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With the upgrade and development of the high-throughput sequencing technology, multi-
omics data can be obtained at a low cost. However, mapping tools that existed for
microbial multi-omics data analysis cannot satisfy the needs of data description and result
in high learning costs, complex dependencies, and high fees for researchers in
experimental biology fields. Therefore, developing a toolkit for multi-omics data is
essential for microbiologists to save effort. In this work, we developed MicrobioSee, a
real-time interactive visualization tool based on web technologies, which could visualize
microbial multi-omics data. It includes 17 modules surrounding the major omics data of
microorganisms such as the transcriptome, metagenome, and proteome. With
MicrobioSee, methods for plotting are simplified in multi-omics studies, such as
visualization of diversity, ROC, and enrichment pathways for DEGs. Subsequently,
three case studies were chosen to represent the functional application of MicrobioSee.
Overall, we provided a concise toolkit along with user-friendly, time-saving, cross-platform,
and source-opening for researchers, especially microbiologists without coding
experience. MicrobioSee is freely available at https://microbiosee.gxu.edu.cn.
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INTRODUCTION

Microorganisms are ubiquitous on earth and play a prominent role in the material cycle, climate
change, and human health (Lynch and Pedersen, 2016; Crowther et al., 2019; Jansson and
Hofmockel, 2020; Keohane et al., 2020). In the last 2 decades, the development of high-
throughput velocimetry allowed us to observe the structure of microbial communities, in which
the Earth Microbiome Project (EMP) and the Human Microbiome Project (HMP) have achieved
fruitful results (Turnbaugh et al., 2007; Human Microbiome Project, 2012; Gilbert et al., 2014;
Thompson et al., 2017). In the last few years, a lot of studies on the interaction between various
community microorganisms and their hosts have emerged (Lundberg et al., 2012; Ren et al., 2021).
Numerous studies have discovered that the loss of gut microbiota homeostasis exerts a significantly
negative impact on Alzheimer’s disease, obesity, cancer, and depression. (Dao et al., 2016; Zheng
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et al., 2016; Flemer et al., 2017; Kim et al., 2020; Morais et al.,
2021). In addition to the metagenomics technique, the multi-
omics technique has been used to explore specific interactions
between microorganisms and hosts in a greater depth (Lloyd-
Price et al., 2019). The Integrative Human Microbiome Project
(iHMP) has conducted a series of integration studies to explore
human microbial–host interactions from the multi-omics data in
three physiological or pathological states of human prematurity,
inflammatory bowel disease, and prediabetes (Integrative, 2019).

In multi-omics studies, there are two major challenges for
researchers. One is that data integration and analysis consume
considerable time and effort of researchers because of the
complex usage of combining tools (Lin et al., 2020), and the

other is that the existing drawing tools cannot satisfy the demands
for describing high-dimensional data, which poses stress for the
researchers to represent the analysis results of microbiome data
(Sinha et al., 2015; Ramirez et al., 2018). Visualizing the results of
data obtained from multi-omics studies is a huge burden for the
researchers (Lin et al., 2020).

Currently, various tools have emerged and were used to
analyze multi-omics data and visualize omics results. The
main steps of the metagenome analysis are clustering or
denoising the raw data to obtain abundance tables. In the
analysis phase, QIIME2 (Hall and Beiko, 2018; Knight et al.,
2018; Rai et al., 2021) performs better than other tools (Straub
et al., 2020). However, users have to use dedicated tools to view

FIGURE 1 | Presentation of index pages of MicrobioSee on different devices, including PC, Pad, and smartphone. The capabilities of the cross-platform are built by
a webserver. The index page was designed with responsive web layouts, which enables users to get the best visual effects on different devices.

FIGURE 2 | Structure of MicrobioSee. MicrobioSee comprises four modules: metagenome, proteome, transcriptome, and others. In total, 20 graph styles could be
plotted into by MicrobioSee so far.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8536122

Li et al. MicrobioSee: A Visualization Toolkit

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


graph files generated from QIIME2, which adds burden for the
users to observe the results (Min et al., 2021).

