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The major mechanism of proteolysis in the cytosol and nucleus is the

ubiquitin–proteasome pathway (UPP). The highly controlled UPP has an

effect on a wide range of cellular processes and substrates, and flaws in the

system can lead to the pathogenesis of a number of serious human diseases.

Knowledge about UPPs provide useful hints to understand the cellular process

and drug discovery. The exponential growth in next-generation sequencingwet

lab approaches have accelerated the accumulation of unannotated data in

online databases, making the UPP characterization/analysis task more

challenging. Thus, computational methods are used as an alternative for fast

and accurate identification of UPPs. Aiming this, we develop a novel deep

learning-based predictor named “2DCNN-UPP” for identifying UPPs with low

error rate. In the proposed method, we used proposed algorithm with a two-

dimensional convolutional neural network with dipeptide deviation features. To

avoid the over fitting problem, genetic algorithm is employed to select the

optimal features. Finally, the optimized attribute set are fed as input to the 2D-

CNN learning engine for building the model. Empirical evidence or outcomes

demonstrates that the proposed predictor achieved an overall accuracy and

AUC (ROC) value using 10-fold cross validation test. Superior performance

compared to other state-of-the art methods for discrimination the relations

UPPs classification. Both on and independent test respectively was trained on

10-fold cross validation method and then evaluated through independent test.

In the case where experimentally validated ubiquitination sites emerged, we

must devise a proteomics-based predictor of ubiquitination. Meanwhile, we

also evaluated the generalization power of our trained modal via independent

test, and obtained remarkable performance in term of 0.862 accuracy,

0.921 sensitivity, 0.803 specificity 0.803, and 0.730 Matthews correlation

coefficient (MCC) respectively. Four approaches were used in the

sequences, and the physical properties were calculated combined. When
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used a 10-fold cross-validation, 2D-CNN-UPP obtained an AUC (ROC) value of

0.862 predicted score. We analyzed the relationship between UPP protein and

non-UPP protein predicted score. Last but not least, this research could

effectively analyze the large scale relationship between UPP proteins and

non-UPP proteins in particular and other protein problems in general and

our research work might improve computational biological research.

Therefore, we could utilize the latest features in our model framework and

Dipeptide Deviation from Expected Mean (DDE) -based protein structure

features for the prediction of protein structure, functions, and different

molecules, such as DNA and RNA.
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Introduction

Ubiquitination is used in many cellular processes, including

signal transduction, cell division, and immune reactions. Many

human diseases have been shown to be ubiquitinated, and recent

progress in proteomic analysis has developed further interest in

finding ubiquitination factors. Some proteins (eukaryotes)

become ubiquitinated when they bind to a target protein

residue (K), and this process controls cellular activities, such

as signaling, cell division, and immunity. A number of important

human diseases are associated with ubiquitination, and

proteomic analysis has increased our interest in finding

ubiquitination sites. However, small-scale data and shallow

machine learning algorithms have been used in targeting

location prediction software. The significant abundance of

UCH-L1 in the brain and its presence in Lewy bodies and the

role of UCH-L1 in the ubiquitin pathway suggest that it may be

involved in Parkinson’s disease (Leroy et al., 1998). Based on the

N-end pathway, the ubiquitination of synthetic substrates is

efficient when the lines of the substrate rung protein are

anchored at specific distances to the N-terminal ring (Suzuki

and Varshavsky, 1999) (Zheng et al., 2000). Ubiquitin is found in

most eukaryotic cells. Polypeptide hormones have been found in

the calf thymus. The ubiquitin sequence is constant in all

different organisms, such as cows, toads, and insects.

Ubiquitin one may reflect important cellular properties that

have changed slightly during evolution because of its extreme

conservation and intracellular proteolysis. For these systems,

ubiquinone is bound to a protein. The degradation of a

protein via the ubiquitin–proteasome pathway (UPP, first) is

initiated by the amino-terminal covalent attachment of multiple

ubiquitin molecules (linkage), which involves two discrete and

sequential steps: 26S proteasome (cleavage), followed by the final

degradation of the complex that consists of the 19S proteasome,

which has the 20S regulator as a constituent (degradation). Many

immunologists believe that ubiquitin plays a role in cleaning up

protein, regulating protein turnover, and creating new antigenic

peptides (polypeptides) (Hershko et al., 1986; Hochestrasser

et al., 1998). In addition, ubiquitin performs non-degradative

processes, including DNA repair and endocytic regulation. The

number of ubiquitin units attached to proteins determines

whether a process follows a traditional or nontraditional

pathway.

In 1975, Goldstein et al. (1975) first found the 3-step process

of ubiquitination in higher eukaryotic organisms. Ubiquitin is

fixed to lysine (K) residues. Three enzymes are involved in

ubiquitination, namely, ubiquitin-activating enzyme (E1),

ubiquitinating enzyme (E2), and ubiquitin-ligating enzyme

(E3) (Welchman et al., 2005; Herrmann et al., 2007). The

ubiquitination system regulates many aspects of cellular

function, such as the location of proteins, the processing of

proteins, and the breakdown of proteins (Hurley et al., 2006;

Nath and Shadan, 2009). In addition, it is a key regulator of

several biological processes, including cell division, transcription,

DNA repair, signaling, transport, viral release, and intra-cellular

movement. Research shows that ubiquitination, cellular

transformation, immune response, and inflammation are

intricately related. Moreover, several disorders are associated

with abnormal ubiquitination status, such as

neurodegenerative and inflammatory disorders. Ubiquitylation

can be considered as another post-translation covalent signal and

modification similar to acetylation, glycosylation, methylation,

and phosphorylation (Roos-Mattjus and Sistonen, 2004). In

addition to targeting proteins for degradation, ubiquitylation

has several roles.

In particular, when the ubiquitin levels and their associations

are equal, ubiquitin aids in protein transport, DNA repair, DNA

sorting, viral budding, RNA processing, RNA polymerase

enzyme recognition, and infection. Unstable proteins, which

cause the dysregulation of various regulatory pathways and

unavailability of ubiquitin proteas, are important in

neurodegenerative diseases, particularly as a feature in several

types of proteinuria. Thus, the breakdown of the ubiquitin

protection pathway and the identification of proteins

associated with signals for the degradation of certain

substrates would lead to new therapeutic approaches to the

Frontiers in Genetics frontiersin.org02

Sikander et al. 10.3389/fgene.2022.851688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.851688


treatment of diseases with an impaired pathway of ubiquitin

proteasome (Doherty et al., 2002). The ratio of ubiquitin

molecules and ubiquitin associations is important in different

functions; thus, ubiquitin can also have varying impacts on DNA

repair, protein sorting, and viral budding. In many diseases such

as neurodegenerative conditions, including Parkinson’s and

cancer, the cytosolic and extraoral antigen genetic proteins

undergo accelerated degradation and regulation, which involve

many pathological pathway breaks or abnormal stability, thereby

interfering with several regulatory pathways. Therefore, the

dissection of the ubiquitin proteasome and proteins required

for the degradation of ubiquitin substrates will lead to the

development of new therapeutic treatments for many disease

conditions, except for these two ubiquitin-protease deficiencies.

