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Background: Anti-cancer immunotherapeutic approaches have gained significant
efficacy in multiple cancer types. However, not all patients with colorectal cancer
(CRC) could benefit from immunotherapy due to tumor heterogeneity. The purpose of
this study was to construct an immune-related signature for predicting the immune
characteristics and prognosis of CRC.

Methods: RNA-sequencing data and corresponding clinical information of patients with
CRC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO), and immune-related genes (IRGs) were downloaded from the
Immunology Database and Analysis Portal (ImmPort). Then, we utilized univariate,
lasso regression, and multivariate cox regression to identify prognostic IRGs and
develop the immune-related signature. Subsequently, a nomogram was established
based on the signature and other prognostic factors, and its predictive capacity was
assessed by receiver operating characteristic (ROC) and decision curve analysis (DCA).
Finally, associations between the signature and the immune characteristics of CRC were
assessed.

Results: In total, 472 samples downloaded from TCGA were divided into the training
cohort (236 samples) and internal validation cohort (236 samples), and the GEO cohort
was downloaded as an external validation cohort (122 samples). A total of 476 differently
expressed IRGs were identified, 17 of which were significantly correlated to the prognosis
of CRC patients. Finally, 10 IRGs were filtered out to construct the risk score signature, and
patients were divided into low- and high-risk groups according to the median of risk scores
in the training cohort. The high-risk score was significantly correlated with unfavorable
survival outcomes and aggressive clinicopathological characteristics in CRC patients, and
the results were further confirmed in the internal validation cohort, entire TCGA cohort, and
external validation cohort. Immune infiltration analysis revealed that patients in the low-risk
group infiltrated with high tumor-infiltrating immune cell (TIIC) abundances compared to the
high-risk group. Moreover, we also found that the immune checkpoint biomarkers were
significantly overexpressed in the low-risk group.
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A Prognostic Immune-Related Signature in CRC

Conclusion: The prognostic signature established by IRGs showed a promising clinical
value for predicting the prognosis and immune characteristics of human CRC, which
contribute to individualized treatment decisions.

Keywords: colorectal cancer, immune, mRNA, prognosis, immunotherapy

INTRODUCTION

Colorectal cancer (CRC), known as the third most frequently
diagnosed malignancy worldwide, is the second leading cause of
cancer-related death (Keum and Giovannucci, 2019). It is
reported that more than 1.8 million newly diagnosed CRC
cases and 0.8 million cancer-related deaths occurred in 2018
(Bray et al., 2018). Currently, combining surgical resection with
chemotherapy is the most effective way to treat CRC. However,
local recurrences and remote metastases of CRC are difficult to
prevent, which is responsible for the poor prognosis of patients
with CRC (Inadomi, 2017). Therefore, identifying other effective
treatments to combat CRC and improve the prognosis of patients
with CRC is an urgent need.

Immune cells in the tumor microenvironment (TME) can
induce the host immune response to suppress the growth of
tumor cells by secreting cytokines, cytokine receptors, and other
factors (Ge et al., 2019). However, studies have reported that the
immune system is frequently dysregulated in TME and
inextricably associated with the progression of tumor cells
(Gessani and Belardelli, 2019). Immune escape is a significant
characteristic of tumor cells that prompts the advent of
immunotherapy, a novel kind of therapy for cancer treatment
(Vilgelm and Richmond, 2019). Anti-cancer immunotherapeutic
approaches, including immune checkpoint inhibitors (ICIs),
adoptive cell therapy, monoclonal antibodies, and cancer
vaccines, have gained significant efficacy in multiple cancer
types (Markman and Shiao, 2015). Among them, the immune
checkpoint can terminate the immune responses and induce the
failure of immune cells, thereby inducing the immune evasion of
tumor cells in the TME (Pardoll, 2012). Recently, immune
checkpoints such as programmed cell death 1 (PD-1) and its
ligand PD-L1 and cytotoxic T-lymphocyte-associated antigen 4
(CTLA-4) received the most attention. Studies have reported that
blockade of these immune checkpoints by ICIs is superior to
traditional treatments and is an effective way to improve the
prognosis of oncologic patients (Wang et al., 2017). However,
accumulating evidence has found that the majority of CRC
patients do not benefit from existing immunotherapy, and the
molecular mechanism remains largely unknown (Ciardiello et al.,
2019). The molecular profiles of the immune components within
the TME represent a promising value in serving as a predictor of
prognosis and responsiveness to immunotherapy in tumor.
Therefore, identifying novel biomarkers to predict the immune
characteristics is critical for evaluating the prognosis and
immunotherapeutic sensitivity of CRC. Recently, numerous
studies have focused on developing a prognostic signature
based on molecular profiles of the immune components and
found that the signature could serve as an independent predictor
in CRC (Zhu et al., 2020), (Li et al., 2021). However, the precision

