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Metabolic alterations are one of the hallmarks of cancer, which has recently gained great
attention. Increased glucose absorption and lactate secretion in cancer cells are
characterized by the Warburg effect, which is caused by the metabolic changes in the
tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic
glycolysis due to changes in glucose degradation mechanisms, a process known as
“metabolic reprogramming”. As a result, proteins involved in mediating the altered
metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic
tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations,
oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which
are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis
regulation, glucose transport, acidosis regulators have all been orchestrated through the
activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1),
hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer
therapy seems like an extremely rational approach as it is directly involved in the shift of
cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in
hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.
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INTRODUCTION

Increased incidence of cancer patients around the globe clearly alarms for more comprehensive
research of this life-threatening problem. The initiation of cancer is a multi-step process that includes
genomic alterations. Hannah and Weinberg have extensively described the “hallmarks of cancer”,
one of which is “metabolic reprogramming” that has recently emerged as a core trait of tumors
(Hanahan and Weinberg, 2011; Hanahan, 2022). Specifically, the altered glycolytic metabolism
pathway results in switching from oxidative phosphorylation (OXPHOS) in the mitochondria to
aerobic glycolysis even in the abundance of oxygen in various cancer types. The “Warburg effect”,
proposed by Otto Warburg over a century ago, was the first to reveal basic metabolic distinctions
between differentiated cells and rapidly proliferating tumor cells (Otto, 2016). Warburg effect is the
result of the interplay between (normoxic/hypoxic) HIF-1 upregulation, activation of an oncogene
(cMyc, Ras), loss of function of tumor suppressors (mutant-p53, mutant-PTEN, micro RNAs and
sirtuins with suppressor functions), activation of (PI3K/Akt/mTOR; Ras/Raf/Mek/Erk/cMyc; Jak/
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Stat3) or deactivation of (LKb1/AMPk) signalling pathways
(Arora et al., 2015; Vaupel and Multhoff, 2021). Although
Warburg’s and others’ findings have had a significant impact
on our understanding of tumor biology, they constitute only one
aspect of tumor metabolism.

In fact, cancer metabolism alterations span a wide range of
metabolic pathways that serve a multitude of functions such as
apoptosis, angiogenesis, anti-anoikis, and anchorage-
independent expansion in cancer cells and in the tumor
microenvironment (TME), in addition to glucose metabolism
and energetics (Casero and Pegg, 2009; Platten et al., 2012; Zhang
and Du, 2012; Jeon and Hay, 2018). Therefore, targeting the
energy metabolism of cancer cells, which takes advantage of the
metabolic differences between cancer cells and normal cells opens
the doorway to novel therapeutic interventions.

The TME endures biochemical alterations during the growth of
the solid tumor, including depletion of glucose, bicarbonate, and
oxygen (i.e., hypoxia and anoxia), high amounts of lactate and
adenosine, and low pH value (Wang et al., 1995; Ke and Costa,
2006). Hypoxia, a prevalent characteristic of cancer especially solid
tumors, is hypothesised to enhance tumor invasiveness and
metastasis (Ke and Costa, 2006). Tumor hypoxia has been
attributed to a variety of factors. First, angiogenesis inability to
keep up with cancer growth, such as the need for the cancer cell
mass “outstripping” the ability of blood vessels to carry oxygenated
blood. Second, ischemia-induced by arteriovenous shunting or
microvessel ‘steal’ syndromes induced by abnormal vessel
arborization and aberrant vascular connections inside
malignancies. Lastly, elevated hydrostatic pressure within the
tumor, results in compression of the microvasculature (Heldin
et al., 2004). Several mechanisms, notably the hypoxia-inducible
factor-1 (HIF-1) pathway, which promotes the elevated expression
of glycolytic enzymes, can govern themetabolic transition state above
at the transcriptional level. As a result, tumor hypoxia and HIFs
influence the majority of cancer “hallmarks”, including cellular
proliferation, apoptosis, metabolism, immunological responses,
genomic instability, vascularization, neovascularization, invasion,
and metastasis (Wigerup et al., 2016). Moreover, HIFs seem to
impact chemo and radiation resistance through multiple
pathways. Additionally, HIFs expression has been linked to poor
prognosis and treatment relapse in clinical tumor samples (Sørensen
and Horsman, 2020). Thus, HIFs appear to be critical therapeutic
targets that can be used to enhance current cancer treatment for
metastatic and treatment-resistant cancers.

