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To test the equality of several independent multinomial distributions, the chi-square test for
count data is applied. The existing test can be applied when complete information about
the data is available. The complex process, such as DNA count, the existing test under
classical statistics may mislead. To overcome the issue, the modification of the chi-square
test for multinomial distribution under neutrosophic statistics is presented in this paper.
The modified form of the chi-square test statistic under indeterminacy/uncertainty is
presented and applied using the DNA count data. From the DNA count data analysis,
simulation, and comparative studies, the proposed test is found to be informative, springy,
and good as compared with the existing tests.
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INTRODUCTION

Without statistical analysis, it is not possible to check the significance of variables under study. For
testing the significance of variables, statistical tests are applied in a variety of fields (Ali & Bhaskar,
2016 and Greenland et al., 2016). The chi-square test for multinomial distribution is applied for
testing whether the allocation of objects to different groups is equally likely or not. This test is applied
for testing the null hypothesis that allocation of objects to different groups is equal vs. the alternative
hypothesis that allocation of objects to different groups is unequal. The test statistic is computed from
the data, and the null hypothesis is accepted if the values of the statistic fall within the acceptance
region. Cohen, Kolassa, & Sackrowitz (2006) use the test for equality of multinomial distributions.
Chafai & Concordet (2009) study confidence intervals for multinomial distribution in the case of
small samples. Turner, Deng, & Houle (2020) use the statistical tests for head and face data. Shin,
Yamamoto, Brady, Lee, & Haynes (2019) and Mollan et al. (2019) discuss the applications of
statistical tests.

Statistical methods are widely used in analyzing and testing the significance of DNA data. A rich
literature of statistical methods analyzing DNA data is available. Goldman (1993a) applies statistical
tests using DNA data. Buldyrev et al. (1998) and Kugiumtzis & Provata (2004) analyze DNA data
using statistical physics. Yoshida, Kobayashi, Futagami, & Fujikoshi (1999) use statistical analysis for
DNA data. Pai, Mathew, & Anindya (2021) work on prediction using DNA data. Yao, Jin, & Lee
(2018) improve the statistical analysis for genetic data. Gunasekaran et al. (2021) analyze DNA data
using hybrid models. Halla-aho and Lähdesmäki (2021) use statistical analysis for DNA cancer data.
More applications of the statistical techniques for DNA data can be seen in Goldman (1993b),
Keinduangjun, Piamsa-nga, & Poovorawan (2005), Rodriguez et al. (2012), and Pai et al. (2021).

Fuzzy-based statistical tests are applied when the data in hand has vague or incomplete
information. Viertl (2006) mentions that “statistical data are frequently not precise numbers but
more or less non-precise also called fuzzy. Measurements of continuous variables are always fuzzy to
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a certain degree.” Several studies using fuzzy-based multinomial
distribution are available in the literature. Amirzadeh, Mashinchi,
& Yaghoobi (2008) study multinomial distribution using fuzzy
logic. Mashuri & Ahsan (2018) work on a fuzz-based chart using
multinomial distribution. More information for fuzzy-based
multinomial distribution can be seen in Amirzadeh et al.
(2008) and Hrafnkelsson, Oddsson, & Unnthorsson (2016).

Smarandache (2013) discusses that neutrosophic logic is more
efficient than interval- and fuzzy-based analysis. Neutrosophic
statistics are applied to analyze the data having neutrosophic
numbers; see F Smarandache (2014). Interval statistics use
interval data to capture the data in the interval only and are
silent about the measure of indeterminacy. On the other hand,
fuzzy-based analysis only gives information about the measure of
truth and of falseness. Neutrosophic statistics become classical
statistics when no indeterminate information is found in the data.
Chen et al. (2017a,b) introduced the methods to deal with the
neutrosophic data. Later on, Sherwani et al. (2021), Aslam (2021),
and Albassam, Khan, & Aslam (2021) introduced statistical tests
under neutrosophic statistics.

The chi-square test for multinomial distribution available in
the literature can be applied when full information about data is
given. Complex processes or processes under uncertainty do not
possess the full information about the data or level of significance.
Therefore, there is a gap in the design of the chi-square test for
multinomial distribution under neutrosophic statistics.
Therefore, in this study, the chi-square test for multinomial
distribution using neutrosophic statistics is introduced the first
time according to the best of the author’s knowledge. The
application of the proposed test is given with the aid of DNA
cancer data. It is expected the proposed test will be more
competent than the existing tests in terms of springy, deftness,
and goodness.