For big data obtained from themulti-omics studies, visualizing
the analysis results requires easier tools (Chen et al., 2020).
Traditional graphing tools exhibited excellent graphing

capabilities and convenience, especially client tools that are
user-friendly but have problems such as low system
compatibility and high costs. For example, OriginPro and
GraphPad Prism v9 are two drawing tools for the general
public, with rich styles of charts but of high economic costs.
Command line-based tools, such as the Matplotlib package in
Python and the ggplot2 package in R, provide novel graphing
methods and graph styles with excellent plotting capabilities and
are usually used for the secondary development (Skidmore et al.,
2016; Wagih, 2017; Tareen and Kinney, 2020; Liu et al., 2021; Xu
et al., 2021). A lot of command line-based tools which are cross-
systems and open sources have been developed by
bioinformaticians to exhibit the results of the multi-omics data
(Ito and Murphy, 2013). However, those command line-based
tools require users to spend considerable time learning a
programming language, which decreases the efficiency for
scientific researchers in non-computer fields, especially doctors
and experimenters.

For these issues, we developed MicrobioSee, a web-based
toolkit for multi-omics visualization, which is a cross-platform,
user-friendly, time-saving, and an open source (Figure 1). The
idea of this tool originated from the fact that conventional charts
and tools cannot satisfy the demands of visualization for
researchers without programming experience in their multi-
omics studies. MicrobioSee is an efficient toolkit for
visualization that eliminates high costs for users without
programming experience.

METHODS

MicrobioSee was developed for microbiome multi-omics data,
such as the metagenome, proteome, and transcriptome
(Figure 2). The whole website was divided into front-end and
back-end. In the front-end, the VUE technology is used to render
the interface. In the back-end, the R program was used for
responding to users’ interactions and built-in drawing
commands. In addition, most of the tools in MicrobioSee were
built with shiny services to achieve real-time interactive plotting.
A series of graphics could be plotted interactively byMicrobioSee,
including the rose plot, heat map, box plot, upset plot, Venn
diagram, and so on, which could be applied to multi-omics
studies (Figure 3). The options for height, width, and
resolution in each drawing module were provided for plotting.

Main Function
Alpha diversity that describes the microbial community
composition is a critical index of the metagenome (Walters
and Martiny, 2020). The results of alpha diversity from the
USEARCH program or vegan package (Oksanen et al., 2013)
could be plotted into four graph styles by MicrobioSee, including
the box plot, raincloud plot, and violin plot. The pirate plot
(Phillips, 2017) and the raincloud plot (Allen et al., 2019),
composed of various graph styles, are more intuitive than
others in aesthetics. The analysis of variance (ANOVA) and
Kruskal–Wallis test were used to determine the difference
between the groups for alpha diversity. The nonparametric

FIGURE 3 | Seventeen drawing modules and related introduction.
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statistical tests were realized by the aov function and the
Kruskal–Wallis test function in R. After clicking the start
button, users can obtain the selected graph style and test.

Beta diversity is used to describe the variability in species
composition between the groups (Whittaker, 1960). Plenty of
indicators are used to measure beta diversity, and the Bray–Curtis
similarity index is the main one (Bray and Curtis, 1957;
Tuomisto, 2010). The distance matrix, generated from
operational taxonomic units (OTUs), abundance table, or
exact sequence variant tables, is calculated by the vegan
package in MicrobioSee. After the dimensionality reduction,
results would be plotted with the vegan package. There are
three methods for the dimensionality reduction of the
distance, including principal component analysis (PCA),
principal coordinates analysis (PCoA), and non-metric
multidimensional scaling (NMDS). Analysis of similarities
(ANOSIM) was used to determine the similarity among the
groups in the PCoA plots from MicrobioSee.

