Leucht et al., 2009).
Although the statistical powermight be reduced when dichotomizing
the continuous clinical outcome, it provides a clear and interpretable
measure instead (Lewis, 2004; Kottaram et al., 2020).

2.4.2 Gray Matter Volume
Voxel-based morphometry analysis was performed using the
VBM8 toolbox (Matsuda et al., 2012, http://dbm.neuro.uni-

jena.de/vbm8/), which runs within the SPM8 software (https://
www.fil.ion.ucl.ac.uk/spm/software/spm8/). For each subject, the
native T1w image was segmented into tissue images of gray
matter, white matter, and cerebrospinal fluid, which were then
registered to the standard MNI space through non-linear
deformation using the high dimensional DARTEL algorithm
(Ashburner, 2007). All non-brain tissues were removed in the
process. Smoothing was not applied. Each segmented image had a
voxel size of 1.5 mm with a resolution of 121 × 145 × 121. Quality
control was completed by displaying slices for segmented images
and inspecting sample homogeneity. For each gray matter image,
we extracted mean gray matter volumes from each of the brain
parcellations defined in the Brainnetome atlas (Fan et al., 2016,
https://atlas.brainnetome.org/download.html), resulting in a total
of 246 regional values.

2.4.3 Cortical Morphologies
Cortical reconstruction was performed on raw T1w images using
FreeSurfer version 6.0 (Dale et al., 1999, https://surfer.nmr.mgh.
harvard.edu/fswiki/rel6downloads). For each individual, this
process estimated various vertex-based cortical surface
morphological measures. Quality control was performed by
visually examining any errors in the whole reconstruction
process. To precisely match cortical locations among subjects,
we aligned each reconstructed cortical surface with the fsaverage
template, which had 163,842 vertices per hemisphere. We
selected five cortical morphologies in the study, including
surface area, curvature, sulcal depth, thickness, and volume. As
with GMV, we used the Brainnetome parcellations to extract
averaged cortical values, resulting in 210 values for each measure.
The atlas is already resampled to fsaverage space. Finally, for each
individual, we calculated 210 (number of cortical parcellations) ×
5 (number of measures) values in total.

2.4.4 Amplitude of Low-Frequency Fluctuation
ALFF is a rsfMRI measure that quantifies the amplitude of
spontaneous low-frequency fluctuations of time series signals
(Zang et al., 2007). We used the BRANT toolkit to estimate a
voxel-based ALFF map for each individual. To be specific, the fast
Fourier transform algorithm was first applied to transform time
series into the frequency domain and the corresponding power
spectrum was achieved. Next, square root values were calculated
at each frequency within the spectrum. ALFF was defined as the
mean square root across the frequency range of 0.01–0.08 Hz.
The rsfMRI data were not performed temporal band-pass

TABLE 1 | Demographics and clinical information of participants.

Individuals with schizophrenia (N = 57)

— Responder (N = 20) Non-responder (N = 37) p value

Age (years) 25.22 ± 5.4 28.35 ± 7.3 0.10
Sex (male/female) 7/13 20/17 0.27
PANSS total score at baseline 76.90 ± 8.3 79.21 ± 7.8 0.31
PANSS total score at follow-up 44.15 ± 12.4 65.29 ± 8.1 4.30e-10
Percentage reduction of PANSS total score 71.19 ± 27.1% 28.05 ± 13.2% 1.18e-10
Chlorpromazine equivalent dosage (mg/day) 418.42 ± 280.6 531.03 ± 367.9 0.27

PANSS, positive and negative syndrome scale; Data were shown as mean ± standard deviation.
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filtering before estimating ALFF maps to avoid possible effects.
Finally, each ALFF map was normalized by subtracting the global
mean then dividing by the global standard deviation to eliminate
inter-subject biases. Likewise, we extracted mean values from
ALFF maps based on the Brainnetome atlas and obtained 246
regional values for each individual.

2.4.5 Regional Homogeneity
ReHo measures the similarity between the time series in a given
voxel and those in its 26 neighboring voxels based on Kendall’s
coefficient of concordance (Zang et al., 2004). It is a reflection of
synchronization between the time series of a given voxel and its
neighbors. We also used the BRANT toolkit to calculate the ReHo
map for each subject. Normalization was performed on each
ReHo map by dividing the global mean intensity. As with the
ALFF map, for each individual, we extracted 246 values from the
ReHo map according to the Brainnetome atlas.