of the predictive immune-related signature needed to be
improved and external validation was needed. In addition, the
associations between the identified signature and immune cell
phenotypes should be illustrated to identify which group of CRC
patients is more likely to benefit from immunotherapy.

In the present study, we systematically analyzed the
transcriptome data and the corresponding clinical information
of CRC patients based on TCGA and Gene Expression Omnibus
(GEO) databases. As a result, we developed a prognostic scoring
system based on 10 immune-related genes (IRGs) and verified the
predictive accuracy with internal and external cohorts. In
addition, we further illustrated the correlations of the IRG
signature with immune cell phenotypes and immune
checkpoint biomarkers in CRC. These findings revealed that
the IRG signature could serve as a reliable predictor of
prognosis and immune characteristics in human CRC, which
contribute to individualized treatment decisions.

MATERIALS AND METHODS

Data Acquisition and Processing

The RNA-sequencing profile data in the format of Fragments Per
Kilobase Million (FPKM) of 612 CRC samples (including 44
normal samples and 568 tumor samples) were obtained from The
Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/
). Meanwhile, the clinical information of 548 CRC cases was also
downloaded from TCGA. The samples with incomplete survival
information were excluded, and finally, 472 samples with
complete follow-up data were included in the next analysis. In
addition, RNA-sequencing profile data and corresponding
clinical information of 122 samples from Gene Expression
Omnibus (GEO, GSE38832, https://www.ncbi.nlm.nih.gov/geo)
database were downloaded as a validation cohort. IRGs were
obtained using the Immunology Database and Analysis Portal
(ImmPort, http://www.immport.org) database, a powerful online
platform that provides a mass of immune-related molecular
profiles in different tumor types (Bhattacharya et al., 2014).

Identification of Differentially Expressed

Immune-Related mRNAs

We used the “limma” package in R to identify differentially
expressed genes (DEGs) between tumor and normal samples
in TCGA (Ritchie et al., 2015). The threshold for the differentially
expressed gene was set as adjusted p value < 0.05 combined with |
log2(fold change) | >1. Then, based on the ImmPort database, we
obtained the expression profile of differentially expressed IRGs in
CRC using the “VennDiagram” package in R (Chen and Boutros,
2011). To better understand the biological function of these
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differentially expressed IRGs in human CRC, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses on these genes via the
“clusterProfiler” packages in R (Yu et al, 2012). Only the
enrich terms with p < 0.05 were considered statistically
significant.

Establishment of a Risk Signature to

Evaluate the Risk Score

First, all the CRC samples obtained from TCGA were randomly
assigned into training and internal validation cohorts at a 1:1
ratio. Then, we used a univariate Cox regression model to identify
the association between immune-related mRNAs in relation to
the prognosis of CRC patients. IRGs with p < 0.01 in univariate
Cox analysis were incorporated into the least absolute shrinkage
and selection operator (LASSO) model to prevent overfitting, and
the results of LASSO analysis were included into a multivariate
Cox model to construct a risk signature. Ultimately, we
constructed a prognostic IRG signature, and the risk score of
each patient was calculated as follows: = Z (Bi x EXPi), where Bi
(coefficients) represented the weight of the respective signature
and EXPi represented the expression level. Based on the median
of the risk score, CRC patients in the training cohort were divided
into the low- and high-risk groups. In addition, the internal
validation cohort and entire cohort were also classified into low-
and high-risk groups according to the same cutoff value.

