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Most hepatocellular carcinoma (HCC) patients occur on a background of liver cirrhosis, the
molecular mechanisms of liver cirrhosis and its progression to HCC remain to be fully
elucidated. Single cell differentiation trajectory analysis has been used in cell classification
and tumormolecular typing, which correlated with disease progression and patient prognosis.
Here we use cell differentiation trajectory analysis to investigate the relevance of liver cirrhosis
and HCC. Single-cell RNA sequencing (scRNA-seq) data of liver cirrhosis and bulk RNA-seq
and clinical data of HCC were downloaded from Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) for analysis. HCC samples were divided into three subtypes,
based on differentiation-related genes (DRGs) of liver cirrhosis, eachwith a different expression
profile and overall survival (OS). A two- DRGs (CD34 and RAMP3) based prognostic risk
scoring (RS) signature was established which could differentiate OS between high-risk and
low-risk groups. And expression levels of CD34 and RAMP3 were predominantly high in
endothelial cells. By integrating the RS and clinicopathological features, a nomogram was
constructed and can accurately predicted the 1-year, 3-years, and 5-years OS. In conclusion,
cell differentiation trajectory of liver cirrhosis can predict the prognosis of HCC, and provides
new perspectives on the mechanisms of progression of liver cirrhosis to HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is themost commonprimary liver cancer and accounts for 4.7%of newly
diagnosed cancer cases and 8.2% of cancer related deaths (Bray et al., 2018). Most patients with HCC have
underlying liver cirrhosis, of which majority are related to hepatitis B or C virus (Takano et al., 1995;
Fattovich et al., 2004). The 5-years cumulative risk of HCC associated to hepatitis C virus (HCV)-related
cirrhosis is 30% in Japan and 17% in Western countries (Fattovich et al., 2004). Studies using next
generation sequencing have elucidated several genetic and epigenetic factors associated with the
progression of liver cirrhosis into HCC (Nault et al., 2013; Totoki et al., 2014; Schulze et al., 2015;
Devhare et al., 2017; Rashad et al., 2018). Totoki et al. (2014) identified 30Driver-Gene Candidates (DGCs)
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in 503 HCC cases from different populations. However, the
molecular mechanisms remain to be fully elucidated. Although
surgical resection and liver transplantation may be curative for
early and intermediate stage HCC, patients are often diagnosed at
an advanced stage at which the main therapies are trans-arterial
chemoembolization (TACE), percutaneous local ablation, or internal
radiation therapy, which are associated with low efficacy (Balogh
et al., 2016). Although the approval of targeted therapies like
Sorafenib and Lenvatinib have increased HCC treatment options,
they have not significantly improved patient prognosis (Palmer, 2008;
Kudo et al., 2018). Immunotherapies, including programmed cell
death 1 (PD1) and cytotoxic T lymphocyte 4 (CTLA4) inhibitors
have shown potential for effectiveness in HCC treatment (Kudo,
2017). However, biomarker predictors of treatment responsiveness
are urgently needed for patient stratification (Fulgenzi et al., 2021).

Single-cell RNA sequencing (scRNA-seq) enables the analysis
of gene expression at single-cell resolution. Relative to traditional
bulk sequencing, scRNA-seq can identify different cell types
based on cell marker genes, which provides a new approach in
defining functional biomarkers (Zheng et al., 2017; Ma et al.,
2019; Ramachandran et al., 2019; Losic et al., 2020). Recently,
single cell differentiation trajectory analysis using the Monocle
two algorithm have been used in cell classification and tumor
molecular typing, which correlated with disease progression and
patient prognosis in several malignant tumors (Qiu X. et al., 2017;
Wang et al., 2020; Xiang et al., 2021). Here, we investigated the
relationship between liver cirrhosis and HCC by cell
differentiation trajectory of liver cirrhosis scRNA-seq data and
HCC bulk RNA-seq data, and to provide new insights for
potential molecular mechanism in the progression of liver
cirrhosis to HCC.