2.4.6 Functional Connectivity
For each subject, whole-brain FCs were calculated based on the
Brainnetome atlas. We first extracted the mean time series from
each of the 246 brain regions defined in the atlas. Then we
calculated Pearson’s correlations between the extracted time
series of each region pair. Particularly, there were (246 × 245)/
2 = 30,135 unique pairs of regions. We obtained 30,135 FCs for
each subject, which was substantially greater than the number of
total individuals (N = 57). Thus we further performed
dimensional reduction by applying PCA on FCs from all
subjects and achieved 50 principal components, accounting for
95% amount of variance.

2.4.7 Genetic Characteristics
We calculated step-wise polygenic risk scores (PRSs) for each
individual with identical procedures in our prior study (Hu et al.,
2021). The PRSs were computed using PLINK version 1.07
(Purcell et al., 2007) and genome-wide association study
(GWAS) data from a large number of Chinese individuals (Li
et al., 2017). Of note, our study cohort was independent of
subjects from the GWAS study, despite they matched in
ancestries. We established a list of separate p-value threshold
ranges to aggregate SNPs. Specifically, we set step lengths of 0.001
and 0.01 for [0, 0.05) and [0.05, 1) intervals, respectively. The left
square bracket and the right parenthesis denoted inclusion and
exclusion cut-off values, separately. Consequently, there were 145
PRSs computed for each individual with distinct SNP inclusion
thresholds: [0, 0.001), [0.001, 0.002), . . ., [0.049, 0.05), [0.05,
0.06), [0.06, 0.07), . . ., [0.99, 1).

2.5 Classification
We sought to build classification models from a combination of
features derived from imaging and genotype data to predict
whether a patient with schizophrenia was a responder or a
non-responder after receiving 6 weeks of antipsychotic treatment.

2.5.1 Model Building, Training, and Testing
To deal with this prediction problem, we employed extreme
gradient boosting (XGBoost) (Chen and Guestrin, 2016) to

build binary classifiers to predict individual treatment
outcomes. XGBoost is a scalable machine learning system for
tree boosting and is publicly available as an open-source package
(https://github.com/dmlc/xgboost). We chose the XGBoost
method mainly for its significant and broadly recognized
impact on various machine learning and data mining
challenges (Chen and Guestrin, 2016), as well as its successful
applications in brain imaging prediction tasks (Torlay et al., 2017;
Sharma and Verbeke, 2020).

We calculated several categories of predictors (features): 1)
GMV with 246 regional values, 2) cortical morphologies of
surface area, curvature, sulcal depth, thickness, and volume,
each of which had 210 values, 3) rsfMRI measures of ALFF
(246 values), ReHo (246 values), and FC (50 values), as well as 4)
145 genetic features of PRS. In total, 1983 features were
computed. All these categories of features were combined to
train XGBoost classifiers. Given the modest sample size of the
studied cohort, we applied a leave-one-out cross-validation
(LOOCV) strategy to validate classifier performance, which is
supposed appropriate for small datasets and used in similar tasks
(Cao et al., 2020; Kottaram et al., 2020). Specifically, iteratively
held out one subject for validation, and used the rest to train the
model until all the subjects were validated once. The eventual
result was computed by taking the mean of all the subject
validations. Several established measures were calculated for
evaluations of classification performance, including accuracy,
sensitivity, specificity, F1-score, and area under the receiver
operating characteristic curve (ROC-AUC).

It is known XGBoost models tend to contain larger
hyperparameter sets compared with basic machine learning
classifiers, such as logistic regression, support vector machine,
et al. Thus hyperparameter tuning is of great importance to
leverage the maximum power of this method. Originally, all
parameters were assigned to default values. We tuned one
parameter each time and kept the others constant to examine
changes in classifier performance as the variation of the specified
parameter by performing repetitive LOOCV procedures. In this
way, we identified which parameters were relatively important
that significantly influenced classifier performance, and which
parameters had minor impacts on model performance. We also
estimated certain value ranges for each of these crucial
parameters. Of note, these value ranges were determined
separately, which we considered might constitute a possible
optimal searching space. Finally, we concentrated on these
significant parameters and performed a fine-grained grid
search on the estimated value ranges. Besides, due to the
imbalanced sample sizes between responders and non-
responders, we calculated the sample weights that were
inversely proportional to class frequencies and applied them
when fitted models.