Survival Analysis of Risk Score Signature
In order to evaluate the prognostic value of the IRG signature, the
survival difference between the low- and high-risk groups was
illustrated by Kaplan-Meier analysis with the log-rank test. The
area under the curve (AUC) in the receiver operating
characteristic (ROC) curve was drawn to verify the diagnostic
efficacies of the IRG signature based on the “survivalROC”
package in R (Heagerty et al, 2000). In addition, the
predictive value of the IRG signature was also assessed in the
internal validation and entire cohorts. Furthermore, we also
performed stratified survival analysis to further determine the
predictive value of the IRG signature in distinct subgroups in the
entire cohort.

External Validation of the Risk Score

To determine whether the IRG signature had a similar predictive
value in different populations, its prognostic capability was
further validated using the GEO cohort. The same prognostic
scoring system developed in the training cohort was used to
calculate the risk score for each patient in the GEO cohort, and
patients were also divided into low- and high-risk groups based
on the median of risk score. Then, survival curve, risk curve, and
ROC curve analysis were performed.

Clinical Parameter Correlation Analysis

To evaluate the clinical relevance of the developed IRG signature,
we first obtained the clinicopathological information from
TCGA, including age, gender, American Joint Committee on
Cancer (AJCC) tumor stage, T classification, N classification, and

A Prognostic Immune-Related Signature in CRC

M classification. Then, the differences of these clinicopathological
features between low- and high-risk groups were evaluated using
the Chi-square test. In addition, we performed the Wilcoxon test
to assess the risk score differences across different subgroups
based on the clinicopathological characteristics.

Construction of a Predictive Nomogram

We constructed a nomogram consisting of clinical parameters
and risk score based on multivariate Cox regression analysis using
“survival,” “rms,” and “foreign” packages in R software. The
calibration curve was plotted to compare the association
between the actual outcomes and the predicted probabilities.
The AUC of the ROC curve was plotted to compare the
predictive abilities of the nomogram with other prognostic
factors. Furthermore, we used decision curve analysis (DCA)
to evaluate the net benefit of the nomogram in a clinical context.

Comparison of the IRG Signature With Other

Prognostic Models

To determine whether our IRG signature is better than previously
identified models in CRC, we compared the predictive ability of
our IRG signature with other signatures, including a six-mRNA
signature (Dai et al., 2020), a five-mRNA signature (Zhu et al.,
2020), and two eight-mRNA signature (Wang et al., 2020; Wu
et al,, 2020). We obtained the IRGs in these signatures from the
corresponding published literature, and then calculated the
C-index and AUC of 1-, 3-, and 5-year ROC curves for each
signature.

Estimation of Tumor-Infiltrating Immune
Cells and Immunotherapeutic Biomarkers
With Risk Assessment Signature

To explore the correlation between the risk score and TIIC
characteristics, we applied the currently developed
deconvolution algorithm, including TIMER (Li et al, 2017),
QUANTISEQ  (Plattner et al, 2020), MCPcounter
(Dienstmann et al., 2019), EPIC (Racle et al., 2017), and
CIBERSORT (Chen et al., 2018) to calculate the abundances
of distinct TIICs in each sample from the TCGA project. We
developed a lollipop diagram to show the correlation between the
risk score and TIIC abundance based on Spearman correlation
analysis, and the difference in TIIC abundance between low- and
high-risk groups was analyzed using the Wilcoxon test and shown
in a box plot. In addition, we compared the expression levels of
immunotherapeutic biomarkers between low- and high-risk
groups based on the Wilcoxon test.