The species composition of the microbial community, one of
the most cardinal factors to determine the nature of the
community, is the basic characteristic to identify the different

community types (Bell et al., 2005; Burrows et al., 2019; Jones
et al., 2021). The structure of the species composition is usually
plotted into a basic stacked column chart, but it cannot visually
represent small differences for the adjacent groups. In
MicrobioSee, lines could be added to the graphs among the
numerical points of the adjacent groups in a stacked column
chart. In addition, the curves could be added to the stacked
column charts in a way that parabolic functions are generated by
the relations between the taxon in the adjacent groups, which
makes the stacked column charts intuitive and elegant. Each
parabola would be calculated from the vertex of units and the
midpoint of the adjacent units. Although the lines or curves
added do not contain any scientific meaning, it could be valuable
for users to visualize their results as a stacked column chart with
lines or curves.

The screening literature is usually performed at the beginning
of integrating data for target subjects. The metadata information
of the selected literature, such as titles, abstracts, and keywords,
could be accessed and downloaded easily by the crawler
technology in MicrobioSee. The metadata would be
automatically plotted into word clouds by the ggplot2 package,

FIGURE 4 | Visualization of KEGG annotations from case study 1 by MicrobioSee. The data in the enrichment pathway of the differentially expressed genes (DEGs)
among the groups were plotted into a histogram with an order in each group by MicrobioSee.
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which describes the characteristics of the integrated literature.
MicrobioSee could help researchers identify hot methods of
research relating to target keywords.

The metagenome integrated data belong to the big data, and
building models for classification and prediction is the most
popular application in big data techniques, such as machine
learning techniques (Cammarota et al., 2020; Namkung, 2020).
For binary classification models, such as in sickness and in
health, the receiver operating characteristic (ROC) curves are
usually used to evaluate the quality of the models. The area
under the curve (AUC), an important feature of the ROC, is
one of the most commonly used metrics (Wang and Guo,
2020). The abundance tables of multiple taxonomic levels and
metadata were used for constructing models by machine
learning software (Yuan et al., 2020). In MicrobioSee,
multiple ROC curves from various models were rendered by
the pROC package (Robin et al., 2011) in R, which could
identify the qualities for the better models. According to the

specificity and sensitivity in graphs generated from
MicrobioSee, users could evaluate and choose the models of
various species classification levels or model methods.

CASE STUDIES

To display the utility of MicrobioSee, three case studies were
chosen and visualized by MicrobioSee. For brevity, we cannot
explore all the functions of MicrobioSee but focus on the
visualization of the most common scientific questions.
Relevant data in case studies can be made available in the
supplementary files.

Case 1
By MicrobioSee, users can plot a histogram easily with axis
transposition and group sorting with one click. The data for
this example are from the study of copper tolerance in

FIGURE 5 | Process and visualization of the diversity analysis from case study 2 by MicrobioSee. (A) Panel of the alpha plot with a pirate plot in MicrobioSee. (B)
Pirate plot was generated from case study 2 by MicrobioSee. (C) Box plot was generated from case study 2 by MicrobioSee. (D) Violin plot was generated from case
study 2 by MicrobioSee. (E) Raincloud plot was generated from case study 2 by MicrobioSee.

FIGURE 6 | Relative abundance of the top 10 species in case study 3 was plotted with the three stacked column charts by MicrobioSee. (A) Stacked column chart
without lines. (B) Stacked column chart with straight lines. (C) Stacked column chart with curves.
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Meyerozyma guilliermondii GXDK6, which was screened from
the mangrove sediments (Bu et al., 2021). Multi-omics techniques
were used to explore the tolerance mechanisms of the target strain
with different copper ion concentrations. After annotating with
the KEGG database, the enrichment pathways of differentially
expressed genes (DEGs) from the GXDK6 transcriptomics
analysis at 600 ppm copper concentration were plotted into a
histogram with an order by MicrobioSee (Figure 4). The
histogram generated by MicrobioSee can be sorted within the
groups, which is more intuitive for users to observe the ranking of
the annotation.