2.5.2 Feature Importance
A valuable benefit of using the XGBoost method is that it
automatically provides estimates of feature importance from a
trained predictive model. Generally, we can directly retrieve
importance scores for each feature, which measure how useful
or valuable each feature is in the construction of the boosting tree
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model. The importance can be quantified using several metrics
provided by XGBoost, such as gain, coverage, weight, total gain,
total coverage.We specified the gain metric for our models, which
is supposed as the most relevant attribute to interpret the relative
importance of each corresponding feature. A feature is considered
more important for generating a prediction if its gain value is
higher compared to another feature.

In addition to estimating feature importance through the
trained classifier itself, we also evaluated the contributions of
feature categories. Specifically, we removed one feature category,
such as GMV or cortical thickness, and used all the remaining
features to reconstruct predictive models with identical
procedures as our main analysis in which all feature categories
were used. We determined the contribution of each feature
category by evaluating performance change (e.g., accuracy)
between each newly built classifier and our main model. If
removing a feature category led to a maximum decrease in
performance, then this feature category was considered to
contribute most to predictions.

3 RESULTS

3.1 Predicting Treatment Response in
Schizophrenia
Individuals with schizophrenia were reasonably defined as
responders (N = 20) or non-responders (N = 37) according to
their amelioration degrees of overall symptom severity, which
was assessed using PANSS total score, after accepting 6 weeks of
antipsychotic medications treatment. The responders and non-
responders were matched in age and sex. There were also no
significant differences between the two groups in baseline PANSS
total score and chlorpromazine equivalent dosage (Table 1). We
calculated a multitude of predictors (features), spanning
categories of 1) structural imaging (GMV; cortical
morphologies of surface area, curvature, sulcal depth,
thickness, and volume), 2) functional imaging (ALFF; ReHo;
FC), and 3) genetic characteristics (step-wise PRS). Combined
with both imaging and genetic features, we constructed binary
machine learning classifiers using the XGBoost method to predict
individual treatment outcomes (i.e., responder or non-

responder). We applied a leave-one-out cross-validation
(LOOCV) scheme to validate model performance, and
reported several estimated classification metrics to provide a
comprehensive evaluation. The XGBoost classifiers were
trained with carefully hyperparameters fine-tuning processes.
Table 2 shows the optimal hyperparameters set for LOOCV.

We observed the classification accuracy reached a relatively
high score of 86% (Table 3). There were eight misclassified
individuals altogether, of which 4 subjects were near the cut-
off boundary of treatment outcomes (i.e., the 50% threshold). The
corresponding percentage reductions of PANSS total score of
these four subjects were 45, 43, 40, and 48%. Particularly, several
additional metrics that quantify model performance exceeded
80% (Table 3), including sensitivity (85%), specificity (86%), F1-
score (81%), ROC-AUC (0.86). Meanwhile, the ROC curve
demonstrated our classification results were far higher than
the chance level (Figure 1). Taken together, our classifiers had
high predictive power and were not biased to a certain class.

3.2 Evaluating Feature Contributions
To quantify feature importance, we selected the classifier that
performed the best on the LOOCV procedure (hyperparameter
values of this model were given in Table 2). After retraining the
classifier on the whole dataset, we directly obtained the importance
score of each feature from the ‘feature_importances_” attribute in the
fitted model. Typically, a higher importance score implied the
corresponding feature was relatively more important in
predictions. Among the top 10 important features, nine features
were derived from structural imaging, which involved categories of
GMV, cortical thickness, cortical volume, surface sulcal depth, and
surface curvature. There was only one functional imaging feature
(i.e., ALFF), and no genetic features existed (Table 4). Particularly, the
GMV in a certain region of the left inferior frontal gyrus (labeled 31
corresponded to the Brainnetome atlas) ranked the first important.
When examining the top 100 important features, all the 10 feature
categories were involved (Figure 2). More than half of these 100
features belonged to three categories, which were GMV, ALFF, and
cortical thickness containing 27, 14, and 13 features respectively.

Besides, we further evaluated the prediction contributions of
each feature category. In brief, after iteratively removing one
feature category, we built XGBoost classifiers with the remaining

TABLE 2 | Optimal hyperparameters set of XGBoost classifier for leave-one-out cross-validation.