Cellular elements activate, transfer, eliminate, or identify

several ubiquitin numbers. Given this complexity, the path of

ubiquitin is ideal for an approach to system biology (Fu et al.,

2019). Expanding the protein functions occurs when the

ubiquitin protein binds to (attaches to) a lysine (K) residue

(also known as ubiquitin or K protein, a regulatory amino

acid) and serves as a regulator for cell division, immune

reaction terminators, and signal transduction in eukaryotes.

To date, research has shown that ubiquitination plays a key

role in numerous human diseases, and recent developments in

proteomics have attracted the attention of medical professionals.

Although considerable data and high-processing intensity were

not used in target sites, these computing tools are created using

simple machine learning techniques. Tung and Ho (Tung and

Ho, 2008) have created a comprehensive phenotypic amino acid

feature database known as ubiquitin prediction (Kawashima

et al., 2008) using 31 physicochemical characteristics, which

can be found in published amino acid features (Radivojac

et al., 2010). The ubiquitin prediction random forest

algorithm, which uses 586 sequence attributes as an input

function vector, has been used by Radivojac et al. (2010)

(Zhao et al., 2011). In the voting mechanism, Zhao et al.

(2011) (Lee et al., 2011) has adopted a whole approach. Lee

et al. (2011) has developed (Chen et al., 2011) ubiquitin Site that

uses the efficient kernel for RBF (radial basis) to identify all-

purpose sites. Chen et al. (2011) (Cai et al., 2012) has proposed a

k-spaced amino acid pair composition (CKSAAP) ubiquitin Site

predictor using the CKSAAP. The predictor used the nearest

neighboring algorithm proposed by Cai et al. (2012) by

integrating four different types of predictive variables. In

predicting ubiquitin, Cai and Jiang (2016) have used multi-

player learning algorithms.

The study of protein- Ubiquitin–Proteasome association has

become a key aspect of disease ubiquitin prediction. The

Ubiquitin–Proteasome has the basic intention of disease

pathogenesis and characteristics. Our proposed method achieved

high performance of Ubiquitin–Proteasome, and then we have

compared these various deep learning classification models. In

appliance to protein sequence and proteins annotation

information, we also provide a robust 2D Convolutional Neural

Network based predictive model features analysis. Measurable

structure-activity classification model obtained by machine

learning technology can predict pathway-specific protein

interaction and new signaling peptides. In this paper we proposed

computational method is developed for prediction of sequence-based

Ubiquitin proteins function. We have used computational models as

such dipeptide deviation from expected mean (DDE) used as feature

extraction models. We are one of the first uses of the 2D

Convolutional Neural Network (2D CNN) in sequence-based

Ubiquitin specific protein function prediction was our original

preprint research on this subject. We propose an ubiquitin

specific protein domains (Ubiquitin) sequence encoding system

based on 2D Convolutional Neural Network (2D CNN) named

2DCNN-UPP. In addition, the prediction of Ubiquitin -specific of

very small numbers of training instances, which is amajor problem in

the field of automated protein function prediction, has been tackled

by the implementation of a realistic data enhancement approach of

automated functional predictions previously developed through

machine testing. Almost all cellular processes are regulated by the

UPP, and deep learning algorithms are difficult to optimize on

hyperparameters (Table 1).

Materials and methods

Datasets source

The respiratory datasets from the NCBI were utilized as a

biotechnology, using the search phrase “ubiquitin proteasome

path,” and then UPP proteins were collected from the NCBI

(Pruitt et al., 2007).

The ubiquitin pathway-specific protein domain sequence was

described as positive, which was called “known ubiquitin

sequence.” All samples were drawn randomly to avoid

introducing bias in the training set, and they served as

independent test sets. This study used UniProt and Swiss-Prot

databases, but only proteins specifically involved in ubiquitin/

ubiquitin pathways in human were selected. Similarity of UPPS

were removed through CD-HIT web service (Huang et al., 2010),

from which 500 UPPs received 250 relevant pathway-associated

proteins; in step one, only after adding UPPs, the desired protein

sets were obtained. In the second step, the list of 325 Uprelated

proteins was downloaded, and then 810 non-UP proteins were

added after removing similarity using CD-HIT.

Feature mining for discovering ubiquitin-
pathway protein association

The ubiquitin-pathway protein sequence features were

submitted for content analysis. Based on the structure, the

researchers in this study discovered the physical and
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evolutionary features of proteins. If the characteristics can be

further divided into two distinct varieties, then they may be

considered as dipeptide deviation from expected mean (DDE)

(Saravanan and Gautham, 2015) extending from a two-

dimensional matrix to a 20 × 20 matrix. However, a compact

functionality set was sought by finding a random projected

matrix. Thus, a new compressive functionality has been

discovered.

The study focused on two-dimensional convolutional neural

network (2D-CNN) and DDE, and an important method for

classifying ubiquitin pathway proteins was developed. We

conducted four analyses using experimental work: data

collection, extraction of feature profiles, generation of 2D-

CNN, and model evaluation. Figure 1 shows our flowchart of

the method and gives the following details. This study consisted

of 2D-CNN and UPP extraction feature profile matrices. Data on

several variables were used, and an important technique for

determining and organizing human pathways was developed.

Physiochemical features were encoded using the DDE method

for extraction vector profile matrix. A descriptor was based on

evolutionary principles.

Dipeptide deviation from expected mean

Feature formulation is one of the fundamental step in

designing a computational model. How to capture the

biological patterns from biological sequences is a challenging

task. Thus, for this purpose feature descriptors are used for this

purpose. The data were normalized by DDE and were treated to

produce physicochemical features, features extracted from the

ubiquitin pathway protein sequences, and information on

evolution. The DDE, which has an all-amino-acid (making it

easier to differentiate between nonspecific protein adsorption

TABLE 1 Sample for this experimental data points collected UPP and non-UPP sequences.

Collected Non-redundancy Cross-validation Independent

UPP 500 500 250 100

Non-UPP 810 755 700 400

FIGURE 1
Method flowchart of the identification of UPP proteins using 2D-CNN.
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and nonspecific protein complexation) composition, was

developed in this study. The ability of the DDE vector to

increase the expression of specific proteins associated with

ubiquitin pathway protection was verified, and its

performance was then compared with various well-known

pathways. DDE function vectors (also known as DDE-

independent data or DDE feature extraction function for the

vector matrix) had high predictive accuracy (accuracy

demonstrated on a differential and independent data set).

The frequencies of amino acids were used for discovery

(Saravanan and Gautham, 2015). A significant difference in

mean values was found (task considered this difference as a

feature), which might occur among their predicted median levels

of acidity (Saravanan and Gautham, 2015). In this study,

dipeptide composition characteristics were utilized to assess

the number of deviations from the average di-predicted

dipeptide numbers in accordance with earlier studies

(Saravanan and Gautham, 2018). Means and standard

deviations that define the DDE vector had a theoretical

variance (Tv), second theoretical mean (Tm), and additional

calculation through dipeptide composition (Dc). The research

design was based on three computational calculations: DC(i), an

indicator of Dc of the dipeptide of interest in peptide P, which
was estimated as follows:

Dc(i) � ni
N

(1)

Numerous studies have investigated feature extraction (length

samples) with 400 dipeptide feature properties (20 × 20). Length

refers to the shape and properties of the samples, which have a

dipeptide relationship, but the ones that were not useful were

eliminated. However, I contend that dipeptide 1 and N are L-1.
Therefore, it is not equal to L-1 (i.e., probable quantity in P). TM(i)

indicates the theoretical mean.