MATERIALS AND METHODS

Acquisition and Processing of scRNA-seq
Raw ScRNA-seq data from nine liver cirrhosis samples
((GSM4041161, GSM4041162, GSM4041163, GSM4041164,
GSM4041165, GSM4041166, GSM4041167, GSM4041168, and
GSM4041169) were downloaded from Gene Expression Omnibus
(GEO) (dataset GSE136103) (https://www.ncbi.nlm.nih.gov/gds). The
data was then processed on R using the Seurat package. The
proportion of mitochondrial genes was then calculated and its
relationship with total gene numbers and sequencing depth
determined by correlation analysis. Cells in which < 50 genes were
identified and with a mitochondrial gene proportion of >5% were
excluded fromanalysis. Uponnormalization of the scRNA-seq data by
the LogNormalize method, the top 1,500 genes with significant
differences across cells were identified using variance analysis.
Next, dimensionality was reduced using principal component
analysis (PCA) (Lall et al., 2018). The t-SNE algorithm was then
used for cluster classification analysis of all cells and marker genes
between clusters identified using cutoff threshold of logFC >1 and
adjusted p value = < 0.05. The top 10% significant marker genes were
then visualized on a heatmap (Satija et al., 2015). Clusters were then
annotated based on marker genes using Single R package. Liver
cirrhosis cells were split into different subsets by Pseudotime and

trajectory analyses using monocle package (Qiu X. et al., 2017).
Intracellular differential genes between different subsets [|log2 (FC)|
>1 and false discovery rate (FDR) < 0.05] were considered to be
differentiation related genes (DRGs).

Acquisition and Processing of Bulk
RNA-Seq Data
Bulk RNA-seq data and survival data from 233 HCC samples were
obtained from GEO. These data belonged to datasets GSE10186
(118 samples) and GSE76427 (115 samples). 50 normal liver
samples and 374 HCC samples with transcriptomic data and
377 HCC samples with clinical data (Table 1 and
Supplementary Table S1) were downloaded from the Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov).

DRGs-Based Classifications of HCC
Patients From GEO Datasets
Based on the expression of DRGs in GEO samples, R’s
ConsensusClusterPlus package was used for HCC consensus
clustering using a K-means algorithm (Wilkerson and Hayes,
2010). The proper number of clusters was determined using
cumulative distribution function (CDF) curve and consensus
heatmap. Kaplan-Meier analysis was used to assess the
survival of HCC patients in different clusters.

Tumor Microenvironment Scores,
Driver-Gene Candidates, Immune
Checkpoint Genes Expression Across
Clusters
Sample stromal, immune, and tumor purity scoreswere assessed using
ESTIMATE. A total of 30 DGCs (Supplementary Table S2) and 38
ICGs (Supplementary Table S3) were collected from previous studies
(Totoki et al., 2014; Wu et al., 2016; Nishino et al., 2017; Patel et al.,
2017; Yang et al., 2017; Garris et al., 2018; Zhang et al., 2018; Wang
et al., 2019a; Wang et al., 2019b; Han et al., 2019; Xiang et al., 2021).
Expression of these genes in different clusters was evaluated based on
GEO datasets. Kaplan-Meier survival analysis was used to determine
the prognosis value of the DGCs and ICGs.

Generation and Validation of Prognostic
Risk Scoring Signature
The expression levels of DRGs in the GEO and TCGA cohorts were
intersected and the transcription profiles normalized using log2
transformation. And in TCGA cohorts, Weighted correlation
network analysis (WGCNA) was then carried out using the
WGCNA package and correlation between key modules
associated with HCC differentiation determined. The threshold
for differential expression of genes in key modules was |log2
(FC)| >1 and FDR < 0.05, for univariate analysis was p < 0.05.
The filtered genes were then subjected tomultivariate Cox regression
analysis to produce a for DRGs based on the prognostic risk scoring
(RS) signature. Next, patients were divided into the high and low risk
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groups based onmean RS signature value. For the prognostic model,
after exclusion of samples with unavailable survival information, 370
HCC samples from TCGA cohort and 195 HCC samples from the
GEO cohort were used as training and validation sets, respectively
(Supplementary Tables S4, S5). The effectiveness of the prognostic
model was evaluated using Kaplan-Meier survival analysis and
receiver operating characteristic (ROC) curves.