The primary intent of this mini-review is to provide a brief
overview of the metabolic processes that are regulated by a
hypoxia-inducible factor. In this review, we outline the
relevance of HIFs in glycolysis, cancer progression and the
epithelial-mesenchymal transition (EMT). A further goal of
the review is to overview the currently available therapeutic
strategies.

Relevance of HIF-1 Stimulated Glycolysis in
Hypoxia
Hypoxia affects metabolic pathways in a variety of ways. For
example, by blocking the oxygen-dependent process of

mitochondrial OXPHOS, hypoxia reduces ATP synthesis, and
thus makes O2-independent glycolysis a more important energy
source (Denko, 2008; Frezza and Gottlieb, 2009). Increased
glycolysis generates ATP quickly, but at the price of a
substantial amount of glucose, as seen by elevated lactic acid
levels. Intra-tumoral acidosis is mediated by the latter, in
conjugation with mitochondria’s impaired capacity to use
protons in ATP synthesis (Zhou et al., 2006). Surprisingly,
rather than being anti-cancer, the stress placed on cancer cells
appears to promote the formation of more aggressive subclones
with a greater ability to penetrate tissues and metastasis (Gatenby
and Gillies, 2004; Gatenby et al., 2007). Hypoxia-induced events
are mostly determined by the activity of the transcriptional
regulators’ hypoxia-inducible factor-1α (HIF-1α) and its
partner HIF-1β.

HIF-1, a transcription factor, regulates the activation of several
genes involved in glucose uptake and metabolism, cell survival/
proliferation, angiogenesis, invasion, and metastasis (Semenza
et al., 1994; Carmeliet et al., 1998). It is a heterodimer of HIF-1α
and a constitutively expressed subunit HIF-1β which also forms a
dimer with HIF-2α and regulates gene activation (Wang et al.,
1995; Carmeliet et al., 1998). HIF-1α is generally targeted for
ubiquitin-mediated destruction by proline hydroxylation and
association with the Von Hippel-Lindau (VHL) tumor
suppressor complex under normoxic conditions, but it is
stabilised when the partial pressure of oxygen is low
(Figure 1). Moreover, overexpression of HIF-1α is linked to a
poor prognosis in various patients with human malignancies
including breast, colon, gastric, lung, skin, ovarian, pancreatic,
prostate, and renal cancer (Bos et al., 2001; Dales et al., 2005;
Chen et al., 2007; Simiantonaki et al., 2008). Thus, HIF-1α
significantly enhances our molecular understanding of cancer
progression and metastasis which is discussed in detail in the
following sections.

Hypoxic Tumor-Microenvironment: Leading
to Cancer Progression and
Epithelial-Mesenchymal Transition
Mammalian cancer cells within a Hypoxic tumor
microenvironment (HTM) undergo tremendous alterations,
eventually intensifying their malignant activity. As a result,
emphasis has been laid on identifying processes involved in
cancer cell adaptation to the HTM in order to identify targets
for potential therapeutic treatments (Liu et al., 2011; Kogita et al.,
2014; Yang et al., 2015). Basically, in hypoxia conditions, HIF-1α
forms the HIF complex, which functions as a transcription factor
in the activation of a wide range of genes, orchestrating major
phenotypic alterations and eventually leading to EMT. Following
EMT, cells lose their normal morphology and gain mesenchymal
traits (Kalluri and Weinberg, 2009; Singh and Settleman, 2010),
including the development of stemness (Sutherland, 1988),
increased invasiveness, and metastasizing capacities (Vaupel,
2004). All of these alterations have been associated with poor
prognosis and chemotherapy resistance in a variety of tumor
types (Yang et al., 2008; Chou et al., 2012). EMT is characterised
by the loss of cell adhesion protein (for instance E-cadherin) and
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the elevated expression of mesenchymal-specific proteins such as
SNAIL, Vimentin, and TWIST. As a matter of fact, this
phenotypic shift has been highlighted as a major phase in the
intricate process of developing distant metastasis (Chaffer and
Weinberg, 2011; Valastyan and Weinberg, 2011).