TM(i) � Ci1

CN
×
Ci2

CN
(2)

In addition, the specified dipeptide Ci1 is the quantity of codons,

and it is increased by the dipeptide Ci2 having the number of

specified codons i. CN excluded the three stop codons, and the

total number of codons in the amino acid sequence was known.

TM(i)-extracted peptides were not related to TM(i); hence, they

were excluded. Therefore, 400 dipeptide features were retained,

processed, and precomputed to generate compact dipeptide P.

TV(i) theoretical variance was obtained by dipeptide and

calculated as follows:

Tv(i) � TM(i)(1 − TM(i))
N

(3)

where i is the TM(i) statistical likelihood of expansion Eq. 2. The

number of dipeptides in peptide P is the sum of N, which is L-1.
DDE (i). Following its expansion, DDE(i) was presented as

follows:

DDE(t) � Dc(i) − Tm(i)����
TV(i)

√ (4)

Finally, dipeptides were extracted to obtain the feature DDE of

400 dipeptides, and the extraction procedure used a 400-

dimensional vector, which generated a collection of four

200 dimensional features.

DDEp � {DDE(i), . . . , . . .DDE(n)}, where, i � 1, 2, . . . , 400

(5)

Two-dimensional convolutional neural
network based framework

The present study used an approach that involved

TensorFlow objects, which were different from matrix objects.

The convolutional neural network (CNN) architecture is shown

in Figure 1. Each CNN consisted of three thinned-out layers (the

input included in a fully connected layers and pooling layer,

including a convolutional layer), followed by hidden layers. CNN

can be used in a wide range of areas, which can obtain remarkable

results (Le et al., 2019a) and increase protein synthesis (Liu et al.,

2016). As shown in Figure 1, a 2D-CNN UPP was utilized to

illustrate the deep learning architecture. The TensorFlow

backend was used in a custom library for our deep learning

architecture, which was run on the Keras library with in python

(Abadi et al., 2015; Mirabello and Wallner, 2018). In general, the

2D-CNN UPP was composed of multiple layers, each of which

had a particular function to translate the input into a useful

representation. After our 2D-CNN-architectured UPP was

constructed, they were paired with an ordered architecture.

Many previous studies in this field have proven that models

can be optimized for certain architectures, and hyperparameters

can be estimated by analyzing their predictive accuracy and

predictive power. Furthermore, different levels of feature,

hyperparameter, or parameters were required for numerous

problems or datasets.

Input layer for 2D convolutional neural
networks

In this work, DDE features as a vector profile matrix matching

the protein sequences were an input from the CNN (Ghualm et al.,

2020). Therefore, we proposed a strategy for predictingUUP proteins

using the DDE profile vector matrix as data input. The DDE profile

vector matrix was presented as a grayscale image with 20 × 20 pixels.

Then, we trained the model using the two-dimensional CNN system

and this sort of data set. This is the first model to be used. We

connected the input DDE profile vector matrix as Position-Specific

ScoringMatrices (PSSM) to our 2D-CNNusing a range of settings to

improve model performance.
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We aimed to capture as many hidden spatial characteristics

as feasible in PSSM matrices by utilizing 2D CNN (Le and

Nguyen, 2019). This methodology ensured the accuracy of the

characteristics generated in the amino acid sequences and

prevented disorder problem. The hidden layers were formed;

the hidden features generated by CNN may easily identify UPP

proteins. We used four filter layers (32, 64, 128, and 256) and

three different kernel sizes in each filter for this method. When

mentioning to convolutional neural networks, this filter is also

sometimes referred to as a Windows or kernel. To create various

feature mappings of the image, we can scan the image using a

variety of filters. Each feature mapping will show the areas of the

image that express the particular feature specified by our filter’s

settings. Multiple filters make up each convolution layer. In

reality, they take the form of a number like 32, 64, 128, 256,

512, etc. This is the same as a convolutional layer’s output

channel count. In the independent data sets 32 filter size as

sown the best performance. The same points were inserted into

independent sets as an ubiquitin specific pathway protein family.

The training performance was then evaluated using a 10-fold

cross-validation. 2D-CNN image-based data points served as the

input layer of a CNN. The images in the preceding discussion

were presented using a two-dimensional matrix. Furthermore,

we created an image with a dimension of 20 × 20 = 400 before

entering the input. Having “m” input will allow for “m” forms of

variation (400, m).

Zero padding layer

The present study used a research design to investigate two

categories of cushioning, including valid name and padding. Our

convolutional layer was not padded, and our input size was not

maintained if we provided true padding. Before we converted the

original input into the size of the input, we padded our model.

We can add columns and rows of zero values to the top, bottom,

left, and right of the feature profile matrix. When a 20 × 20 input

feature extracted matrix was used, the production frequency was

20 × 20 window per matrix. Our model did not have distinct

output dimensions after the filters were applied to the input data.

The zero padding 2D architecture incorporated the 2DCNN 20 ×

20 zero matrices at the end of the chain. The shape of our

network increased by 20 rows and 20 columns with the addition

of zero padding. When we applied the effect to the input

dimensions, the output was unchanged (Zhao et al., 2019).

Convolutional layer

The target population was categorized on the basis of each 2D

CNN analysis of the input multichannel 2D image convolution

computation and extract features in its plane. Each convoluted

kernel was concentrated in the width and height of 2D input

volumes of the previous layer to calculate the points between

kernel and entry. All the input volumes resulted in a 2-

dimensional activation map for each kernel. The essential

building block of a CNN was the convolutional layer. The

parameters of the layer consisted of an array of filter learning

(or kernel), which had a limited field, but such parameters

stretched over the entire input volume depth (Yan et al., 2019;

Cheng and Parhi, 2020).

Activation layer

The activation provided by all forward layers can either be

utilized through an activation layer or by applying the function of

activation of the rectified linear unit, which would result in the

typical activated ReLU value with default values: max (x, 0), the

maximum element level of 0, and the tensor input. The default

parameter modification allowed the utilization of non-zero

thresholds, the max value of activation, and multiple non-zero

input values below the threshold (Zhao et al., 2018).

f (x) � max(0, x) (6)

Pooling layer

Each overall layer was followed by a max pooling layer, which

selected and filtered features on the outcome of the overall layer

to accomplish fluid compression in one degree. In general, a

pooling layer is inserted in a CNN architecture periodically. The

pooling layer could reduce the spatial dimension of the

representation to decrease the number of computation

parameters in the network and control the overlay. On each

input depth section, the pooling layer functioned independently,

and it could be resized by max pooling layer functioning. The

most common form was a bundling layer with 20 × 20 filters,

applied with 20 downsamples of every input depth slice by two

along the width and height, with 75% of the activation being

discarded (Yamashita et al., 2018).

Dropout layer

Dropout is a technique of regularization to alleviate neural

network overfitting. In particular, dropout discards information

by randomly zeroing every hidden neural network node during

the workout (Krizhevsky et al., 2012; Billones et al., 2016). Thus,

the network can benefit from the combined effect of small

subnetworks, achieving a good regularization effect. Unlike

fully connected layers, leaving the convolutional characteristic

map was not effective. The strong correlation between spatially

adjacent pixels of the convolutional characteristic map and

redundant textual information was shared. Therefore, the
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conventional pixel dropout cannot reject the information on the

convolutional map entirely. Although dropout was frequently

used to regularize deep neural networks, applying it to fully

connected and convolutional layers was fundamentally different.