Nomogram Construction of TCGA Cohort
The construction of nomogram based on the TCGA cohort. RS and
clinical variables such as, age, grade, and stage were considered.
Univariate and multivariate analyses were applied and a nomogram
constructed for predicting the 1-year, 3-years, and 5-years overall
survival. The nomogram was assessed using calibration curves.

Statistical Analysis
All statistical analyses were done on R (version 4.1.1) and Perl
(version 5.30.1). Continuous variables are presented as mean ±
SD. T-test or analysis of variance was used to compare continuous
variables. χ2 tests were used to compare dichotomous variables.
Survival analyses were done using Kaplan-Meier analysis and
compared using log-rank tests. p = < 0.05 indicated statistically
significant differences.

RESULTS

The workflow of this study is shown in Figure 1.

TABLE 1 | Clinicopathological features of patients from TCGA cohort (n = 377).

Age (years) Grade Stage T stage N stage M stage

59.5 ± 13.5 G1: 55 (14.6%) I: 175 (46.4%) T1: 185 (49.1%) N0: 257 (68.2%) M0: 272 (72.1%)
G2: 180 (47.7%) I: I87 (23.1%) T2: 95 (25.3%) N1: 4 (1.1%) M1: 4 (1.1%)

Gender G3: 124 (32.9%) III: 86 (22.8%) T3: 81 (21.5%) Unknow: 116 (30.8%) Unknow:101 (26.8%)
Female: 122 (32.4%) G4: 13 (3.4%) IV: 5 (1.3%) T4: 13 (3.4%)
Male: 255 (67.6%) Unknow: 5 (1.3%) Unknow: 24 (6.4%) Unknow: 3 (0.8%)

FIGURE 1 | The workflow of this study.
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FIGURE 2 | scRNA-seq Data processing and analysis (A). Upon quality control and lognormalize normalization, 6,461 cells from nine liver cirrhosis samples
remained (B). Correlation analysis: negative correlation between sequencing depth and mitochondrial gene sequences, and positive correlation between sequencing
depth and the number of detected genes (C). A total of 23,060 genes were included, 1,500 variable genes had high variation (D). PCA based on scRNA-seq data (E).
6,461 liver cirrhosis cells were classified into 17 clusters (F). Expression analysis identified 4,171 marker genes and the top 10% visualized on a heatmap (G). 17
clusters were annotated (H,I). Pseudotime and cell trajectory analysis.
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Identification of Three Cell Subsets of Liver
Cirrhosis Using scRNA-Seq Data
Upon quality control and normalization of dataset GSE136103,
data on 6,461 cells from 9 liver cirrhosis samples remained
(Figure 2A). Correlation analysis revealed negative correlation
between sequencing depth and mitochondrial gene sequences, as
well as positive correlation between sequencing depth and the
number of detected genes (Figure 2B). A total of 21,560 genes
were included. Of these, 1,500 variable genes had high variation
(Figure 2C). PCAwas used for initial dimensionality reduction of
the 1,500 variant genes. The distribution of liver cirrhosis cells
among different samples were showed in Figure 2D. The first 15
principal components (PCs, p = < 0.05) were selected for further
analysis. Using the tSNE algorithm, 6,461 liver cirrhosis cells were
classified into 17 clusters (Figure 2E). Expression analysis
identified 4,171 marker genes and the top 10% visualized on a
heatmap (Figure 2F). Based on marker genes, 17 clusters were
annotated (clusters 0, 1, 6, 13, and 16 were endothelial cells;
clusters 2, 3, 5, 11 were monocytes; clusters 9 and 15 were B cells;

cluster 8 was pre-B cells (CD34-); cluster 10 was hepatocytes;
cluster 7 was macrophages; cluster 4 was T cells; clusters 12 and
14 were smooth muscle cells) (Figure 2G). Pseudotime and
trajectory analysis were used to group all cells into 3 subsets
(subset I mainly contained endothelial cells, hepatocytes, and
smooth muscle cells, subset II mainly contained monocyte,
macrophages, and pre-B cells (CD34-), and subset III mainly
contained B cells, T cells, and monocyte (Figures 2H,I). (DRGs
are shown in Supplementary Table S6)