As represented in Figure 2, the HIF-1α complex activates a
number of key genes that mediate hypoxia > HIF > EMT axis.
This axis has been extensively investigated in many aggressive
tumors including lung, triple-negative breast cancer (TNBC),
pancreatic ductal adenocarcinoma (PDAC) and renal cell
carcinoma (RCC). For instance, autophagy markers (BECN1
and MAP1LC3) are activated in lung and PDAC (Zhu et al.,
2014; Zou et al., 2014); overexpression of CAIX, the acidosis
modulator has been reported in TNBC and RCC (Tan et al.,
2009); further overexpression of epigenetic regulator (DNA
methyltransferase, histone acetyltransferases, chromatin-
remodelling enzymes, etc) and long-non coding RNA has been
reported in gastric cancer, TNBC and PDAC (Krishnamachary
et al., 2012; Onishi et al., 2012; Fujikuni et al., 2014; Liu et al.,
2014; Wang et al., 2014); the chemokines are overexpressed in
gastric cancer and multiple myeloma (Azab et al., 2012; Oh et al.,
2012; Tao et al., 2014). Similarly, overexpression of cyclosporin
binding protein cyclophilin A (CYPA) in PDAC (Zhang et al.,
2014), endothelin in melanoma (Spinella et al., 2014); fascin in
PDAC (Zhao et al., 2014); MMPs in PDAC, lung and ovarian
cancer cell lines (Quintero-Fabián et al., 2019); protein kinase
receptors in gastric, RCC, melanoma cancer (Chuang et al., 2008;
Marconi et al., 2013) has been reported. HIF-1α also activates
another critical cell signaling pathway i.e., HGF/MET signaling.

Several studies suggest that MET, together with its ligand HGF,
promotes cancer cell hallmarks including cell proliferation,
survival, migration, angiogenesis in multiple mammalian
cancer including hepatocellular carcinoma, head and neck
cancer etc., (Goyal et al., 2013; Huang et al., 2020; Raj et al., 2022).

Additionally, in a positive feedback mechanism, ILK (Integrin
Linked kinase) is activated by HIF-1α and is responsible for
elevated HIF-1α expression through the regulatory loop
(Matsuoka et al., 2013). Furthermore, E-cadherin, which was
previously thought of as a tumor suppressor, was shown to have
an unanticipated involvement in regulating genes involved in
response to hypoxia and thus posing a potential role in metastatic
breast cancer (Chu et al., 2013; Tam et al., 2020).

Moreover, intratumoral hypoxia alters the immune response
of tumor in a variety of ways, all of which indicate an
immunosuppressive impact (Palazón et al., 2012). HIF-1α, for
example, can recruit myeloid-derived suppressor cells, regulatory
T-cells, tumour-associated macrophages with
immunosuppressive properties, as well as limit cytotoxic
T-lymphocyte invasion (Corzo et al., 2010; Doedens et al.,
2010; Imtiyaz et al., 2010; Barsoum et al., 2014). Besides that,
HIF-1α stimulates the synthesis of the immunological checkpoint
protein PD-L1(programmed death ligand-1), which aids in
immune suppression and evasion (Noman et al., 2014; Abou
Khouzam et al., 2021). As a result, the majority of the data implies
that HIFs promote tumor growth through immunosuppression.