Moreover, dropout was different from the deep learning

community. Therefore, dropout function was only useful to

fully connected layers with a value of 0.02.

Flatten layer

Flat layers were the first few layers in the output layer.

Considering that all classes required probability distribution in

the output layers, flatten layers converted the input matrix to a

vector. This output could be used to generate information in the

following layers. Then, we observed a thick layer, which was a

fully connected regular neural network. The classification of the

features from the convolutional layers and grouping layers in this

layer was carried out. The model will deactivate the neurons in a

layer randomly with some probability p in the drop-out layer.

The neural network ignored selected neurons in the course of

training when the dropout value was added to a layer, ensuring a

quicker training time. The dropouts of 0–1 were used in this

study to evaluate our model. The ReLU played an important role

as an activation function, which was used to classify motor

superfamilies during the construction of the CNN (Le et al.,

2019b).

Fully connected layer

Neurons in a completely connected layer were fully

connected, as shown by regular neural networks, to all

activations in the previous layer. Therefore, their activations

can be calculated by multiplying the matrix and then

offsetting the bias. For additional information, see the Neural

Network section of the notes (Ullah et al., 2021). The fully

connected layer entered the concatenated vector of the

combining layer, where the units in the previous layer were

fully connected to the units. The combination of features was

performed, and complex relationships in this layer were

modelled. We used a hidden layer in our experiment.

Loss function

Binary cross entropy function is given their potential to deal

with class imbalance, the loss functions compared with this work

have been selected. Log loss functions were analyzed in a binary

classification (front and background), The actual class output,

which can only be either 0 or 1, is compared to each of the

projected probabilities using binary cross entropy. Binary jobs

use the loss function known as binary cross-entropy. This

function tasks that respond to an inquiry with just two

options (e.g., yes or no, A or B, 0 or 1, and right or left). The

negative average of the log of the corrected predicted

probabilities used in classification issues is known as binary

cross entropy or log loss. Imagine that any classification could

only be reduced as a binary option (e.g., 0 or 1, A or B, and yes or

no). The score that penalizes the probabilities based on how far

they are from the predicted value is then calculated. Depending

on how near or far the value is to the actual value. Cross

entropy a loss function with the appropriate class mark as the

goal and maximizing likelihood value. To avoid overfitting, a

range of regularization techniques can be used (for example,

protein 1 or protein 2 penalties, which are frequently used in

suggested models), like adding penalties to the loss function.

The loss function has been demonstrated to be effective for a

variety of binary classification problems (Jia et al., 2018; Tran

et al., 2019).

SoftMax utilization

X is the neural network number of inputs. The model output

was calculated by a SoftMax function that was used to calculate

the probability of each output. The logistic function SoftMax was

defined by the following formula. The output of the model was

quantified using a SoftMax function, which minimized the

probability of any output (Abdel-Hamid et al., 2013; Zhang

et al., 2017). The model produced multiple real numbers,

which represented the probability that the sample may be

included in each classification category. For probability

computation of each category, the SoftMax function as

illustrated in Eq. 1 was used: Trainable parameters with

339,170 data points were established in the model (Table 2).

TABLE 2 Trainable parameters used in the 2D CNN model.

Layer (type) Output shape Param #

zero_padding2d_35 (ZeroPaddi, none, 3, 10, 50) 0

conv2d_56 (Conv2D) (None, 1, 8, 32) 14432

activation_29 (Activation) (None, 1, 8, 32) 0

max_pooling2d_56 (MaxPooling, none, 1, 4, 16) 0

zero_padding2d_36 (ZeroPaddi, none, 3, 6, 16) 0

conv2d_57 (Conv2D) (None, 1, 4, 64) 9280

activation_30 (Activation) (None, 1, 4, 64) 0

max_pooling2d_57 (MaxPooling, none, 1, 2, 32) 0

flatten_21 (Flatten) (None, 64) 0

dropout_30 (Dropout) (None, 64) 0

dense_53 (Dense) (None, 64) 4160

activation_31 (Activation) (None, 64) 0

dense_54 (Dense) (None, 2) 130

activation_32 (Activation) (None, 2) 0
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σ(z)i � ezi

∑k
k�1ezi

(7)

Hyperparameters

Deep UPP agnostic indicated that loss function was strongly

dependent on the hyperparameters. In this study, we described

the individual layers and their hyperparameter and connectivity

details. Hyperparameters were architecture-level parameters,

which differed from the parameters of a model that has been

trained to reproduce. When developing a deep learning model,

the options of these hyperparameters were governed by a series of

factors (Le et al., 2019c). The performance of the model had a

significant impact. For example, the number of convolutional

layers, number of filters in each layer, number of periods,

dropout rates, and optimizers were important hyper

parameters, which could affect the deep-learning model. In

adjusting the hyperparameters, we should speed up the

workout and avoid overfit. As suggested by Chollet (Bergstra

et al., 2011; Hutter et al., 2011), the hyperparameter tuning

process was followed by each step of the above-mentioned

hyperparameter tuning approach.

Performance evaluation of the model

Analysis was performed to determine whether a specific

ubiquitin pathway protein sequence was a UPP protein or

not; thus, UPP proteins were defined as “positive,” whereas

non-UPP proteins were defined as “negative.” We described

TP, FP, TN, and FN as true positive, false positive, true

negative and false negative, respectively. In the formula no.

7–10, TP stands for correctly predicted UPP and TN for

correctly predicted non-UPP, whereas FP stands for

incorrectly predicted UPP proteins and FN for incorrectly

predicted non-UPP. The assessment metrics were then defined

in accordance with (Zhang et al., 2019). The current study

primarily aimed to predict whether or not a sequence was a

UPP protein; hence, we used the definition of the UPP protein as

“positive” and non-UPP protein as “negative.” We trained the

model for each dataset with a 10-fold cross-validation technique

on the training dataset. Hyper-parameter optimization was used

to find the best model for each dataset based on the 10-fold cross-

validation results. Finally, the predictive ability of the current

model was assessed using an independent dataset. The

measurement methods used to measure the predictive

performance of our model included sensitivity, specificity,

accuracy, and MCC.

Specificity � TN
TN + FP

(8)

Accuracy � TP + TN
TP + FP + TN + FN

(9)

Sensitivity � TP
TP + FN

(10)

MCC � TPpTN − FPpFN������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (11)

Protein-protein interaction (analysis of
UPPs using PPIs)

STRING is a large database of known and predicted protein-

protein signal interactions. The output is presented in the form of

nodes and edges, respectively, representing interactions with the

protein. Available evidence suggests that exit scores are an

indicator of confidence, meaning that STRING is likely to

evaluate interactions correctly. Instead, it is used to predict

the possible interactions of multiple proteins. Several selected

protein names were mentioned in the input and Homo sapiens

was selected as the organism (Taju et al., 2018).

Results

Result analysis consisted of quality and reliability of research

modelling methods, which were major factors in the study.

Initially, we conceived an experiment through analysis of data,

calculation and comparison of results, and discussions.

Primarily, an experiment was developed through the

evaluation of data, calculation of results, and comparison of

numerous consultations and results. Based on our research, we

used two models, including the DDE model. An experimentally

validated ubiquitination predictor was required for proteomic-

scale proteomics. Using a convolutional network predictor, four

processes had different approaches, each of which borrowed a

portion of the sequences and physical properties. Cross-

validation using 2DCNN-UPP had an AUC of 0.9, sensitivity

of 100%, and specificity of 83%. TheMCC reached zero point one

and a half times higher or approximately 78% more

thoroughness. Model cross-validation sets as training and

independent sets as test validation were poorly understood,

and the loss function and accuracy were measured with cross-

entropy loss function.