Statistical Analysis

All statistical analyses were performed using R software (version
4.0.2). The Student’s t-test was applied to identify statistically
differentially expressed genes, and the Wilcox test was used to
identify statistically differentially infiltrative immune cells.
Fisher’s exact test was used to evaluate the significant GO
terms and KEGG enrichment pathways. Cox regression and
Kaplan-Meier curves with the log-rank test were used for
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FIGURE 1 | Identification of differentially expressed IRGs. (A) The heatmap of differentially expressed genes in TCGA. (B) The intersection of differentially expressed
genes and IRGs. (C) The heatmap of differentially expressed IRGs. (D, E) GO and KEGG enrichment analyses of differentially expressed IRGs.
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evaluating the survival data. The ROC curve was used to
determine the predictive accuracy of the risk signature, and
the DCA and calibration curves were used to explore the
reliability of the nomogram. The correlation between the risk
score and TIIC abundance was evaluated using the Spearman
correlation coefficient. p value < 0.05 was considered statistically
significant.

RESULTS

Identification of Differentially Expressed

Immune-Related mRNAs

In total, 6,482 DEGs including 4,518 upregulated and 1,964
downregulated genes were identified based on the threshold of
adjusted p value < 0.05 and | log2(fold change) | >1. The heatmap
of the DEGs was shown in Figure 1A. Meanwhile, a total of 1,811
IRGs were extracted from the ImmPort database. Then, 476
differentially expressed IRGs were identified using the intersect
function of Venn diagram (Figure 1B). The heatmap of the
differentially expressed IRGs was shown in Figure 1C. We then

performed GO and KEGG enrichment analyses to further explore
the biological function of these IRGs. As is shown in Figure 1D,
GO enrichment analysis found that these IRGs are mainly
enriched in immune-related crosstalk, including complement
activation, humoral immune response, and leukocyte
migration. KEGG pathway enrichment analysis showed that
these genes are mainly enriched in several areas of tumor-
related pathway, including the Rap 1 signaling pathway,
MAPK signaling pathway, and NF-«kB signaling pathway
(Figure 1E).

Construction of Risk Assessment Signature
First, the entire TCGA cohort (n = 472) was randomly divided into
the training cohort (n = 236) and internal validation cohort (n =
236), and the clinical parameters of the CRC patients in each
cohort are shown in Table 1. Then, we used the expression profiles
of the differentially expressed IRGs in the training cohort to
construct a survival-related signature. In total, 17 IRGs were
identified to be associated with the prognosis of patients with
CRC using univariate Cox regression analysis (p < 0.01, Figure 2A)
and 14 of which were filtered out using a LASSO regression analysis
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TABLE 1 | Clinical features of the patients with CRC in each cohort.

A Prognostic Immune-Related Signature in CRC

Variables Training Testing P Entire TCGA cohort (n =
cohort (n = 236) cohort (n = 236) 472)
Age (years)
<65 98 111 0.2661 209
>65 138 125 263
Gender
Female 108 103 0.7111 211
Male 128 133 261
Survival status
Alive 197 193 0.7155 390
Dead 39 43 82
Tumor invasion (T)
T 7 6 0.8146 13
T2 43 38 81
T3 161 163 324
T4 25 28 53
Unknown 0 1 1
Lymph node (N)
NO 135 137 0.7794 272
N1 61 58 119
N2 40 40 80
Unknown 0 1 1
Metastasis (M)
MO 202 198 0.6814 400
M1 32 34 66
Unknown 2 4 6
Tumor stage
Stage | 40 40 0.9899 80
Stage Il 91 86 177
Stage Il 66 68 134
Stage IV 32 34 66
Unknown 7 8 15

with a 10-fold cross validation (Figures 2B,C). Finally, 10 IRGs
were identified as independent prognostic factors and were selected
for constructing the IRG signature (Figure 2D; Table 2). The risk
score for each sample was calculated based on the expression level
and Cox regression coefficient of these 10 genes. Risk score =
(-5.96137 x EXPcpip) + (0.19671 x EXPrpry) + (0.56983x
EXPFsz) + (017961 X EXPSEMA3G) + (012713 X EXPPLXNA3)
+ (~4.98459 x EXPnra1) + (0.22476 x EXPycn) + (016455 x
EXPyiria) + (043311 x EXPprig) + (0.12939 x EXPrrpo).

