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Background: Lung adenocarcinoma (LUAD) remains the most common type of lung
cancer and is the main cause of cancer-related death worldwide. Reprogramming of
glucose metabolism plays a crucial role in tumorigenesis and progression. However, the
regulation of glucose metabolism is still being explored in LUAD. Determining the
underlying clinical value of glucose metabolism will contribute in increasing clinical
interventions. Our study aimed to conduct a comprehensive analysis of the landscape
of glucose metabolism-related genes in LUAD and develop a prognostic risk signature.

Methods: We extracted the RNA-seq data and relevant clinical variants from The Cancer
Genome Atlas (TCGA) database and identified glucose metabolism-related genes
associated with the outcome by correlation analysis. To generate a prognostic
signature, least absolute shrinkage and selection operator (LASSO) Cox regression
analysis was performed.

Results: Finally, ten genes with expression status were identified to generate the risk
signature, including FBP2, ADH6, DHDH, PRKCB, INPP5J, ABAT, HK2, GNPNAT1,
PLCB3, and ACAT2. Survival analysis indicated that the patients in the high-risk group had
a worse survival than those in the low-risk group, which is consistent with the results in
validated cohorts. And receiver operating characteristic (ROC) curve analysis further
validated the prognostic value and predictive performance of the signature. In addition,
the two risk groups had significantly different clinicopathological characteristics and
immune cell infiltration status. Notably, the low-risk group is more likely to respond to
immunotherapy.

Conclusion: Overall, this study systematically explored the prognostic value of glucose
metabolism and generated a prognostic risk signature with favorable efficacy and
accuracy, which help select candidate patients and explore potential therapeutic
approaches targeting the reprogrammed glucose metabolism in LUAD.
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INTRODUCTION

As the most common type of lung cancer, lung adenocarcinoma
(LUAD) is often diagnosed at an advanced stage with distant
metastatic disease (Denisenko et al., 2018). Owing to the
substantial advances in the understanding of disease biology,
application of predictive biomarkers, refinements in treatment,
and therapeutic strategies for LUAD patients ranged from
nonselective cytotoxic chemotherapy to personalized
precision medicine. Precision medicine is based on validated
biomarkers to better classify patients according to probable
disease risk, prognosis, and/or treatment response and assists
in improving the outcome by combining biomarker
measurements and clinical data to a great extent. Therefore,
it is important to identify new specific biomarkers to detect
more aggressive disease subgroups with poor prognosis (Yuxia
et al., 2012). Although a single biomarker has been identified
and progressed into the clinic, molecular biomarker panels are
still in the discovery stage (Vallée et al., 2014). Biomarker panels
consisting of various molecules are promising while genes,
proteins, and metabolites work together to promote the
development of cancer hallmarks, which could offer a more
accurate prediction than a single biomarker (Luo et al., 2018;
Song et al., 2021).

Glucose metabolism is reprogrammed in cancer cells to
provide energy, biosynthetic precursors, and intermediates
for cancer cells (Allen and Locasale, 2018). In addition,
reprogrammed glucose metabolism is closely related to the
clinical outcome and drug resistance (Boroughs and
DeBerardinis, 2015; Faubert et al., 2017). Here, we
extracted the RNA-seq profile and relevant clinical
information from The Cancer Genome Atlas (TCGA) to
systematically and comprehensively analyze the clinical
value of glucose metabolism in LUAD. This study aims to
provide a distinct signature to better classify patients with
different risk scores, as well as potential biomarkers for the use
of glucose metabolism and metabolic pathways as therapeutic
targets for LUAD.

MATERIALS AND METHODS

Data Collection
The RNA-seq profiles and relevant clinical information were
acquired from the University of California, Santa Cruz (UCSC)
Xena Browser (https://xenabrowser.net/) on 23 October 2021.
The samples with missing clinical information and overall
survival (OS) less than 30 days were excluded, and a total of
492 samples were included in the analysis. The other LUAD
cohorts, GSE30219, GSE31210, and GSE50081, were downloaded
from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/).

Estimation of the Glucose Pathways
Fifteen glucose metabolism-related pathways comprising 356
genes were acquired from Molecular Signature Database v7.1
(MSigDB) (http://www.broad.mit.edu/gsea/msigdb/). Single

sample gene set enrichment analysis (ssGSEA) from the R
package “GSVA” was conducted to determine the activity of
each glucose metabolic pathway in LUAD (Yi et al., 2020).