Ubiquitin-proteasome pathway and non-
ubiquitin-proteasome pathway sequence
for amino acid composition

The amino acid composition of UPP and non-UPP

sequences was determined by calculating their frequency. By

computing the frequency among these amino acids, we analyzed
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the composition of UPP and non-UPP. The amino acids in two

different datasets contributed significantly to the highest

frequency. The two types of data did not differ much, but

some points were present. Amino acids C and P occurred at

the highest frequencies around the proteins of UPP. On the

contrary, amino acids L and I were produced at high frequencies

around non-UPP proteins. These amino acids played a vital part

in the identification of UPP proteins. Thus, through special

features of these amino acid contributions, our models could

accurately predict UPP proteins.

Two-dimensional convolutional neural
network was set to train the model

A total of 150 epochs were used as a model of “train” in our

proposed model. A feature function returned an object, and then

the object features were used in a history feature expansion to

create loss and accuracy visualization, allowing a user to have

control over the amount of information to see while evaluating

between training and validation (White et al., 2017).

Consequently, 2D-CNN has been trained and has remained

equal to 0.8023, and the corresponding increase in time and

the corresponding reduction in precision loss (significance) were

only 0.7558. Overfitting can occur when the network interpreted

the training data well but cannot distinguish between the outside

world and the hidden world; thus, the quality of training and

testing varied. Therefore, a dropout layer and anisotropic model

were added to the network to examine the changes of these

parameters as the first additional layers were removed. Finally,

model’s efficiency was examined to determine whether obtaining

a specific conclusion was possible.

Test set model evaluation

Our proposed DDE model with test model accuracy score

0.8760 and test loss of 0.2044 is shown in Figure 2. The quality of

the results of the test was remarkable. In contrast to more

traditional models, this model also holds up with deep

learning models (White et al., 2017). Our proposed model

trained using the training data, and its fitness will be

evaluated using the validation model. We modify the

hyperparameters, such as the network’s number of layers, the

number of nodes per layer, the number of epochs, etc. The

training exercise at the parameter or hyperparameter level must

not involve the Test Set. This model was used to evaluate,

estimate, and plot the accuracy and bias from training to

validation data (Figure 2). The expandable parameter was

used to define the number of neuron fractions to drop for this

step. We will only keep the active node, and the number of

dormant nodes was reduced; therefore, no data was saved.

Therefore, we did not explore, compile, and retrain the

network, but no further expansion was performed in other

regions. We work with a network with an input batch size of

10 and more than 150 epochs.

Performance of the classification results
for the identification of the ubiquitin-
proteasome pathway

The earlier results indicated that the use of Tensor Flow

backends and model building was in accordance with the

findings (Rahmati et al., 2017). The two-dimensional CNN

architecture was in production. Next, the maximum number

of consecutive hidden layers was 32, followed by a top-down

expansion with two separate convolutional layers, resulting in a

depth of 64, 128, and 256. Table 3 summarizes the models created

by the DDE using the cross-validation values for various filter

numbers. An expansion strategy could identify true sequences

with a 10-fold cross-validation with accuracy of up to 0.862 using

independent sets, and then whereas an exhaustive validation

method could obtain true sequences with a 10-fold cross-

validation accuracy of 0.838. However, other filter numbers

showed average results, and the results were higher compared

with other studies. Our cross-validation set gave us a specificity of

0.832, indicating that the percentage of all examples were not

excluded correctly, and MCC was only 0.680. The data produced

consisted of a number of independent datasets utilizing various

filter numbers. Using our independent and pairwise algorithm,

we obtained a accuracy of 0.862 with regard to the target feature

set, a mean corrected proportion of 0.921 sensitivity score, and

MCC of 0.730. Therefore, we obtained our model structure and

used it with the evolutionary structure of the environment. The

final model that we built was Adadelta, a robust performance

optimizer, which could expand the capacity by applying the

following five hyper parameter models.

Consequently, our model was built using the concatenation

of these buried layers. Then, the neural networks were trained

using three different methods, namely, RMSprop, Adam, and

SGD, followed by an expansion phase, in which Nadam and

Adadelta were applied. During each round of optimization, a new

network was created to evenly match the individual optimizers

with the old network before starting the process. Figure 3 shows

that the information was collected and compared.

We finally arrived at a model, which was developed by

making an option between an advanced algorithms (Adam)

with a proven track record of consistent performance. The

optimizer (algorithm) that was suitable for the proposed

model was Adam. Similarly, during the experiment, the

number of iterations was set (float, default = 0.001 steps). The

batch size was fixed at 10, the dropout rate = 0.2, Kernel size =

3 was used as a tuning parameter, which permitted adjustments

between 100 and 150, as shown in Table 4. In addition, we went

through themodel to validate its results, and then the results were

Frontiers in Genetics frontiersin.org09

Sikander et al. 10.3389/fgene.2022.851688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.851688


FIGURE 2
Test model accuracy and model loss.

TABLE 3 Performance of the classification results for identification (UPP) using different filter layers.

Filter
numbers

Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

32 0.844 0.832 0.838 0.680 0.921 0.803 0.862 0.730

32-64 0.846 0.810 0.828 0.659 0.763 0.735 0.750 0.506

32-64-128 0.846 0.791 0.818 0.640 0.696 0.731 0.714 0.429

32-64-128-256 0.842 0.816 0.829 0.662 0.739 0.687 0.714 0.432

FIGURE 3
Identification of the validation accuracy of the ubiquitin protein pathway based on different optimizers ranging from 0 to 150.

Frontiers in Genetics frontiersin.org10

Sikander et al. 10.3389/fgene.2022.851688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.851688


tested to ensure their accuracy and established in the context of

another using a separate set of data. Considering that the training

algorithm was accurate at the 150th epoch, our model iteration

expanded to include model validation results, thereby preventing

our models from developing too much dependence on project’s

dataset. Consequently, we accomplished at a short duration by

redesigning our training to prevent overfitting.

Considering that the machine learning method has been

perfected to the point of its overfitting, the training dataset,

our classifications on new datasets were all highly accurate,

but generalizability decreased when we added more examples

and instances. This model was subjected to an independent

testing, which allowed analyses in the absence of any

preexisting information. The independent dataset that we

obtained contained 100 UPP and 400 UPP, which were

described in the previous section. No cases in the training

set could be found in these samples. In addition, two

indistinguishable patterns are demonstrated in the

matrixes of Figure 4. We found that in our test dataset, the

function shown in Figure 6 was equal to the function cross-

validation result, which was consistent with our validation

result in Figure 5. In our model, percentile accuracy of

individual testing was measured (with 80.1% precision,

82% sensitivity, and 69.2% specificity), which set the bar

for the other models in our data set and zero points

790 MCC. The accuracy of our model’s cross-validation

was lower than that obtained through ordinary procedure,

potentially showing that our model was overfit. Dropouts

may play a role in further expanding our media, but our CNN

initiative was significantly limited by the implementation of

CNN-Expand.