Prognostic Evaluation by Risk Assessment

Signature

Based on the cutoff value of 1.763 for the risk score, patients were
divided into the low- (n = 118) and high-risk (n = 118) groups.
The Kaplan-Meier analysis with the log-rank test found that
patients in the high-risk group presented worse prognosis than
those in the low-risk group (Figure 3A). CRC patients appeared
to have an increased mortality rate with the increase of risk scores
according to the risk plot (Figure 3B). The time-ROC curve
showed that the AUC of 1-, 3-, and 5-year survival were 0.822,
0.834, and 0.888, respectively (Figure 3C). Then, we further
validated the immune signature in the internal validation and
the entire TCGA cohorts. The prognosis of CRC patients in the
high-risk group was significantly worse than that in the low-risk
group (Figure 3D). The patients with CRC have an increased

mortality rate with the increase of risk scores according to the risk
plot (Figure 3E). The AUC values of 1-, 3-, and 5-year survival in
the internal validation cohort were 0.745, 0.620, and 0.607,
respectively (Figure 3F). Similarly, in the entire TCGA cohort,
patients in the high-risk group presented worse prognosis than
those in the low-risk group (Figure 3G). The mortality rate of
patients was increased with the increase of risk scores according
to the risk plot (Figure 3H), and the AUC for 1-, 3-, and 5-year
survival was 0.778, 0.737, and 0.757, respectively (Figure 3I).
These aforementioned results indicated that the IRG signature
was competent for predicting the prognosis of human CRC.

We performed stratification analysis to further determine the
widespread utility of the IRG signature based on the
clinicopathological variables. As shown in Figure 4, we found
that the IRG signature has predictive significance for different
subgroups, and the prognosis of patients in the low-risk group was
significantly superior to that of patients in the high-risk group.
Taken all above, these findings indicate that the IRG signature
exerts vital roles in predicting the prognosis of CRC patients.

Finally, we further validated the prognostic value of the TRG
signature in an independent cohort from the GEO project.
Similarly, survival analysis in 122 CRC patients also found
that the high-risk score indicated poor survival outcomes
(Figures 5A,B). Correspondingly, the 1-, 3-, and 5-year AUC
in predicting prognosis was 0.577, 0.636, and 0.647, respectively
(Figure 5C).
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FIGURE 2 | Identification of survival related IRGs in patients with CRC. (A) Univariate Cox regression models identified 17 IRGs associated with prognosis of CRC
patients. (B, C) Lasso regression models identified 14 IRGs. (D) Ten IRGs were identified to construct a novel prognostic signature based on multivariate Cox regression

TABLE 2 | Multivariate Cox results of immune-related mRNAs based on
TCGA data.

Gene Coefficient () HR 95% CI of HR
CD1B -5.96137 0.0026 3.20e-05-0.2075
TFR2 0.19671 1.2174 1.0552-1.4046
FGF2 0.56983 1.7680 1.3191-2.3695
SEMA3G 0.17961 1.1968 0.9712-1.4747
PLXNA3 0.12713 1.1356 1.0223-1.2614
NRG1 -4.98459 0.0068 0.0002-0.2990
UCN 0.22476 1.2520 1.0281-1.5248
IL1RL2 0.16455 1.1789 0.9885-1.4059
PTH1R 0.43311 1.5420 1.0108-2.3526
TRDC 0.12939 1.1381 1.0109-1.2813

HR, hazard ratio; Cl, confidence interval.

Correlation Between the Signature and the

Clinicopathologic Parameters in CRC

We performed a series of Shi-square tests and Wilcoxon tests
to determine the correlations between the risk score and the
clinicopathological parameters in patients with CRC. As
shown in the strip chart (Figure 6A) and scatter diagrams

(Figure 6B), The risk scores were found to be significantly
associated with patients’ clinicopathologic parameters,
including T classification, N classification, M classification,
and AJCC tumor stage. These aforementioned results
indicated that the high-risk score was significantly
correlated with more aggressive clinicopathological
characteristics.