Collectively, these recent discoveries have motivated the
scientific community to focus its efforts on developing novel
drugs that can inhibit HIF-1α or its target genes. Further, we

FIGURE 1 |HIF-1α regulation in normoxic and hypoxic conditions. HIF-1α is hydroxylated at conserved residue (Proline 564) under normoxic conditions, a process
mediated by prolyl-4- hydroxylases (PHDs) and factor inhibiting HIF-1 (FIH-1) enzymes. PHD hydroxylation promotes HIF-1α protein destabilization, whereas FIH-1
hydroxylation inhibits transcriptional activity by preventing interaction with CBP/p300. HIF-degradation is mediated by a ubiquitin-dependent process carried out by the
Von Hippel-Lindau (VHL) E3 ubiquitin ligase complex. Under hypoxic circumstances, inactivation of PHDs and FIH-1 causes HIF-stabilization, followed by
translocation into the nucleus and dimerization with HIF-1/ARNT to create the HIF transcription factor. During hypoxia, HIFs, in collaboration with the coactivator CBP/
p300, promote transcription of a wide range of target genes.
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have focused on the compounds that have been developed as
HIF-1α inhibitors and are now undergoing clinical trials.
These novel compounds may pave the way for more
effective therapy and might improve the prognosis of
aggressive cancer patients.

Advanced Clinical Trials Targeting the
Adaption to Hypoxia Tumor
Microenvironment Therapeutic Targets
The ability to specifically target cancer cells while causing
minimal harm to normal cells is one of the “Holy Grail” of
cancer therapy. The propensity to exploit abnormalities between
normal and malignant cells has significantly aided the discovery
of novel anti-cancer drugs. Various small compounds discovered
have been briefly summarized in the following section, albeit the
bulk of them are still in the early stages of clinical trials.

As discussed above, HIF-1α activation has been found to have
a significant impact on cancer cell metabolism as it influences the
expression of several genes leading to increased glycolysis and
impaired mitochondrial function in tumor cells. Several
anticancer drugs that modulate the activity or levels of HIF-1α
in cells influence HIF-1 without directly targeting it.

Digoxin (DIG) (PubChem CID: 2724385), a cardiac glycoside,
has been demonstrated to have an anti-cancer effect in vitro and
in vivo in various solid tumors by inhibiting HIF-1α production
(Newman et al., 2008; Zhang et al., 2008; Lin et al., 2009). DIG is
now being studied in phase 2 clinical trial (https://clinicaltrials.
gov/ct2/show/NCT01763931) as a new HIF-1α inhibitor in breast
cancer. This clinical trial will also be valuable in evaluating
adverse events, as well as the safety and tolerability of DIG in
pre-surgical breast cancer patients using the Common
Terminology Criteria for Adverse Events, version 4.
Additionally, Ganetespib (PubChem CID: 135564985), (5-[2,4-
dihyroxy-5-(1-methylethyl)phenyl]4-(1-methyl-1H-indol-5-yl)-
2,4-dihydro-3H-1,2,4-triazol-3-one) have been reported to
increase the proteasome-mediated degradation of Hsp90.
Hsp90, a chaperone, is implicated in tumor development,
angiogenesis, and the generation of cancer stem cells (Pillai
and Ramalingam, 2014; White et al., 2016). Its route triggers
the activation of multiple oncogenic proteins including HIF-1α.
Thus by targeting Hsp90, Ganetespib inhibits HIF-1α in TNBC
mouse model (Xiang et al., 2014). Ganetespib is now being studies
in a phase 3 trial in patients with advanced non-small cell lung
cancer (NSCLC) in conjunction with docetaxel (https://www.
clinicaltrials.gov/ct2/show/NCT01798485). This clinical trial