Quantitative techniques on convolutional
neural network’s significant function

Extensive methods for training deep learning models

were required. Extracted features were specific in the

abstract hierarchy, but they were difficult to identify in the

models that we use; essential components varied from simple

to complex, and they remained a challenge in our CNN

model. More valuable knowledge was necessary to provide

users an opportunity to learn and information to biologists.

When we applied 20 × 20 hybrid feature and matrix feature

models to our CNN, we studied the fundamentals of these

feature and feature matrix models. We used the F-score to

create the list of relevant features that were included in the

results. The F-measurement approach aimed to identify the

sequences that could be used in UPP and non-UPP. We tried

to discover which ones would produce the best results. Here,

TABLE 4 Optimal hyperparameters used in our proposed method.

Used hyperparameter Values

Number of epochs 80

Learning rate 0.001

Batch size 10

Kernel size 3

Dropout rate 0.2

Optimizer Adam

FIGURE 4
Confusion matrices predicted labels based on (A) cross-validation test and (B) independent test.
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we showed the entirety of our features and the differences

between the two datasets. Figure 5 demonstrates all our

features and other features or options. Protein features can

be divided into various hidden and prominent classes based

on our model. Finally, our model divided amino acids into the

prominent and obscure groups. Thus, we may achieve the

best classification and conclusion.

Identification of ubiquitin-proteasome
pathway with various optimizer

During content analysis, the optimization of

hyperparameters was calculated, but determining the best

hyperparameter optimizer for our model was difficult. Most

researchers usually aimed to optimize their algorithm

performance based on an independent dataset. Several

findings from this study warranted further discussion, for

example, algorithms for learning. This discrepancy could be

due to simplification performance, which was evaluated

through cross-validation. The hypothesis that the

optimization of the hyperparameters was different from

real learning problems, which was considered as an

optimization issue, optimized only a loss function. In

addition, the learning algorithms could reconstruct their

inputs, whereas the optimization of the hyperparameter

ensured that the model did not overfit its data by tuning,

for example, regularization (Table 5 and Figure 5). The

results were considered significant based on the 256 filters

used to develop our model for the hidden layer. The neural

network were then optimized with several optimizers:

RMSprop, Adam, Nadam, SGD, and Adadelta. After each

optimization round, a new network was built to make a fair

comparison among various optimizers. The model was re-

initialized. The performance results are shown in Figure 3.

We selected Nadam as our optimizer in creating our final

model.

The data were normalized to enhance profound learning

architecture by improving and developing new optimization

algorithms. The neural networks were challenging, which

aimed to reach the optimum through strong training and

rapid convergence using algorithms of downward gradient.

The basic learning rate of our 2D-CNN was 0.0001, when the

Adam battle size optimizer and the maximum number of

iterations were used. We used a basic learning rate of 2D-

CNN. All layers of CNN were fine-tuned with weights and

bias, with a dropout rate of 0.2. The learning rate of the layer

was set higher than the previous one. Adam with a learning rate

of 0.01 was used for training the 2D-CNNwith a decreased kernel

weight of 3, 80 epochs, and a batch size of 10. After using five

FIGURE 5
Comparison among the five optimizers based on 10-fold cross-validation with cross-validation and independent sets.
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different optimizers based on the DDE feature extraction profile

matrix with 2D-CNN models, the creativity of deep learning was

evaluated. Afterward, the most appropriate optimizer

performance was selected. Finding the best optimizer for the

network of 2D-CNN was difficult. A total of five optimal

optimizers were selected for performance comparison and

classification. Furthermore, RMSprop, Adam, SGD, Nadam,

and Adadelta optimizers were compared.

Performance metirc based on ubiquitin-
proteasome pathway with comparable
efficiency of shallow neural networks

Various machine learning techniques were used for UPP

identification. We utilized four classifications on the basis of

five machine learning classifiers (e.g., AdaBoost, Random-

Forest, and LSTM). In testing the CNN model, CNN

expansions applied a CNN to one dimension of the CNN

(2D-CNNs). As shown in Table 6 and Figure 6, we used the

highest possible parameters for all experiments; thus, all

classifiers would receive equal weighted predicted scores

and nearly the same result. We demonstrated that our 2D-

CNN had better generalization performance than other

machine learning techniques using the same structure. In

particular, our separate dataset allowed us to implement the

algorithms on the following two-dimensional neural

network.

Ubiquitin-proteasome pathway
identification by using ROC- a
comparative performance

Result analysis measured the effectiveness of the

performance of the binary classification problem, which was

comparable to other studies measuring other binary

classification techniques. Almost all of the machine learning

classifiers used provided good data to support our assumptions.

The researchers used the ROC curve and other metrics, such as

algorithm’s accuracy and the metric of the extent of confusion,

to plot a graphical representation of their predictive output. The

results from Figure 7 were plotted using the ROC and AUC

techniques to explore how the output of the 2D CNNs was

affected by different classifications. The multilink ROC curve

plot was expanded to show the parts of the up-and-down

double down CURVE. The results indicated that our deep

neural network architecture can perform with the binary

method, but additional multiclassification was required to

explore this result further. Thus, our 2DC model showed the

best generalization and little-to-no overfitting, and asymtote

tolerance was maintained by cross-validation. Moreover, cross-

validation and non-overfitting greatly limited generalization

using twofold and threefold cross model results. Therefore, the

zero overfitting 2DC result was aided by cross-validation, but

the other results avoided cross model overfitting. Furthermore,

the results with the same datapoints demonstrated that the

DDE model validation datasets had an area under the ROC

TABLE 5 DDE model predicted performance of UPP with different optimizers.

Optimizers Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

SGD 0.7172 0.7294 0.7049 0.4357 0.7270 0.6951 0.4441 0.7270

Adadelta 0.7334 0.7550 0.7119 0.4693 0.7890 0.7279 0.8505 0.5858

Adam 0.7700 0.6841 0.7271 0.4570 0.7304 0.8650 0.7981 0.6035

Nadam 0.7281 0.7026 0.7154 0.4327 0.6945 0.8324 0.7636 0.5355

RMSprop 0.7444 0.6818 0.7131 0.4277 0.7158 0.8256 0.7709 0.5474

TABLE 6 DDE model performance results of identifying UPP with filter numbers.

Filter
numbers

Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

AdaBoost 0.7558 0.8488 0.8023 0.6072 0.5996 0.8324 0.7181 0.4539

Random Forest 0.5802 0.8989 0.7396 0.4932 0.7316 0.8439 0.7890 0.5849

LSTM 0.7049 0.7583 0.7316 0.4664 0.7060 0.8281 0.7672 0.5477

CNN 0.8023 0.7558 0.7790 0.5587 0.7857 0.9259 0.8545 0.6005
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curve (AUC) of 0.80%, whereas the dataset comparison showed

that the ACU of the same datasets was 0.80%. However, our

findings and the ROC found that the DDE composition (ROC

has been calculated at 0.80) was consistent with those of

previously published research studies with 10-fold cross-

validation results; thus, the validity of our findings was

0.80% with independent sets. This finding indicated the

efficacy of the procedure in accomplishing this objective. In

testing the overall performance of the 2D-CNN UPP, different

datasets were utilized, and the results of the 2D-CNN UPP

output were found. In addition, the results of the three machine

learning classifiers were provided for comparison, all of which

had a ROC AUC score of 0.80% with regard to AdaBoost. This

classifier used random-forest as its ROC-AUC classifier, and an

LSTM model used ROC AUC as its ROC-AUC classifier.