Identification of Three Molecular Subtypes
of HCC Patients From GEO Datasets Based
on DRGs
DRGs-based consensus clustering was done on GEO datasets,
and HCC samples grouped into three molecular subtypes
(clustering threshold of maxK = 9, Figures 3A–C). Kaplan-
Meier analysis of the survival rates associated with the three
subtypes revealed that subtype II (C2) had the best overall

FIGURE 3 | Identification of DRGs-based molecular subtypes of HCC patients from GEO datasets (A–C) three HCC molecular subtypes were identified at a
clustering threshold of maxK = 9 (D). Kaplan-Meier analysis of the survival rates associated with the three subtypes.
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survival (OS), followed by subtype I (C1), and then subtype III
(C3) (Figure 3D, p = 0.003).

Analysis of Tumor Microenvironment
Scores, DGCs and ICGs Expression Across
HCC Clusters
According to tumor microenvironment scores analysis, subtype II
had the highest immune scores (Figure 4A), and stromal scores
increased in turn in subtypes III/I/II (C 3/1/2) (Figure 4B), while
tumor purity decreased in subtypes III/I/II (C 3/1/2) (Figure 4C).
Differential expression analysis found 20 DGCs and 35 ICGs to be
differentially expressed in the three subtypes (Figures 5A, 6A).

Kaplan-Meier analysis of DGCs revealed that the upregulation of
CCND1, CYP2E1, and G6PC correlate with poor OS, while
upregulation of TERT corresponds with better OS (Figure 5B).
Kaplan-Meier analysis of ICGs found that the upregulation of
CD80, LDHA, PVR, and TNFSF4 correlated with poor prognosis,
while upregulation of CD40, CD40LG, LGALS9, and PTPRC
correlated with better prognosis (Figure 6B).

Generation and Validation of a Prognostic
Risk Scoring Signature
The 348 DRGs identified by intersection of DRGs from the
TCGA and GEO datasets were subjected to WGCNA and three

FIGURE 4 | Tumor microenvironment scores across three HCC subtypes (A). Subtype II had the highest immune scores (B). Stromal scores increased in turn in
subtypes III/I/II (C 3/1/2) (C). Tumor purity decreased in subtypes III/I/II (C 3/1/2).

FIGURE 5 | DGCs expression across three HCC clusters and prognostic analysis (A). Differential expression analysis of 20 DGCs (B). Kaplan-Meier analysis of
CCND1, CYP2E1, G6PC and TERT.
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FIGURE 6 | ICGs expression across three HCC clusters and prognostic analysis (A). Differential expression analysis of 35 ICGs (B). Kaplan-Meier analysis of CD80,
LDHA, PVR, TNFSF4, CD40, CD40LG, LGALS9, and PTPRC.