Case 2
The samples were selected from the study of fecal microbiota
transplantation (FMT) (Zhang et al., 2021). The study
successfully collected 16S sequencing data of 18 constipated
patients before and after FMT. Based on the raw data and
analysis methods provided in the literature, we obtained the
diversity results and plotted the Simpson index into the four
graph styles by MicrobioSee (Figure 5). According to the
statistical analysis from MicrobioSee, the Simpson index
increased significantly after FMT.

Case 3
Parabolic curves or straight lines were added to the stacked
column charts, and the differences in the relative abundance
of the species among groups would be observed clearly. The
sample chosen was collected from the National Shankou Natural
Reserve of Mangrove in the Beibu Gulf of China (Nie et al., 2021).
The relative abundance of the top 10 orders in the dry season was
plotted into the stacked column charts with lines and curves by
MicrobioSee (Figure 6). In the M and H regions, the relative
abundance of Desulfobacterales is similar and greater than B in
the dry season.

RESULTS AND DISCUSSION

In this work, we developed MicrobioSee, a web-based toolkit for
the multi-omics studies, which contains plenty of computer
technologies. The burden of plotting the result of the multi-
omics studies would be eased with MicrobioSee. The pirate plot
and raincloud plot are utilized as complements to the existing
graph styles for visualization of alpha diversity results. Benefiting
from the abundant R package resources, 17 plottingmodules were
developed for MicrobioSee. MicrobioSee also offers a few
innovations in aesthetics. For example, elegant parabolic
curves were added to the stacked column charts which would
make them more aesthetically pleasing in the visualization of
species composition.

The functions and advantages of the eight tools were
summarized (Table 1). The vegan package (Oksanen et al.,
2013) and phyloseq package (McMurdie and Holmes, 2013)
are recognized by many researchers, but it is not friendly for
researchers because of lacking interfaces. In the studies of the
amplicon, QIIME2 (Hall and Beiko, 2018) and USEARCH
(Edgar, 2010) are popular for high-speed analysis, but it isT
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rarely used in the visualization of results on account of the
insufficient number of their graphic styles. TBtools (Chen
et al., 2020) has been popular with Windows users since it
was developed, but it is disappointing for users of other
platforms. Web-based tools could be used directly through a
modern browser without platform limits. Animalcules (Zhao
et al., 2021) provides an interface by Shiny technology, but it
is a localized service with complex dependencies and could be
installed with errors. Metaviz (Wagner et al., 2018) provides a
web application for interactive visualization of the microbiome,
but the methods of metaviz are not comprehensive or specific for
16S rRNA, metagenomic, or transcriptomic data.
MicrobiomeAnalyst (Dhariwal et al., 2017; Chong et al., 2020),
an excellent web toolkit in the field of downstream microbiome
analysis, provides analysis and visualization, but few visual
graphic styles are available. MicrobioSee was developed for
interactive visualization of the microbiome, and
microbiologists could use it for free and install it for free after
short learning. The results in various omics studies can be
visualized by MicrobioSee besides 16S rRNA and shotgun
sequencing microbiome data. Due to its flexibility, it can also
be applied in other fields. As long as uploading is in the same
format as the sample data, the images of the corresponding
graphic style would be obtained.

For a more convenient operation, the tool would be
continuously updated. Compared with client tools, it is
unnecessary to be reinstalled when a new version is released,
which is user-friendly. Inconveniently, web tools are highly
dependent on the web environment (Chen et al., 2020) and so
is MicrobioSee. When the number of users increases to a certain
extent, the servers and bandwidth for MicrobioSee need to be
expanded. The servers of MicrobioSee may suffer from attacking
for the global open access, and the firewalls need to be constantly
upgraded.

CONCLUSION

In total, 17 plotting modules have been built for MicrobioSee so
far, such as the violin plot, box plot, rose plot, heat map, box plot,
upset plot, and Venn diagram. Although most functions are not
unique to MicrobioSee, they were combined, optimized, and
interfaced for researchers with limited coding experience.
MicrobioSee simplifies the methods for users without
programming experience.
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