Construction of the Prognostic Nomogram
The age, gender, stage, and risk score were integrated to
construct a nomogram to predict the survival probability of
CRC patients at 1, 3, and 5 years (Figure 7A). The calibration
plot showed that the nomogram performed well compared
against the performance of an ideal model (Figure 7B). The
ROC curve showed that the AUC values corresponding to
nomogram, risk score, stage, gender, and age were 0.800,
0.781, 0.737, 0.436, and 0.622, respectively (Figure 7C). In
addition, the DCA curve proved that the nomogram
provided better net benefits than other prognostic factors
(Figure 7D). These results indicated that the nomogram
signified satisfied accuracy in predicting the prognosis of
CRC patients.
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Comparison of the IRG Signature With Other

Prognostic Models

We compared our IRG signature with previously identified models
to determine whether the predictive efficiency of our signature is
higher than others. As shown in Figure 8A, the C-index of our
signature is 0.818, which is higher than that in other models. The
Kaplan-Meier survival curve showed that the prognosis of the low-
and high-risk groups significantly differed across these signatures
(Figures 8B-F). The ROC curve showed that the AUC values of
the 1-, 3-, and 5-year survival for our signature are 0.822, 0.834, and
0.888, respectively (Figure 8B). The AUC values of the 1-, 3-, and
5-year survival for Dai et al. signature are 0.779, 0.799, and 0.748,
respectively (Figure 8C). The AUC values of the 1-, 3-, and 5-year
survival for Zhu et al. signature are 0.593, 0.627, and 0.759,
respectively (Figure 8D). Wang et al. signature showed that the
AUC values of the 1-, 3-, and 5-year survival are 0.793, 0.763, and
0.781, respectively (Figure 8E). Wu et al. signature showed that the
AUC values of the 1-, 3-, and 5-year survival are 0.779, 0.714, and
0.733, respectively (Figure 8F). By comparing with previously
constructed signatures, we found that the predictive efficiency of
our IRG signature is higher than that of other models.

Estimation of Tumor-Infiltrating Immune
Cells and Immunotherapeutic Biomarkers

With Risk Assessment Signature

In order to explore whether the IRG signature was associated with
the immune characteristics of CRC, we applied five algorithms to
estimate the abundance of TIICs. As shown in the lollipop
diagram (Figure 9A), Spearman correlation analysis revealed
that the risk score was significantly negatively correlated with
the infiltration levels of multiple TIICs, including CD4" T cells,
CD8" T cells, NK cells, macrophages, B cells, and neutrophils.
The box plot showed that the abundance of these TIICs was
significantly higher in the low-risk group than that in the high-
risk group (Figure 9B). In addition, we further explored the
expression of immunotherapeutic biomarkers in low- and high-
risk groups. As shown in Figure 9C, compared to the high-risk
group, CRC patients in the low-risk group express higher levels of
immunotherapeutic biomarkers, including PD-1, PD-L1, TIM-3,
and CTLA-4. These results indicated that CRC patients in the
low-risk group had an immune “hot” phenotype and were more
likely to benefit from immunotherapy. That is, to say, the IRG
signature can predict the immune characteristics of human CRC.
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DISCUSSION

Cancer evolution is a complicated progression which involves
diverse processes from the accumulation of genetic alterations to
epigenetic modulations and chromosomal abnormalities
(Baviskar et al, 2021). It is widely accepted that genetic
alterations such as mutations in oncogenes and tumor
suppressor genes (e.g., KRAS, NRAS, BRAF, PIK3CA, and
TP53) directly contribute to tumorigenesis (Testa et al., 2018).
In addition, studies have also indicated that epigenetic
modifications are involved in the onset and progression of
multiple human diseases (Bauer et al, 2016). Epigenetics
focused on heritable alterations in gene expression that do not
arise permanent alterations in the primary DNA sequence,
including DNA methylation, genomic imprinting, gene
silencing, and RNA editing. Accumulating evidence has
reported that epigenetic alteration has a central role in the
pathogenesis of various types of cancers (Gu et al., 2015; Jung
et al, 2020). Recently, the rapidly developed next-generation