Parameters Description Value

n_estimators Number of boosting rounds 50
max_depth Maximum tree depth for base learners 2
learning_rate Boosting learning rate 0.12
booster Specify which booster to use: gbtree, gblinear, or dart gbtree
gamma Minimum loss reduction required to make a further partition on a leaf node of the tree 0.01
subsample Subsample ratio of the training instance 0.90
colsample_bytree Subsample ratio of columns when constructing each tree 0.30
colsample_bylevel Subsample ratio of columns for each level 0.50
colsample_bynode Subsample ratio of columns for each split 0.30
reg_alpha L1 regularization term on weights 0.10
reg_lambda L2 regularization term on weights 1.65
scale_pos_weight Balancing of positive and negative weights 2.50

Other hyperparameters not listed in the table were set to default values. The description referred to the XGBoost documentation at https://xgboost.readthedocs.io/en/latest/index.html.
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features following the main analyses to investigate how the
performance changed. We found removing any one of these
10 feature categories could lead to a performance drop (Table 5).
Specifically, four quantitative metrics including accuracy,
sensitivity, F1-score, ROC-AUC decreased consistently, in
which the sensitivity measure dropped the most with an
average of 21.5%. The specificity had a slight increase (at most
5.4%) in three of the 10 classifiers, indicating a higher bias existed
in the three models. In terms of accuracy, the categories of GMV,
ALFF, and surface curvature contributed the most to predictions,
given removing one of these three categories led to a maximum

drop in accuracy score (10.5%). The cortical volume was the least
important, since removing this category caused a minimal
accuracy decrease (1.8%). PRS exhibited medium importance,
excluding of which led to a modest accuracy drop (8.8%).

4 DISCUSSION

Tremendous evidence has suggested that neuroimaging data
coupled with machine learning techniques can provide
favorable utilities of prognostic predictions in psychiatric

TABLE 3 | Performance of predicting individual treatment outcomes with all imaging and genetic features.

Performance metrics Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) ROC-AUC

Classification results 85.96 85 86.49 80.95 0.86

ROC-AUC, area under the receiver operating characteristic curve. Responder/non-responder = 20/37.

FIGURE 1 | Prediction performance was quantified using the receiver
operating characteristic curve. The orange solid line reflected actual
classification results, and the blue dashed line indicated the chance level.

TABLE 4 | Top 10 important features obtained from the XGBoost classifier trained on the whole dataset.

Rank Feature category Atlas region number Description Importance score

1 GMV 31 IFG_L_6_2 0.04138
2 Cortical thickness 157 PoG_L_4_2 0.03584
3 GMV 14 SFG_R_7_7 0.03205
4 ALFF 119 PhG_L_6_6 0.03048
5 Cortical thickness 42 OrG_R_6_1 0.03028
6 Cortical volume 189 MVOcC _L_5_1 0.02930
7 GMV 15 MFG_L_7_1 0.02723
8 Surface sulcal depth 210 LOcC _R_2_2 0.02637
9 Surface curvature 152 PCun_R_4_3 0.02594
10 Surface curvature 169 INS_L_6_4 0.02591

IFG, inferior frontal gyrus; PoG, postcentral gyrus; SFG, superior frontal gyrus; PhG, parahippocampal gyrus; OrG, orbital gyrus; MVOcC, medioventral occipital cortex; MFG, middle
frontal gyrus; LOcC, lateral occipital cortex; Pcun, precuneus; INS, insular gyrus. L (R), left (right) hemisphere. The atlas region number corresponded to the Brainnetome parcellation (Fan
et al., 2016).