FIGURE 7 |WGCNA analysis, differential expression analysis and univariate analysis of DRGs (A–C). Based onWGCNA, three modules were obtained using a soft
power of 3 (D). The blue module closely correlated HCC grade (E). 72 differentially expressed DRGs were identified (F). Univariate analysis identified 20 prognosis-
related DRGs.
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modules obtained using a soft power of 3 (Langfelder and
Horvath, 2008) (Figures 7A–C). Of these, the blue module
closely correlated HCC grade (Figure 7D). A total of 72
differentially expressed DRGs were identified (Figure 7E).
Univariate analysis identified 20 prognosis-related DRGs
(Figure 7F), which were subjected to multivariate Cox
regression analysis. Next, a RS signature of two DRGs
(CD34 and RAMP3) was created. Next, the RS of each
sample in the TCGA and GEO datasets was computed
based on relative coefficient and DRG expression. RS was
calculated as follows: RS = (0.298584796 * expression of
CD34) + (−0.521418188* expression of RAMP3). Survival
analysis revealed that the high-risk group had significantly
lower survival relative to the low-risk group (Figures 8A,B,
TCGA and GEO: p = < 0.001 and 0.046, respectively). Areas
under ROC curve of the TCGA cohort to predict 1-year, 3-
years, and 5-years OS were 0.739, 0.719, and 0.640, respectively
(Figure 8C). Areas under ROC curve of the GEO cohort to
predict 1-, 3-, and 5-years OS were 0.601, 0.558, and 0.576,
respectively (Figure 8D). Additionally, expression levels of
CD34 and RAMP3 were predominantly high in endothelial
cells (Figure 8E), similar results were also found in Human
Protein Atlas (HPA) database (https://www.proteinatlas.org)
(Figure 8F).

Establishment and Quality Evaluation of a
Nomogram for Predicting Patient 1-Year,
3-Years, and 5-Years OS
Univariate and multivariate analysis of the TCGA dataset found
that stage and RS influenced HCC prognosis (Figures 9A,B, all
p = < 0.001). The two prognostic factors were used to construct a
nomogram for predicting 1-year, 3-years, and 5-years OS
(Figure 9C). Calibration curves for predicting 1-year, 3-years,
and 5-years OS were used to assess the nomogram’s goodness-of-
fit (Figures 9D–F).

DISCUSSION

HCC is characterized by high molecular heterogeneity
(Kenmochi et al., 1987; Hoshida et al., 2009; Villanueva et al.,
2011; Nault and Villanueva, 2015; Torrecilla et al., 2017). ScRNA-
seq analyses have helped elucidate the genetic underpinnings of
HCC heterogeneity (Lin et al., 2017; Zhai et al., 2017; Duan et al.,
2018). Here, analysis of scRNA-seq data identified three liver
cirrhosis clusters with diverse differentiation states (characterized
by distinct DRGs). HCC samples were then divided into three
DRGs-based subtypes, each with distinct levels of survival, tumor
microenvironment scores, and expression levels of DGCs and

FIGURE 8 |Generation and validation of a prognostic risk scoring signature (A). Survival analysis between high-risk group and low-risk group in TCGA cohort (B).
Survival analysis between high-risk group and low-risk group in GEO cohort (C). Areas under ROC curve of the TCGA cohort to predict 1-, 3-, and 5-years OS (D). Areas
under ROC curve of the GEO cohort to predict 1-year, 3-years, and 5-years OS (E). CD34 and RAMP3 predominantly highly expressed in endothelial cells (F). CD34 and
RAMP3 expression levels in different liver cells from HPA database.
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ICGs. Moreover, a DRG-related prognostic RS signature was
constructed and verified and a nomogram combining RS and
clinicopathological features for predicting 1-year, 3-years, and 5-
years OS was constructed. Thus cell differentiation trajectory in
liver cirrhosis can predict HCC prognosis. These results evaluated
HCC heterogeneity, validated the close relationship between liver
cirrhosis and HCC at the gene level, and also highlighted the
underlying important role of liver cirrhosis in the occurrence and
development of HCC.

Molecular typing of malignant tumors can be used to
optimize diagnosis and therapy. Past studies found that HCC
can be split into the non-proliferative and proliferative
subtypes. The non-proliferative subtype is characterized by
chromosomal stability, CTNNB1 mutations, and frequent

TERT promoter mutations. These tumors exhibit good
differentiation and low aggressiveness. The proliferative
subtype is characterized by chromosomal instability and
TP53 mutations. These tumors exhibit poor histological
differentiation and high aggressiveness (Guichard et al.,
2012; Ahn et al., 2014; Schulze et al., 2015; Zucman-Rossi
et al., 2015). However, current HCC molecular typing
strategies are not reliable in clinical settings (Calderaro et al.,
2019). Here, HCC samples were divided into three DRGs-based
subtypes, which had distinct OSs and genetic profiles. Thus, this
method may effectively complement current HCC molecular
typing strategies. Similar molecular typing strategies in gastric
cancer and brain glioblastoma were also reported in recent
studies (Wang et al., 2020; Xiang et al., 2021).