sequencing (NGS) and whole-genome bisulfite sequencing
(WGBS) provide us more convenient platforms to explore the
genetic and epigenetic alterations in many types of human
diseases, including CRC (Wang et al, 2013; Ratovomanana
et al., 2021). Nevertheless, the pathogenesis of CRC remains
largely unclear and deserves further clarification.
Tumorigenesis is affected not only by its intrinsic
characteristics but also by extrinsic TME, and growing
evidence has indicated the significant role of the TME in
predicting tumor progression and prognosis (Wang et al,
2019). Immune cells are important components of TME, and
dysfunction of the immune system in cancer patients will lead to
immune escape of cancer cells, thereby promoting the initiation
and progression of cancer (Yang et al., 2019). Recent studies have
indicated that immunotherapy is an effective strategy for the
treatment of multiple solid tumors. However, available evidence
suggests that most CRC patients are insensitive to existing
immunotherapies due to tumor heterogeneity and lack of
effective biomarkers. Therefore, identifying novel biomarkers
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to predict the immune characteristics and therapeutic sensitivity
of human CRC is very important.

First, we obtained the transcriptome sequencing data of CRC
from TCGA, and a total of 476 differentially expressed IRGs were
identified. Then, we utilized GO and KEGG enrichment analyses
to explore the potential function of these IRGs. GO analysis found
that these IRGs were mainly enriched in immune-related
biological processes, such as complement activation, humoral
immune response, and leukocyte migration. In addition, KEGG
pathway enrichment analysis revealed that these genes were
mainly enriched in the tumor-related pathway, including the
Rap 1 signaling pathway, MAPK signaling pathway, and NF-kB
signaling pathway. Among the enriched pathways, dysregulation
of Rap 1 signaling pathway has been reported to promote the cell
proliferation and apoptosis of pancreatic cancer (Yao et al., 2019).
The MAPK signaling pathway has also been reported to regulate
many cellular functions, including cell proliferation and
apoptosis, and dysregulation of MAPK signaling pathway

participating in the initiation and progression of CRC (Slattery
et al., 2018). There is also increasing evidence that the NF-kB
signaling pathway was abnormally activated in various cancer cell
lines including CRC, with the silencing of NF-«kB signaling
pathway significantly inhibiting cell proliferation and
migration of CRC in vitro (Soleimani et al., 2020). Therefore,
these differentially expressed IRGs play important roles in
human CRC.

Subsequently, an immune-related signature comprisingl0
IRGs was constructed based on univariate Cox regression,
lasso regression, and multivariate Cox regression analyses in
the TCGA project. Some of the IRGs involved in the present
signature have been reported previously to play an important role
in the carcinogenesis of multiple cancer types, including CRC. For
example, CDIB belongs to the group 1 CD1 family of
glycoproteins, which has been shown to present lipid antigens
on the surface of antigen presenting cells (APCs) in humans
(Shahine, 2018). A previous study has reported that the
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expression patterns of CD1 molecules in cancer cells differ from
those in normal cells, and dysregulation of CD1B was associated
with the prognosis of patients with prostate cancer (Lu et al.,
2020). TFR2 encodes a single-pass type II membrane protein,
which plays a key role in the regulation of iron homeostasis.
Studies have reported that TFR2 is highly expressed in CRC cells,
and found that this was associated with ERKI/ERK2
phosphorylation (Calzolari et al., 2009). FGF2 is a member of
fibroblast growth factor family, which has been reported to
participate in several tumor-related pathways, such as cell
growth, differentiation, and angiogenesis (Akl et al., 2016).
Studies have shown that FGF2 is significantly overexpressed in
CRC tissues compared to normal tissues, and CRC patients with
high FGF2 expression showed poorer prognosis than those with
low expression (Caiado et al., 2020). NRG1 gene is an emerging,
potentially actionable oncogenic driver that can promotes
pathologic signaling such as MAPK and ERBB pathways
(Jonna et al, 2019). In addition, NRG1 was previously found
to play a significant role in primary cetuximab resistance of CRC
(Bray et al,, 2019). UCN is mainly expressed in reproductive
organs and urinary systems, and dysregulation of UCN can affect
the invasion and metastasis of endometrial cancer (Wen et al,,
2020). PTHIR, also known as PTHRI, is a crucial regulator of