Generation of a Prognostic Risk Signature
The least absolute shrinkage and selection operator (LASSO)
removes coefficients that become zero from the signature by
adding a penalty equal to the absolute value of some coefficient
magnitudes. Thus, a signature with few coefficients could be
created. We randomly split the TCGA LUAD cohort (n = 492)
into a training (n = 368) and testing dataset (n = 124) in a ratio of
7–3. A survival analysis for the 356 genes was conducted to select
the candidate genes to construct the prognosis signature with p <
0.05 based on the log-rank test. Then, LASSO Cox regression
analysis was performed with the candidate gene expression
profiles from the training dataset to reduce coefficients using
the R package “glmnet” (Friedman et al., 2010). Multivariate Cox
analysis was followed to identify the most robust markers for the
construction of the risk score signature, which included ten genes.
The risk score of each sample was calculated as the following
formula:

Risk Score � 0.293387631789007*GNPNAT1 + 0.270363599212865*PLCB3
+ 0.217376672334296*ACAT2 + 0.16127906670295*HK2
+ 0.116014046444865*ADH6 + (−0.234392324167846)
*INPP5J + (−0.202179906028553)*PRKCB
+ (−0.125128962964713)*ABAT + (−0.114088018724961)
*DHDH + (−0.0573408831024442)*FBP2

Prediction of the Immune Response
The response of each sample to anti-PD-1/PD-L1 and anti-
CTLA4 immunotherapy was evaluated using the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm
according to the gene expression profiles of the LUAD cohort.

Evaluation of Immune Cell Infiltration
Gene Set Variation Analysis (GSVA), as shown by the R package
“GSVA,” carried out a non-parametric unsupervised way to
evaluate the underlying pathway activity based on gene
expression profiles (Hänzelmann et al., 2013). The marker
gene set, consisting of 782 genes that represent 28 immune
cell types, was used to assess immune cell infiltration in the
tumor microenvironment. The ssGSEA algorithm was performed
to estimate the infiltration level of each immune cell type based on
the expression profiles (Yoshihara et al., 2013).

Construction and Evaluation of Nomogram
We constructed a nomogram based on the clinical stage, T stage,
and the signature score using the R package “rms.” To assess the
application of the nomogram, the R package “ROCsurvival” was
performed to construct ROC curves to predict the 1-, 3-, and 5-
year OS by the nomogram. The R package “rms” was used to
construct calibration curves to assess the accuracy for the
prediction of 1-, 3-, and 5-year OS prediction (Li et al., 2021).

Survival Analysis
The risk score for each sample was used to assess the
association between the prognosis of LUAD patients and
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the risk signature. A Kaplan–Meier curve and log-rank test
were performed to compare the differences in OS outcomes
between the two risk groups. p ＜ 0.05 was set as the
significance value. The log-rank test was performed using
the R package “survival”, while “surviminer” was performed
to plot Kaplan–Meier curves (Zeng et al., 2019).

Statistical Analysis
Student’s t-tests were performed to determine statistical
significance among variables. p < 0.05 was defined as statistical
significance. All statistical analysis was performed in the R
version 4.0.2.

RESULTS

Construction of Glucose
Metabolism-Related Genes’ Prognostic
Signature
Through univariate Cox regression analysis, 77 genes
significantly associated with prognosis were identified from
the 356 glucose metabolism-related genes (p < 0.05)
(Figure 1A). To eliminate collinearity of the variables and
avoid over-fitting of the prognostic model, these 77 genes
underwent the LASSO regression analysis in the training
dataset. Subsequently, 20 candidate genes were identified for
further multivariate Cox regression analysis (Figure 1B).
Finally, the risk signature was constructed according to the
expression levels of ten genes (FBP2, ADH6, DHDH, PRKCB,

INPP5J, ABAT, HK2, GNPNAT1, PLCB3, and ACAT2)
(Figure 1C).

The risk score of each sample was calculated with the
above formula defined by expression levels of the signature
genes and regression coefficients. And, the samples were
assigned to high-risk groups and low-risk groups by
median risk score both in the training and testing datasets.
The scatter plot showed that the high-risk group was
associated with a higher mortality rate than the low-risk
group (Figures 2A,B).