FIGURE 2 | The number of features belonged to each category among
the top 100 important features. The y axis represented feature categories. The
values labeled on the right of the bars were actual feature numbers.
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disorders, including schizophrenia (Janssen et al., 2018). A recent
relevant study investigated the ranking of predictive capabilities
of multiple neuroimaging and clinical measures when predicting
the relative change of symptom severity in schizophrenia at 1-
year follow-up (Kottaram et al., 2020). The evaluated
neuroimaging predictors included structural imaging measures
of cortical thickness and gray matter volume as well as functional
imaging derived measures of static and dynamic resting-state
connectivity. From the aspect of genetic factors, another recent
study examined the relationship between polygenic risk scores
(PRSs) and antipsychotic drug treatment outcomes in patients
with schizophrenia (Zhang et al., 2019). However, it remains
unclear 1) whether neuroimaging combined with PRS can
provide better prognostic performance than merely using
neuroimaging features; and 2) which category of neuroimaging
predictors or PRS provides the most accurate prognostic power,
and what is the ranking of their importance or contributions. To
address these issues, we collected a cohort of patients with
schizophrenia (N = 57), all of which had baseline
neuroimaging and genotype data. All these patients received
about 6 weeks of antipsychotic medication treatment.
Psychotic symptoms were assessed using PANSS at baseline
and follow-up. The patients were grouped into responders or
non-responders according to their percentages of PANSS total
reduction. We calculated various predictors, including 1) six
structural imaging measures (GMV; cortical morphologies of
surface area, curvature, sulcal depth, thickness, and volume);
2) three resting-state functional imaging measures (ALFF;
ReHo; FC), and 3) step-wise PRS. We trained binary machine
learning classifiers with these baseline features to identify whether
a patient with schizophrenia was a responder or non-responder.

Overall, we achieved an accuracy of 86% when predicting
antipsychotic drug treatment outcomes (i.e., responders or non-
responders) of patients with schizophrenia using all feature
categories (Table 3). As far as we know, this performance
exceeds the vast majority of results in previous studies and is
also more than reported in a recent study (Kottaram et al., 2020).
The performance was evaluated using a LOOCV procedure,
considering our modest sample size (N = 57). Although this
scheme is supposed to yield unstable estimates of predictive
performance (Varoquaux et al., 2017), it is frequently
employed in numerous neuroimaging studies, especially in

those with relatively small sample sizes (Cao et al., 2020;
Kottaram et al., 2020). Specifically, in small datasets, LOOCV
can provide sufficient data for training compared with other
k-fold cross-validation schemes. In addition to accuracy, we
found all other estimated classifier metrics were also at a
relatively higher level (Table 3), such as sensitivity (85%),
specificity (86%), F1-score (81%), ROC-AUC (0.86)
(Figure 1). These extra quantifications further demonstrated
our classifier was stable and not biased to predicting either
responder (N = 20) or non-responder (N = 37).

We examined the top 10 important features in predictions and
found nine of themwere structural imagingmeasures, including three
GMV, two cortical thickness, two surface curvature, one cortical
volume, and one surface sulcal depth, one was functional imaging
measure of ALFF (Table 4). PRS features were not of top 10
importance. The three GMV features were all extracted from the
frontal lobe regions, including inferior, superior, and middle frontal
gyri. Particularly, GMV in the inferior frontal gyrus was the most
prominent predictor. Previous studies have revealed GMV reductions
in the frontal lobe regions were associated with poor antipsychotic
medication treatment in patients with schizophrenia (Staal et al., 2001;
Quarantelli et al., 2014; Tarcijonas and Sarpal, 2019). Consistently,
significant reductions of GMV in the superior andmiddle frontal gyri
were observed in non-responders (Quarantelli et al., 2014). The two
cortical thickness features were estimated from the postcentral gyrus
in the parietal lobe and the orbital gyrus in the frontal lobe. However,
these two regions were discrepant with prior reported regions of the
occipital gyrus (Szeszko et al., 2012) and the dorsolateral prefrontal
cortex (Zugman et al., 2013). The remaining five features were barely
investigated in similar studies, which covered regions of the left
parahippocampal gyrus (ALFF), left medioventral occipital cortex
(cortical volume), right lateral occipital cortex (surface sulcal depth),
right precuneus, and left insular gyrus (surface curvature). When
focusing on the top 100 significant predictors, we found all feature
categories were involved (Figure 2). Particularly, the top three
categories that contained the most features were GMV, ALFF, and
cortical thickness, comprising 27, 14, and 13 features respectively.
Thus it was straightforward to explain the results that excluding GMV
or ALFF features caused the most performance drop of accuracy
(10.5%; Table 5). Notably, removing surface curvature features also
led to themaximumdecrease of accuracy (i.e., 10.5%). Collectively, we
considered that GMV, ALFF, and surface curvature features had

TABLE 5 | Prediction performance of classifiers trained with features after removing certain categories.