calcium homeostasis in humans. The overexpression of PTHIR
has been identified as a potential biomarker for liver metastasis of
CRC (Liu et al, 2019). These previous studies illustrated that
IRGs can serve as potential biomarkers for anti-cancer therapy
and have a significant influence on the prognosis of cancer
patients. However, biomarkers that can effectively predict the
prognosis of CRC patients are still lacking. The present study
involved these prognostic IRGs and constructed a signature to
predict the prognosis of CRC patients. Survival analysis revealed
that the IRG signature could accurately predict the overall
survival of the patients with CRC in the training cohort, the
internal validation cohort, and the entire TCGA cohort.
Importantly, the external validation cohort further confirmed
that the IRG signature serves as a reliable predictor for the
prognosis of CRC patients.

In the last few years, anti-cancer immunotherapy has gained
unprecedented success as an alternative cancer therapeutic
strategy for many types of solid tumors through reactivating
the host immune system. Indeed, TIICs have been recognized as a
strong prognostic biomarker in human CRC despite the immune
landscape variation across different consensus molecular
subtypes (CMSs) or mismatch repair (MMR) phenotypes
(Picard et al., 2020; Bruni et al., 2020). For example, previous
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studies have reported that CD4" T cells can secrete IL-1, IL-6,
IFN-y, and other cytokines in TME, thereby activating other
immune cells to eliminate the intracellular pathogens and tumor
cells, but the immunity of CD4" T cells is usually suppressed by
CRC cells via activating the Wnt signaling pathway (Lin et al,,
2020; Sun et al., 2017). NK cells exert cytotoxic effects by secreting
TNF, perforin, and granzyme, and tumor-associated NK cells
have been found to associate with increased survival time in
patients with CRC (Bruni et al., 2020; Lin et al., 2020; Coca et al.,
1997). Macrophages M2, the majority phenotypes of
macrophages present in the TME, are induced by IL-4 and IL-
13 and showed tumor-promoting activity in various solid tumors,
including CRC (Popéna et al., 2018). Moreover, previous studies
have illuminated that macrophages M2 could regulate 5-
fluorouracil  resistance of CRC cells through the
epithelial-mesenchymal transition (EMT) program, PI3K/AKT
pathway, and caspase-mediated apoptosis (Wei et al., 2019). The
activated CD8" T cells can induce specific destruction of cancer
cells by releasing lytic components, it is the major killer of cancer
cells in the anti-cancer immune response and constitutes the
backbone of cancer immunotherapy (Raskov et al., 2021; Titu
etal., 2002). A high degree of CD8" T cells infiltrating abundance
has been reported to be significantly correlated with more
favorable prognosis in patients with CRC (Tada et al., 2016).
In addition, dendritic cells, mast cells, and neutrophils have also
been reported to associate with the initial and progression of CRC
(Bruni et al., 2020). In the present study, we found that the IRG
signature was significantly correlated with the abundance of
multiple TIICs, including CD4" T cells, CD8" T cells, NK
cells, macrophages, B cells, and neutrophils. CRC patients in
the low-risk group infiltrated with a higher density of TIICs than
those in the high-risk group, which means that the natural anti-
cancer immune response in the low-risk group was more active
than that in the high-risk group. Immune checkpoint molecules
are inhibitory receptors which are expressed on the surface of
immune cells to regulate the immune response. Studies have
reported that the expression of immune checkpoint biomarkers
can be used as positive predictive biomarkers for the efficacy of
immunotherapy (Bethmann et al, 2017). Thus, we further
explored the association between the IRG signature and the
expression of immune checkpoint biomarkers and found that
CRC patients in the low-risk group expressed a significantly
higher level of immune checkpoint biomarkers than those in
the high-risk group. To sum up, these aforementioned findings
suggested that the immune landscape of low-risk tumors was
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