FIGURE 2 |Genes whose expression has been linked to the activation status of HIF-1α, resulting in EMT. HIF-1α induces expression of BECN1, MAP1lC3 which is
an autophagy marker; CAIX, acidosis modulators: epigenetic regulators: KLF8, cell surface glycoproteins (CD24, CD44), JMJ2DB which is lysine-specific demethylase
jumonji domain, Nanog homeobox (NANOG), Octamer-binding transcription factor 4(OCT4), SRY sex-determining region Y-box (SOX2), sonic hedgehog (SHH),
smoothened frizzled class receptor (SMO), GLI family zinc finger 1 (GLI1); AK058003- long non-coding RNA; multiple chemokines: CXCR4, CCL2, CCR7,
CX3CR1; cyclosporin bind protein cyclophilin A (CYPA); endothelins: EDN1 (endothelin1; fascins: fascin actin-bundling protein 1(FSCN1); GTPase proteins: Rho family
GTPase 3 (RND3): insulin growth factor which includes IGF1, IGF1R, IGFBP3; mucin 1, cell surface-associated (MUC1); matrix metalloproteinase; MMP2, protein
kinases receptors including TGFb/TGFBR1, TNFAR, AXL; hepatocyte growth factor (HGF) which is a ligand of MET tyrosine kinase receptor; adrenomedullin (ADM).
These activated genes are known to play a crucial role in EMT transition and result in increased invasiveness, cellular proliferation, migration, spindle-like cellular
appearance, resistance to chemo/radiotherapy and tumor relapse.
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seeks to identify a potential synergism between ganetespib
(150 mg/m2) and docetaxel (75 mg/m2) in order to suggest a
more effective anti-cancer therapy than docetaxel alone.

Amongmultiple factors that influence hypoxia-induced tumor
acidosis, CAIX is a hypoxia-inducible metal enzyme that
promotes cancer cell survival/proliferation and invasion via
HIF activation (Lock et al., 2013). It regulates cellular pH by
catalyzing the reversible hydration of carbon dioxide to
bicarbonate and protons. It is expressed exclusively on the cell
surface of tumor cells, particularly CSCs (cancer stem cells), and
is one of the key factors influencing cancer cell survival and
metastasis (Lock et al., 2013). Moreover, CAIX is abundantly
expressed in pancreatic ductal adenocarcinoma and breast cancer
and has been implicated as a biomarker of poor prognosis for
metastatic development and survival (Touisni et al., 2011; Lock
et al., 2013). Additionally, research has proven a vital role for
CAIX expression in the maintenance of the EMT phenotype,
“stem cell” function, and hypoxia-induced tumor heterogeneity
(Touisni et al., 2011; Ledaki et al., 2015). SLC-0111 (PubChem
CID: 310360) is a small molecule that reaches the hypoxic niches
and selectively binds and inhibits CAIX. Presently SLC-0111 is in
phase I clinical trial (https://clinicaltrials.gov/ct2/show/
NCT02215850) and the study focuses on its safety, tolerability,
and pharmacokinetics, and efficacy in treating cancers. Similarly,
another molecule DTP348 (PubChem CID: 57413968) namely 2-
(2-methyl-5-nitro-1H-imidazol-1-yl) ethylsulfamide, is reported
to target CIAX (Rami et al., 2013). Presently, this oral dual CAIX
inhibitor/radiosensitizer is being researched in phase I clinical
trial (https://clinicaltrials.gov/ct2/show/NCT02216669). This
clinical study will consider the effects of DTP348 alone and in
combination with radiation in patients with solid tumors to
establish the appropriate phase II clinical trial dosage, safety,
and tolerability.