Case study

Ubiquitin protein-pathway association

In a human reference standard cDNAs, including

Arabidopsis FUS6, the signal transduction pathway was

inhibited via G-protein and kinase activator proteins

(Chae et al., 2013). A unique pathway, known as the

arginosidase pathway, inhibited melanoma tumor by

tumor-specific T cells. The UniProt Knowledgebase records

Q13227 (GPS2 HUMAN) indicated an association among

pathways, such as Q13227, which had a unique identifier.

Protein Q13227 inhibited UBE2N/Ubc13. When the

mitochondrial membrane was depolarized, the role shifted

from the mitochondria to the nucleus and cleaned out the

mitochondria-encoded expression (Palvimo, 2007).

Considering that GPS2 was expressed in the mitochondrial

and nuclear regions, it was considered as a mediator of

retrograde and transcription factor that promoted

tumorigenesis. These results showed an additional

mitochondrial transcriptional regulation and a nuclear

mitochondrial pathway and indicated that an important

component of the mammalian stress response to

mitochondrial damage was guided by a retrograde

GAP2 signal.

In the cytoplasm and nucleus, ubiquitin was conserved in the

form of a 78-residue complex. Ubiquitination is a process in

which Ubiquinone is linked to proteins as shown Figure 8. This

process has an impact on protein localization, protein

interaction, and protein stability (Ciechanover, 1998). Recent

studies have found that ubiquitination is involved in cellular

FIGURE 6
Performance comparison of five machine learning algorithms applied to 10-fold. Cross-validation datasets vs. independent datasets.
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regulation, if not all, in a number of diseases and pathological

conditions.

Ubiquitin-proteasome pathway

Previous research has largely overlooked the challenges

associated with UPP. The activities of different proteins can

be controlled in the UPP. The UPP is the main negative

mechanism of regulating the proteins. Ubiquitin gives the

26S proteasome a recognition signal and protein modified

with Ubiquitin, and the transportation factor of the 26S

proteasome somewhere committed receptors start its

degradation. This complex biochemical machinery has

been ingeniously divided into two distinct steps as shown
Figure 9.

Step A: is a particular process of recognition, which uses the

Ubiquitin pairing flow and an integrated method for

different combinations. In particular, three sets of

enzymes shuttle Ubiquitin (e.g., E1, E2, and E3) and

ultimately connect Ubiquitin with the protein substratum.

Various sequences of E2 or E3 or both recognize the unique

degradation signal of each substrate, giving the various

protein substrates exquisite ubiquity.

Step B: is a process of indiscriminate destruction through the

proteolytic proteasome core, degrading the tagged substrate

by the 26S proteasome. This indiscriminate proteolytic step

gives the signaling pathway direction, that is, when a protein

has been committed to degradation, no return occurs to

prevent the interference of biological processes with

partially degraded proteins. Finally, the 26S proteasome

recognizes the majority of ubiquitinated proteins, and it is

unfolded and filleted in an ATP-dependent manner into the

20S proteolytic chamber.

Procedure and control of the ubiquitin
proteasome pathway

Research on ubiquitin as a regulatory protein of 9 kDa, which

binds on the proteins in the substrate to create a post-translational

change, is limited. The long poly-ubiquitin chains are intended for

26S proteasome degradation. This process discriminates tagging and

degradation of specific intracellular proteins with various

combinations of E2 and E3 enzymes. By contrast, one highly

conserved E1 family is identified.

Few studies have investigated that the effect of

Ubc13 protein forms part of the enzyme families

conjugating Ub (E2 enzyme) and receiving Ub

(E1 enzyme). TNFα induces poly-ubiquitinated receptor-

interacting protein kinase (RIP) and NEMO (NF-α
essential modulator) RIP-associated inhibitors of the IKKβ
and IKKα nuclear factor kinase complex. The ubiquitination

of I5-0B results in a separation of the ubiquitinated IμB from

NF-ŚB, and it is directed to the 26S proteasome, that is,

supplemented by valosin-containing peptide. NF-ŢB is

released into the nucleus to activate the transcription of

target genes.

FIGURE 7
ROC–AUC calculation based on the (A) cross-validation test and (B) independent test.
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Ubiquitin-proteasome pathway based on
pathologies

In recognition of the key importance of UPP in biology,

the Nobel Prize for Chemistry was presented in 2004 to

Avram Hershko, Aarán Ciechanover, and Irwin Rose. UPP

plays an important role in regulating various processes in

cells, which affect DNA transcription, cell cycle,

inflammation, biogenesis of ribosome, and soon.

Deficiencies in different UPP components have led to a

variety of human diseases, including cancer and

neurodegenerative diseases, making this pathway a

potential therapeutic approach.

Research of the ubiquitin-proteasome
pathway

The UPP must be given considerable research attention to

uncover new areas of significance for ubiquitin as a degradation

target. Evidence of enzyme-linked system of protein breakdown,

namely, the lysosomal system (lysosin and UPP), in eukaryotic

FIGURE 8
Ubiquitin, related modifiers, and pathways (R&D Systems Europe, Ltd).
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cells is limited. Bacteria were expected to play a significant role in

the majority of the protein intracellular degradation. Considering

that the half-life of the proteins differed between lysosomal

proteolysis and the amount of time that proteins were

degraded during exposure to physiological stimuli, different

classes of proteins had different amounts after examination of

the samples from the lysosome. In addition, the removal of

internal lysosin proteins used ATP, which was at odds with

what was previously thought about lysosin protein degradation.

In the 1980s, the ubiquitin-proteome (proteolytic pathway)

FIGURE 9
Ubiquitin–proteasome pathway (Ciechanover, 1998)

Frontiers in Genetics frontiersin.org17

Sikander et al. 10.3389/fgene.2022.851688

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.851688


system differed from the lysosomal (karyophero) systems in

eukaryotic cells, which caused the development of the

ubiquitin-proteasome (translocation) pathway to be recognized.

The search for intracellular protein degradation was

originally a quest for proteolysis to be reconstituted in a non-

dependent system, but later began to concentrate on ATP. One

researcher, Avram Hersh, utilized the reticulocyte lysate system

as the basis for proteolysis research on proteolysis, which was

created by Etlinger and Goldberg. ATP was elucidated using

reticulocyte lysates and lyzymes, such as globin, and Avram

Hersh’s students Aaron Ciechan, Irwin Rose, and Aaron Rose

developed a conceptual reticle to define ATP. This unique

component appeared to be involved in ATPase activity

because it was found to be linked to a heat-stable factor,

namely, APF1. According to Wilkinson et al., APF-1 was later

discovered to be ubiquitin by other researchers. The ground-

breaking research by Hershko, Ceich, Rose, and

Gane was honored by the award of a Nobel Prize in

chemistry in 2004.

Ubiquitin has an amino acid sequence. The entire sequence of

ubiquitin can be visualized from a set of amino acid letters. In

addition to the key lysine (K), the 48th and 63rd position of each

amino acid is typed as “expanded.” These symbols are given in red.