FIGURE 9 | Establishment and quality evaluation of a nomogram in TCGA cohort (A). Univariate analysis of risk score and clinicopathological features (B).
Multivariate analysis of risk score and clinicopathological features (C). A nomogram for predicting 1-year, 3-years, and 5-years OS (D–F). The calibration curves for
predicting 1-year, 3-years, and 5-years OS.
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Many advances have beenmade on the molecular mechanisms
of liver cirrhosis and its progression to HCC. Possible
mechanisms include genomic changes (p53-RB pathway (Nose
et al., 1993),β-catenin Pathway (Totoki et al., 2014), chromatin
and transcription modulators (Li et al., 2011; Moore et al., 2019))
and epigenomic changes [microRNA (Jiang et al., 2014), long
noncoding RNAs (Qiu L. et al., 2017), circular RNA (Wang et al.,
2018), promoter hypermethylation (Matsuda et al., 2003)].
However, further research is needed to determine if other
mechanisms are involved.

Previous studies indicated ICGs (Kanda et al., 2019) and
DGCs (Totoki et al., 2014) may be underlying molecular
mechanisms of liver cirrhosis and its progression to HCC.
Here, we found 20 DGCs and 35 ICGs to be highly
differentially expressed across the three HCC subtypes, of
which 4 DGCs (CCND1, CYP2E1, G6PC and TERT) and
eight ICGs (CD80, LDHA, PVR, TNFSF4, CD40, CD40LG,
LGALS9 and PTPRC) also correlated with prognosis. These
genes will be the focus of further investigation. And the
etiologies of nine liver cirrhosis samples (GSE136103) in this
study consist of four nonalcoholic fatty liver disease (NAFLD),
four alcohol and one primary biliary cirrhosis (PBC), which
indicated that the underlying mechanisms of liver cirrhosis are
similar regardless of the etiology and was consistent with previous
reports (Tomasek et al., 2002; Friedman, 2004; Wynn, 2007;
Wynn, 2008).

Multivariate Cox regression analysis identified two DRGs
(CD34 and RAMP3) that were used for constructing the RS
signature. CD34 is a transmembrane glycosylated protein first
described in hematopoietic stem cells (Civin et al., 1984; Tindle
et al., 1985). It is expressed by endothelial cells and is a marker of
capillarization of liver sinusoidal endothelial cells (Couvelard
et al., 1993; Muro et al., 1993; Sidney et al., 2014; Su et al.,
2021). Capillarization can activate hepatic stellate cells (HSCs),
resulting in liver fibrosis and progression of cirrhosis (DeLeve,
2015). RAMP3 levels are thought to increase before the
development of liver cirrhosis and it may have protective roles
in liver cancer (Hwang et al., 2006; Jacob et al., 2012). Fang et al.
also reported high RAMP3 expression is an independent
favorable factor for patient prognosis with HCC(Fang et al.,

2018). Here, we find that CD34 and RAMP3 are also highly
expressed in endothelial cells, which was consistent with scRNA
sequencing datasets on HPA database. CD34 and RAMP3 were
considered important molecular markers.

CONCLUSION

Here, using cell differentiation trajectory of scRNA-seq data from
liver cirrhosis, we stratified HCC into three distinct molecular
subtypes that differ with regards to expression profiles, clinical
features, and outcomes. These findings highlighted the close
relationship between liver cirrhosis and HCC and provided an
effective complementary strategy for HCC molecular typing. Our
data show that single-cell transcriptomics offer an effective
avenue for elucidating the mechanisms underlying liver
cirrhosis and its progression to HCC. We find that CD34 and
RAMP3 were considered important molecular markers.
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