Interestingly, HGF is the natural ligand of MET, a proto-
oncogene. The HIF-1α induced HGF/MET pathway activation
has been reported to induce EMT transition, resulting in a
mesenchymal population that is more tumorigenic and
chemoresistant than the preceding ones (Cañadas et al., 2014).
Rilotumumab, Crizotinib/axitinib and cabozantinib are designed
to effectively target HGF/MET pathway. Rilotumumab
(PubChem SID: 135262715), is a human monoclonal antibody
that is reported to significantly block the binding of HGF/SF to its
MET receptor. Presently, it is being tested in phase 3 clinical trial
(https://clinicaltrials.gov/ct2/show/NCT01697072) to evaluate if
the treatment with epirubicin, cisplatin, and capecitabine in
combination with rilotumumab results in better clinical
outcomes in metastatic MET positive gastric cancers. Axitinib
(PubChem CID: 6450551), with crizotinib (PubChem CID:
11626560), is currently being tested in a phase 1b clinical trial
in patients with advanced solid tumors (https://clinicaltrials.gov/
ct2/show/NCT01999972) (Kwak et al., 2010; Chen Y. et al., 2015).
Moreover, cabozantinib is an oral inhibitor of MET, RET, ROS1,
NTRK1, and AXL. It has been found to shrink tumor cells and
significantly reduce cellular proliferation in medullary thyroid
and prostate cancer. Cabozantinib (PubChem CID: 46830297), is
currently being investigated to determine objective response rate
(ORR), overall survival (OS) and progression-free survival (PFS)

in advanced non-small cell lung cancer with RET fusions and
those with ROS1 or NTRK1 fusions or elevated MET or AXL
activity (https://clinicaltrials.gov/ct2/show/NCT01639508).

According to the current research, several phytocompounds
also have been shown to play a significant role in cancer therapy
and have numerous potential targets in tumorigenesis, including
HIF-1 (Deng et al., 2019). Baicalein (PubChem CID: 5281605),
(5,6,7- trihydroxyflavone), a flavonoid derived from Scutellaria
baicalensis has been reported to have potent cytotoxic activity
against a wide range of cancer (Bie et al., 2017; Dou et al., 2018;
Wang et al., 2019). Surprisingly, baicalein when administered
leads to the inhibition of hypoxia-induced Akt phosphorylation
as a result of increased PTEN accumulation and decreased HIF-
1α expression. Thus baicalein is a potential therapeutic sensitiser
against gastric cancer since it inhibits glycolysis via PTEN/Akt/
HIF-1α (Chen F. et al., 2015). Other investigations have
corroborated the inhibitory effects of phytochemicals on HIF-1
in control of glucose metabolism. For instance,
methylalpinumisoflavone (MF) (PubChem CID: 15596285), a
flavonoid isolated from Lanchocarpus glabrescens,
demonstrates a strong anti-cancer effect on T47D cells by
suppressing HIF-1 and targets genes including CDKN1A,
VEGF, and GLUT-1 in T47D cells (Liu et al., 2009).
Moreover, oroxylin A (PubChem CID: 5320315) treatment has
been linked to a reduction in cancer-related glycolysis via sirtuin-
3 mediated destabilization of HIF-1 in MDA-MB-231 cells (Wei
et al., 2015). Furthermore, EGCG (PubChem CID: 65064) is
known to decrease the HIF-1α and glycolysis-related enzymes in
T47D cells (Wei et al., 2018). Additionally, resveratrol (PubChem
CID: 445154) has been shown to reduce the cellular uptake of
glucose and induce glycolysis in cancer cell lines. Resveratrol
inhibited intracellular reactive oxidative species (ROS) and hence
lowered HIF-1 accumulation, decreased GLUT-1 expression, and
induced glycolytic flow, according to measurements of cellular
absorption of the glucose analogue 18F-fluorodeoxyglucose
following resveratrol exposure (Jung et al., 2013).