Kaplan–Meier curves indicated that the high-risk group has
significantly poor outcomes compared with the low-risk group
(Figures 2C,D). To evaluate the predictive performance of the
signature, we performed a time-dependent receiver operating
characteristic (ROC) curve based on the risk score. The area
under the curves (AUCs) of the 1-, 3-, and 5-year OS were 0.751,
0.731, and 0.648 in the training dataset, and 0.739, 0.628, and
0.614 in the testing dataset, respectively (Figures 2E,F). The
results showed the signature displayed great specificity and
sensitivity in predicting the prognosis of LUAD patients in
TCGA cohort.

Validation of Glucose Metabolism-Related
Genes’ Prognostic Signature Using the GEO
Dataset
To validate the predictive reliability of the signature, we
calculated the risk scores of samples in the GEO LUAD
cohort using the same formula and similarly classified the
samples into high-risk and low-risk groups, and the high-risk

FIGURE 1 | Identification of the prognosis-related genes involved in glucose metabolism. Univariate Cox regression analysis identified 77 genes related to the
prognosis of LUAD patients (A). The bar plot showed the coefficients of 20 included glucosemetabolism-related genes (B). Multivariate Cox regression analysis identified
ten genes to construct the signature (C).
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group had a higher mortality rate than the low-risk group
(Figures 3A–C). As expected, in the GEO database, the high-
risk group tended to have a significantly shorter survival time

than the low-risk group (Figures 3D–F). Above all, these
results showed that the signature had robust and stable
predictive power for the LUAD cohort.

FIGURE 2 | Construction and validation of the risk signature in the TCGA cohort. Distribution of the risk score and survival status in the training dataset (A) and
testing dataset (B). Kaplan–Meier curves of overall survival for patients with LUAD based on the risk score in the training dataset (C) and testing dataset (D). Receiver
operating characteristic (ROC) curves of the signature for predicting the 1-, 3-, and 5-year survival in the training dataset (E) and testing dataset (F).
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Evaluation of the Signature in Different
Subgroups of LUAD Patients
Stratified analysis was carried out according to the clinical
variables including age (Figures 4A,B), gender (Figures 4C, D),
tumor stage (Figures 4E,F), and TNM stage (Figures 4G–L).
Kaplan–Meier curve analyses showed that the high-risk group
had a worse survival outcome than the low-risk group when
stratified by the different clinical features, except for M1,
probably because of the small sample size of M1
patients (n = 12).

Construction and Validation of the
Nomogram
To explore the potential value of the signature in clinical
practice, we constructed a nomogram based on the risk
score and clinical variables to predict the 1-, 3-, and 5-year
survival rates through univariate and multivariate Cox
regression analysis. Univariate Cox regression analysis
demonstrated that risk score, tumor stage, and TNM stage
were significantly associated with the survival of LUAD
patients (Figure 5A). Multivariate Cox regression analysis
showed that the risk score was an independent prognostic
factor for LUAD patients after adjusting for these clinical
parameters, although tumor and T stage were also
independent (Figure 5B). Then we constructed the
nomogram with the risk score, tumor, and T stage for their
independent prognostic ability and clinical accessibility

(Figure 5C). Calibration plots revealed that the nomogram
showed perfect concordance between the observed and
predicted survival rates at 1-, 3-, and 5-years (Figures
5D–F). The time-dependent ROC curves demonstrated that
the nomogram had excellent predictive accuracy in predicting
the 1-, 3-, and 5-year survival of LUAD patients. The AUCs for
1-, 3-, and 5-year survival was 0.762, 0.752, and 0.669, which
indicated that the nomogram has robust and stable ability to
predict the survival of LUAD patients (Figure 5G).

Correlation Between Immune Cell
Infiltration and Risk Score
To explore the potential correlation of the signature with the
immune microenvironment, we performed the CIBERSORT
algorithm to evaluate the infiltrating level of immune cells in
the tumor microenvironment and made comprehensive
comparisons with the risk score. The results showed that the
proportions of 28 immune cell types were significantly different
between the two risk groups, and the low-risk group tended to
have significantly higher infiltrating levels of the most immune
cell types than the high-risk group, which may represent an
intrinsic feature that can characterize individual differences
(Figure 6A).