METHODS

The existing test for the equality of multinomial distribution can
only be utilized when no vague information is presented. To
overcome this issue, modification of the existing test is necessary.
In this section, modification of the existing test under classical
statistics is presented under neutrosophic statistics. With the
expectation that the proposed test for the equality of
multinomial distribution performs better for testing the null
hypothesis under an uncertain environment. The main
objective of the paper is to introduce the test for the equality
of hN independent neutrosophic multinomial distributions. Let
Y1jN, Y2jN . . .YkjN(j � 1, 2, . . . , hN) present the neutrosophic
frequencies for the neutrosophic events A1N, A2N . . .AkN. Let
pijN � P(AiN); iN � 1, 2, . . . , kN; jN � 1, 2, . . . , hN. The
neutrosophic form of pijNε[pijL, pijU] is expressed as

pijN � pijL + pijUIpijN; IpijNε[IpijL, IpijU] (1)

where pijL presents the determined part, and pijUIpijN presents
the indeterminate part and IpijNε[IpijL, IpijU] is the measure of
indeterminacy. The alternative expression of Eq. 1 can be given as

pijN � (1 + IpijN)pij; IpijNε[IpijL, IpijU] (2)

The jth experiment is carried out njN times under the
assumption that njN instances are independent. The modified
form of the test statistic QNε[QL, QU] is expressed as follows:

QN � QL + QUIQN; IQNε[IQL, IQU] (3)
where

QN � ∑hN

j�1 ∑
kN

i�1
(YijN − njNpijN)2

njNpijN

The proposed statistic QNε[QL, QU] can be written as

QN � ∑hL

j�1 ∑
kL

i�1
(YijL − njLpijL)2

njLpijL
+∑hU

j�1

× ∑kU

i�1
(YijU − njUpijU)2

njUpijU
IQN; IQNε[IQL, IQU] (4)

The simplified form of statistic can be written as

QN � (1 + IQN)∑hN

j�1 ∑
kN

i�1
(YijN − njNpijN)2

njNpijN
; IQNε[IQL, IQU]

(5)
Note that the proposed testQNε[QL, QU] is a generalization of

the test under classic statistics. The proposed test QNε[QL, QU]
reduces to the classic test under classic statistics when IQL = 0. The
proposed test is also a generalization of the tests under interval
statistics and fuzzy-based logic. The proposed test QNε[QL, QU]
follows the neutrosophic chi-square distribution with hN(kN − 1)
degree of freedom. The proposed test QNε[QL, QU] is applied to
test the following null hypothesis:

H0N: pi1 � pi2 � . . . � pihN � piN, i � 1, 2, 3, . . . , kN (6)
Under the null hypothesis, we estimate kN − 1 probabilities

from

p̂iN � ∑hL
j�1YijL

∑hL
j�1njL

+ ∑hU
j�1YijU

∑hU
j�1njU

Ip̂iN; Ip̂iNε[Ip̂iL, Ip̂iU] (7)

The statistic QNε[QL, QU] based on p̂iNε[p̂iL, p̂iU] is
expressed as

QN � ∑hL

j�1 ∑
kL

i�1
(YijL − njLp̂ijL)2

njLp̂ijL

+∑hU

j�1

× ∑kU

i�1
(YijU − njUp̂ijU)2

njUp̂ijU

IQN; IQNε[IQL, IQU] (8)

The simplified form of statistic can be written as

QN � (1+ IQN)∑hN

j�1 ∑
kN

i�1
(YijN −njNp̂ijN)2

njNp̂ijN

;IQNε[IQL,IQU] (9)

Note that QNε[QL, QU] based on p̂iNε[p̂iL, p̂iU] follows the
neutrosophic chi-square distribution with (hN − 1)(kN − 1)
degree of freedom.
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APPLICATION

In this section, the application of the proposed test is given using
DNA sequence data. The data is related to the cancer-related gene
BRCA 2. According to https://medlineplus.gov/genetics/gene/
brca2/#:~:text=Mutations%20in%20the%20BRCA2%20gene,one
%20generation%20to%20the%20next “Mutations in the BRCA2
gene are associated with an increased risk of breast cancer in
both men and women, as well as several other types of cancer.
These mutations are present in every cell in the body and can be
passed from one generation to the next.” By following https://
www.math.mcgill.ca/~dstephens/OldCourses/204-2007/Handouts/
Math204-ChiSquareWithResults.pdf, the counts of nucleotide
(A, C, G, T) having two counting groups are reported in Table 1.
Note here that, in Table 1, the data given in “Count Group 1”
is selected from the given reference, and the data given in
“Count Group 2” is generated by simulation. The DNA
sequence is a complex process, and there may be
uncertainty/indeterminacy in counts; see Yurov, Vorsanova,
& Iourov (2011). In the presence of uncertainty/indeterminacy
in counts, the proposed test can be applied more effectively
than the existing test under classic statistics. Suppose that
there is 5% uncertainty/indeterminacy in counts of the
numbers of nucleotides (A, C, G, T) in the DNA sequence
of the cancer-related gene BRCA 2. Based on the information
and data given in Table 1, the proposed test statistic is
calculated as follows:

∑4

j�1∑
4

i�1
(YijL − njLp̂ijL)2

njLp̂ijL

� 0.000365921 + 0.002051303 + . . .