Further using a combination of anti-cancer therapies is more
likely to be successful than using a single drug (Maschek et al.,
2004). Another concept has been proposed that takes the use of
underlying metabolic variations between malignancies and
healthy tissues (Payne, 2007). For instance, many tumors’
reliance on glycolysis has been addressed using a variety of
glycolytic pathway enzyme inhibitors that are also being
evaluated as possible treatment drugs (Maher et al., 2004;
Maschek et al., 2004; Xu et al., 2005; Pelicano et al., 2006;
Gogvadze et al., 2009; Marín-Hernández et al., 2009;
Mathupala et al., 2009). The major targets thus far have been
glucose absorption (mediated mostly by GLUT-1), glucose
retention (mediated by hexokinase) and lactate generation
(catalyzed by lactate dehydrogenase-A). Unfortunately,
inhibiting glycolysis has a significant complication; unlike
organs that may easily utilise carbon sources other than
glucose, the brain, retina, and testes are extremely glucose
dependent. As a result, different metabolic targets such as
specific glycolytic pathway enzyme isoforms which are
transcriptionally overexpressed in response to HIF-1 elevations
must be taken into account (Marín-Hernández et al., 2009).
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Targeting proteins such as GLUTs, HK1, HKII, PFK-L, ALD-A,
ALD-C, PGK1, ENO-α, PYK-M2, LDH-A, PFKFB-3 along with
HIF-1α may be more trackable for drug development than HIF-
1α itself. Identifying metabolic alterations that are specific to
malignancies is inevitably a critical research goal.

CONCLUSION

Metabolic reprogramming is a frequent cancer cell
mechanism for dealing with elevated energy demands. The
growing interest in cancer metabolism has already resulted in
a slew of novel potential therapeutics. In conclusion, several
reports have shown that hypoxic cells may adapt to low
oxygen levels by changing transcriptional and translational
responses to increase glucose absorption and anaerobic
catabolism. Since HIF-1 has been proven to be a master
regulator of a wide range of proteins and enzymes involved
in glucose metabolism and the glycolytic pathway. Thus
modulation of the HIF-1 pathway is a promising
therapeutic strategy. It is envisaged that a deeper insight
into the molecular mechanisms involved in HIF-1
regulation and the Warburg effect in carcinogenesis would
unlock new therapeutic interventions. Nonetheless, due to the
present generation of agents’ limited selectivity and

specificity, there are possible challenges and concerns.
Additionally, the recent metabolism-based therapeutics
have shown some harmful effects on normal cells.
Therefore, we propose combining the drugs to target
distinct elements of cancer bioenergetics and hypoxia-
induced factors in order to develop synergistic cancer
treatments. Furthermore, directing these molecules to
their targets would limit off-target effects while increasing
efficacy.
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GLOSSARY

ATP adenosine triphosphate

AXL AXL receptor tyrosine kinase

BECN1 beclin-1

CAIX carbonic anhydrase 9 precursor

CRC colorectal cancer

DIG digoxin

EGCG epigallocatechin gallate

EMT epithelial-mesenchymal transition

ENO-α alpha-enolase

GLUT glucose transporter

HIF 1α-hypoxia-inducible factor-1α

HIF-1 hypoxia-inducible factor-1

HGF hepatocyte growth factor

HK1 hexokinase-1

hsp90 heat shock protein 90

HTM hypoxic tumor microenvironment

ILK Integrin Linked kinase

LDH lactate dehydrogenase

MAP1LC3 microtubule-associated proteins 1A/1B light chain 3B

MF methylalpinumisoflavone

MET mesenchymal-epithelial transition

NTRK1 neurotrophic receptor tyrosine kinase 1

NSCLC non-small lung cancer

OXPHOS oxidative phosphorylation

PDAC pancreatic ductal adenocarcinoma

PD-L1 programmed death ligand-1

RCC renal cell carcinoma

RNA ribonucleic acid

RET rearranged during transfection

PGK1 phosphoglycerate kinase 1

PFKFB 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PFK Phosphofructokinase

PTEN phosphatase and tensin homolog

PYK M2-M2 isoform of pyruvate kinase

ROS1 ROS proto-oncogene 1

TME tumor microenvironment

TNBC triple-negative breast cancer

VEGF vascular endothelial growth factor

VHL Von Hippel-Lindau
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