The vast majority of the work in this area has focused on ubiquitin as

a small peptide of 76 amino acids (Figure 10). Prior to its

identification as thymidine kinase, a component of the enzyme

has been discovered (APF1-10). Given the evidence available at

the time, APF1-10 was assumed to be an elemental property of

all living cells. Since ubiquitin is ubiquitous among all cells, it is well

conserved, making it an important protein. The three amino acid

residue differences between yeast and human ubiquitin that separate

yeast and human ubiquitin are 100% identical. Aplysian and human

oligopeptophillin are another human proteolin, which are slightly

different from those used to fight influenza and herpes. Fibrin is

found in all eukaryotes, but it does not occur in the protista. The

polyubiquitin gene encodes several ubiquitins linked without any

introns. The number of ubiquitin coding repeats is around 5 or 6.

Polyubiquitins (also called polyubiquitin genes) have 52 overlapping

genes, tandemly coding polyproteins in species such as Trypanosoma

cruzi. Several genes, which have an ubiquitin-coding sequence, are

fused to sequences that carry out small ribosomal subunit genes on a

translocator protein. The basic ubiquitin one is derived from adenine,

and ubiquinol A is found in the compound ubiquinone metabolic

pathway (monoubiquitin).

Protein-protein interaction of
ubiquitin protein pathway genes

Further we analyzed the protein-protein interactions of

all identified genes, as listed in Table 7, and found that the

RC3H1 protein is interlinked with the RPS3A protein. Based

on STRING experiments (stringdb) and scores (0.876 and

0.998), the RNF123 protein is highly interlinked with the

UBAC1 protein (Figure 11). The STRING analysis results

showed that all interacting proteins play an essential role in

disease. Additionally, it can be claimed that any change in the

interaction of these proteins can cause a change in its

associated pathway, leading to the onset of the disease.

To consolidate the conservational analyses of protein-protein

associated genes (RC3H1, RPS3A, RNF123, and UBAC1), we

analyzed multiple-sequence-alignment and phylogenetic tree

that illustrated a sequence similarity, suggesting that our

identified ubiquitin protein pathway-related genes are

conserved among different species as shown in Figure 12.

FIGURE 10
Ubiquitin protein pathway amino acid sequence.

TABLE 7 Providing ubiquitin protein-pathway association evidence.

Entry Entry name Protein name Gene name Organism Pathway Ids

Q13227 GPS2_HUMAN G protein pathway suppressor 2 GPS2 Homo sapiens R-HSA-1989781

Q13098 CSN1_HUMAN COP9 signalosome complex subunit 1 GPS1, COPS1, CSN1 Homo sapiens R-HSA-5697010

Q9Y618 NCOR2_HUMAN Nuclear receptor corepressor 2 NCOR2 Homo sapiens R-HSA-383280

Q9NQS5 GPR84_HUMAN G-protein coupled receptor 84 GPR84, EX33 Homo sapiens R-HSA-418555

C9JFE4 C9JFE4_HUMAN COP9 signalosome complex subunit 1 GPS1,1987516 Homo sapiens PTHR14145:SF2

A8K070 A8K070_HUMAN COP9 signalosome complex subunit 1 GPS1 Homo sapiens PTHR14145:SF2

I3L3Y9 I3L3Y9_HUMAN G protein pathway suppressor 2 GPS2 Homo sapiens PTHR22654

I3L1H4 I3L1H4_HUMAN G protein pathway suppressor 2 GPS2 Homo sapiens PTHR22654

I3L242 I3L242_HUMAN G protein pathway suppressor 2 GPS2 Homo sapiens PTHR22654

I3L4X7 I3L4X7_HUMAN G protein pathway suppressor 2 GPS2 Homo sapiens PTHR22654
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Future direction

Based on these studies, considerable research was conducted to

design effective and significant educationmodels forUPP/non-UPP.

Several, ubiquitin-pathway-specific proteins are bound to disease

and toxins and associated with proteins (e.g., genes, drugs, and

enzymes). At present, some ubiquitin pathways are related (directly

or likely) to disease. Integration is important to broaden the scope of

research and determine the importance of the ubiquitin-pathway

compounds. Further research is needed to investigate the interaction

of ubiquitin protein pathway-related genes.

Discussion

One ubiquitin pathway becomes covalently linked to other

molecules or polymers in a monomeric or polymeric form. Enzyme

E1 (ubiquitin activating) requires an ATP-dependent enzymatic

process, namely, E2 (ubiquitin conjugating) and E3 (ubiquitin

FIGURE 11
Conservational Analysis of RNF123, UBAC1, RC3H1, and RPS3A genes. Multiple protein sequence alignment and Phylogenetic tree was
performed by SmartBLAST. Parentheses refers to the percent sequence of identity of the reference sequence.

FIGURE 12
Protein-Protein interaction of identified genes of ubiquitin
protein-pathway.
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ligating), to bind ubiquitin to the lysine moieties of proteins. An

E2–E3 complex is formed by binding to a substrate, which may be the

key to the complex recognition and formation of the conjugation

cascade. This hydrophobic amino acid C-terminal aliphatic linker of

ubiquitin is essential in many ubiquitin-mediated reactions. Different

linkages in UBIDE are bound to certain lysine (K6, K11, K27, K29,

K33, and K48). This finding implies that specific ubiquitin-pathway

enzymes can also remove the covalent bond between ubiquitin binding

and a target protein (UBs). Recent studies have found thatUBs serve as

dynamic enzymes that bind substrates together with multiple proteins

and lead to UBs during substrate activation. The separate expression of

monobit and poly ubiquitin has provided an array of UB activities

necessary to handle the increasingly diverse substrates. The ubiquitin

proteome system is also underlined by a growing body of evidence,

which demonstrates that many UBs are found in ubiquitin ligase

complexes, thereby ensuring that they control the ubiquitin ligase and

level of abundance of the substrate. Another class of UBs and pathways

with their functions in the cellular context are listed below.

Conclusion

We developed novel 2D-CNNs for UPP quality prediction.

An entire protein model of subjective length, rather than having

a fixed-size window, was used to produce features for each

residue in the feature pipeline. This process gives us the ability

to access structural information when generating the features

for the protein structure. We have designed a new training

pipeline that integrates the 2D-CNN. The results confirmed

that 2D-CNN classifiers can be used for protein evaluation.

Advanced CNN architectures will be able to advance protein

modelling in the near future. Despite ubiquitin being the most

well-modeled post-translational modifier, a steadily increasing

group of ubiquitin-like proteins (BLs) working in a parallel is

observed, but in a separate pathway. The additional alternative

operators include SUMO, NED, FAT, ISG, and UFM. These

related molecules perform novel activities and diverse

functions, and they have novel influences in biology. In

addition, the various conjugation proteins may bind to

ubiquitin, which can be modified at the same lysine residue.

Moreover, SUMO modification often has the effect of

destabilizing substrates. In general, proteases are not

involved in proteasomal degradation, but they perform

diverse functions. UBL attachment might change the

conformational equilibrium, ligand binding affinities, and

protein localization. UBLs conjugated with the enzymatic

mechanisms are structurally similar to ubiquitin, activated,

and released from conjugates, although their proteolytic

processing may differ alternatively. UBLs are exposed with

LRGG object-oriented code-translated extensions, which turn

the objects into terminals. Carriers to targets conjugate the free

E1 (activated), E2 (semi-activated), and E3 (hydrolyzed). These

ubiquitin pathways can be deactivated using deoxyribonuclease

enzymes, which have the same manner of action as deacidifying

enzymes. Thus, the anticipated outcomes reveal that our

research will provide remarkable contribution in large-scale

UPPs identification and research academia (Le and Nguyen,

2019).
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