Feature categories
used

Number of
features

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) ROC-AUC

No GMV 1737 75.44 65 81.08 65 0.73
No surface area 1773 77.19 65 83.78 66.67 0.74
No surface curvature 1773 75.44 60 83.78 63.16 0.72
No surface sulcal depth 1773 78.95 65 86.49 68.42 0.76
No cortical thickness 1773 80.70 65 89.19 70.27 0.77
No cortical volume 1773 84.21 70 91.89 75.68 0.81
No ALFF 1737 75.44 60 83.78 63.16 0.72
No ReHo 1737 77.19 55 89.19 62.86 0.72
No FC 1933 77.19 60 86.49 64.86 0.73
No PRS 1838 77.19 70 81.08 68.29 0.76
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relatively higher prognostic utilities compared to other feature
categories. We observed that removing PRS features gave rise to a
modest accuracy drop (8.8%), which was not the least decrease (1.8%)
among all categories. This pointed out that PRS features can provide
extra prognostic power combined with MRI features, and yet their
importance or contributions were between minimum andmaximum,
inferior to certain MRI measures such as GMV, ALFF, and surface
curvature.

There were a few considerations when dealing with predictors and
clinical outcomes.We prepared variousMRI features, aiming to cover
as many measures as possible that were reported in prior relevant
studies. We assumed that combining these features would be of great
benefit to prognostication since each identified measure could
provide certain prognostic information. In our study, although
nine MRI measures were computed, more than any previous
study used, some were still needed to be examined. For example,
the dynamic resting-state functional connectivity measure within the
default mode network was demonstrated as the most single accurate
predictor of symptom severity change in schizophrenia (Kottaram
et al., 2020). As for PRS calculation, it is known that the p-value
threshold is critical given that only those SNPs with a GWAS
association p-value below the threshold are included in the
procedure (Choi et al., 2020). To avoid potential thresholding
effects and duplication of SNPs, 145 step-wise PRSs were
calculated as in our previous study (Hu et al., 2021). We defined
patients with schizophrenia as responders or non-responders based
on their reductions of PANSS total score, which is commonly applied
in current practice (Leucht et al., 2009; Cao et al., 2020). However, this
approach only focuses on the relative change of PANSS total scores
between follow-up and baseline but ignores the actual symptom
severity, which can not reflect a clinically significant change. For
example, a patient remains highly symptomatic even achieving a 50%
reduction of PANSS total score from 120 to 60. Thus it is necessary to
further assess whether our features are prognostic of symptom
severity (above or below a clinically meaningful cut-off) at follow-
up. Another problem is the selection of threshold values, which
determines whether a patient is a responder or non-responder. We
chose a threshold of 50% in the study, which indicates a much-
improved condition for acute patients (Leucht et al., 2009). Different
thresholds were proved crucial to clinical trials (Leucht et al., 2007).
Therefore, future studies should evaluate prognostications for non-
thresholded (i.e., regression analyses) or various fine-step thresholds
of PANSS total reductions.

Several limitations need to be considered. First, our sample of
patients with schizophrenia was limited for machine learning
algorithms, especially for the powerful XGBoost technique (Chen
and Guestrin, 2016), which contains more hyperparameters than
simple methods such as support vector machines. Although we
applied a rational cross-validation strategy, the danger of
overfitting can not be eliminated (Varoquaux et al., 2017;
Varoquaux, 2018). Larger independent sample replication is
required to evaluate the generalizability of our methods. Second,
ourMRImeasures were all calculated based on the Brainnetome atlas
(Fan et al., 2016). The choice of brain atlases should not be arbitrary,
since it could lead to different results such as in discrimination
analysis (Zang et al., 2021). Although we employed a fine-grained

parcellation, which contains information on both anatomical and
functional connections, comparisons between various brain atlases
need to be accomplished. Third, our prediction study just focused on
PANSS total reduction, however, it is essential to investigate whether
reductions of PANSS subscales (i.e., positive, negative, and general
psychopathology) or even specific symptom dimensions could be
predicted.

5 CONCLUSION

Polygenic risk score for schizophrenia can provide certain
prognostic power when combined with neuroimaging features
to predict 6 weeks of antipsychotic medication treatment
outcomes in patients with schizophrenia. The relative
importance of the polygenic risk score in predictions is
between maximum and minimum, lagging behind some
neuroimaging measures such as gray matter volume, the
amplitude of low-frequency fluctuation, and surface curvature.
Overall, our findings inform contributions of the polygenic risk
score in machine learning studies that aim to predict treatment
outcomes in schizophrenia.
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