+ 0.000748132 � 0.00664

The statistic QNε[QL, QU] in neutrosophic form can be
expressed as follows:

QN � 0.00664 + 0.00664IQN; IQNε[0, 0.05]
The simplified form of statistic can be written as

QN � (1 + 0.05)0.00664 � 0.00697; IQNε[0, 0.05]
The proposed test DNA count data is implemented in the

following steps.
Step 1: State the null hypothesis H0: The allocation of DNA

count is equally likely vs. the alternative hypothesis H1: The
allocation of DNA count is unequal.

Step 2: The level of significance α = 0.05 and the tabulated
value from Kanji (2006) is 9.35.

Step 3: Compute the value of statistic QN = 0.00697 and
compare it with the tabulated value.

Step 4: As the computed value of QN is less than 9.35, H0 is
accepted.

Based on the analysis, it can be concluded that there is no evidence
to suspect unequal allocation of counts of nucleotide (A, C, G, T).

SIMULATION STUDY

A simulation study is performed to assess the effect of
indeterminacy IQN in counts of the numbers of nucleotides (A,
C, G, T) in the DNA sequence of the cancer-related gene BRCA 2
on the statistic QN. To see the effect of IQN on the statistic QN,
various values of IQN are considered. Using the neutrosophic
form obtained for the DNA count data, the values of statistic QN

are shown in Table 2. From Table 2, it can be noted that, as the
value indeterminacy IQN increases, the values ofQN also increase.
The decision about H0 at various values of IQN is also shown in
Table 2. From Table 2, although the values of statistic QN

increase as IQN increases, but it does not change the decision
about the acceptance H0.

COMPARATIVE STUDIES

The springy, deftness, and goodness of the proposed test over the
tests under interval statistics, the fuzzy-based approach, and
classic statistics is shown in this section. The efficiency of the
proposed test is shown in terms of the measure of indeterminacy,
springyness, deftness, and goodness. The neutrosophic form of
the statistic QNε[QL, QU] is expressed as follows:

QN � 0.00664 + 0.00664IQN; IQNε[0, 0.05]
The abovementioned neutrosophic form is based on two

types of information. The first part, 0.00664, gives information
about the determinate part, and the second part, 0.00664IQN,
gives information about the indeterminate part. The proposed
statistic QNε[QL, QU] reduces to the test under classic statistics
when IQL = 0. Therefore, it can be analyzed that the existing test
under classic statistics gives only information about the
determinate part. On the other hand, the proposed test gives
information about the indeterminacy additionally as compared
with the test using classic statistics. Therefore, the proposed test
is more bendable than the existing test under classic statistics.
The interval statistics only utilize the information given in the
interval. In simple words, the interval statistics capture the
information between intervals. Now comparing the results of
the proposed test under the test statistic under interval
statistics, it can be seen that the proposed test is more
explanatory than the test using interval statistics as earlier it
did not give any information about the measure of
indeterminacy. Therefore, the proposed test is also more
efficient than the test using the interval-based statistic. The
test statistic using fuzzy logic can be considered measures of
truth and falseness. The neutrosophic statistics use the set
analysis and can be used for any type of set. The proposed
statistic QNε[QL, QU] gives three types of information. The

TABLE 1 | The counts of nucleotide data.

Category 1 2 3 4 Total

Nucleotide A C G T

Count Group 1 38,514 24,631 25,685 38,249 127,079
Count Group 2 38,550 24,635 25,700 38,288 127,173
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proposed test states that the chance of accepting H0 is 0.95 (a
measure of truth), the chance of committing a type-I error is
0.05 (a measure of falseness), and the measure of indeterminacy
associated with the test is 0.05. From the study, it is concluded
that the proposed test is also a generalization of the test using
fuzzy logic. Therefore, the proposed test is more informative
than the three existing tests.

CONCLUDING REMARKS

Themodification of the existing test for the equality ofmultinomial
distribution under neutrosophic statistics is introduced in the
paper. The proposed test is the generalization of several existing
tests under interval statistics, fuzzy-based, and classic statistics. The
modification of the test statistic is presented in the presence of
indeterminacy. The simulation and comparative studies show that
the proposed test is adequate and effective to apply in the presence
of uncertainty. The application of the proposed test for DNA count
data also shows its efficiency. The proposed test can be applied for
testing the allocation of count is equally likely or not in medical
science, engineering, and political science. More properties of the
proposed test can be studied in future research. The proposed test
using a double sampling scheme is another fruitful area for future
research.
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