Furthermore, we also evaluated the difference in the response
rate of immunotherapy between the two risk groups. Samples in
the low-risk group had a higher response rate to immunotherapy
than those in the high-risk group (Figure 6B). The
aforementioned results indicated that signature could predict

FIGURE 3 | Validation of the risk signature in the GEO cohort. Distribution of the risk score and survival status in the GSE13213 (A), GSE30219 (B), and GSE31210
cohort (C). Kaplan–Meier curves of overall survival for patients with LUAD based on the risk score in the GSE13213 (D), GSE30219 (E), and GSE31210 cohort (F).
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the immune cell infiltration level and the response to
immunotherapy in LUAD.

Gene Set Enrichment Analysis
Given that risk scores were inversely associated with prognosis
in patients with LUAD, further functional annotation was
performed between the two risk groups using GSEA. The
result showed that enriched gene sets of the HALLMARK
collection in the high-risk group were mainly involved in
tumor-related pathways, including E2F, G2/M checkpoint,
glycolysis, mTORC1, MYC, oxidative phosphorylation, and
unfolded protein response, which are closely related to the
malignant proliferation of tumor cells (Figure 7).

DISCUSSION

LUAD is the most common histological subtype of NSCLC,
often with the presence of specific genetic mutations for
further molecular stratification (Xiong et al., 2020). Since

the patients at an early stage could have a favorable
prognosis, most patients have developed distant metastasis
at the first time of diagnosis, with poor survival (Denisenko
et al., 2018). Risk stratification is important to assess the
prognosis of patients, which may promote the development
of new strategies for LUAD management. Furthermore,
prognostic prediction plays an important role in treatment
selection and the identification of potential prognostic
biomarkers (Wang et al., 2020; Yi et al., 2021).

Tumorigenesis and progression are primely required for
metabolic reprogramming in cancer cells (Taubes 2012).
Cancer cells could alter their fluxes via various metabolic
pathways to meet increased biosynthetic and bioenergetic
demands and alleviate oxidative stress required for cancer
cell proliferation and survival (Boroughs and DeBerardinis,
2015). In recent years, there has been a growing interest in
developing cancer genetic analysis for patient stratification in
combination with therapies that target metabolism (Hay
2016). Although it is well known that metabolic
reprogramming is a hallmark of cancer, regulation of

FIGURE 4 | Evaluation of the signature in different subgroups of LUAD patients. Survival analysis in low- and high-risk groups adjusted by clinical variables,
including age (A,B), gender (C,D), tumor stage (E,F), and TNM stage (G–L).
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glucose metabolism in LUAD is still being explored, and
identifying the underlying clinical value of glucose
metabolism in LUAD phenotype may contribute to
increased clinical interventions. In addition, there is an
urgent need to identify new strategies for patient
stratification with easier access to gene abnormality
detection in cancers, which will promote the efficiency and
velocity of translation from basic research to clinical practice
(Wettersten et al., 2017; Qin et al., 2020). However, studies
regarding transcriptome-wide analysis on the correlation
between glucose metabolism and LUAD are limited. We
evaluated the correlation between glucose metabolism-

related pathways and clinical characteristics as well as the
immune phenotype in LUAD. The ssGSEA was conducted to
calculate the enrichment score of each gene set regulating
glucose metabolism-related pathways, and the results showed
that the citrate cycle (TCA cycle) pathway had the highest
score, whereas the enrichment score of the ascorbate and
aldarate metabolism pathways are the lowest
(Supplementary Figure S1). To better understand the
clinical significance of the glucose metabolism-related
pathways in LUAD, we compared the discrepancies in the
pathways between different subgroups of LUAD. The result
showed that the samples with the N2-N3 stage had a

FIGURE 5 | Construction and evaluation of the nomogram. Univariate and multivariate COX regression analysis showed that the risk score was an independent
prognostic predictor in the TCGA cohort (A,B). A nomogram was constructed based on the risk score, T stage, and tumor stage (C). Calibration plots of the nomogram
for predicting the probability of OS at 1-, 3-, and 5-years in the TCGA cohort (D–F). Time-dependent receiver operating characteristic (ROC) curves for the nomogram to
predict 1-, 3-, and 5-year OS in the TCGA dataset (G).

FIGURE 6 |Correlation between tumor-infiltrating immune cell and risk score. The infiltrating level of each of the 28 tumor-infiltrating immune cells between the high-
and low-risk groups (A). The rate of response to immunotherapy between the two risk groups (B).
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significantly higher enrichment score in glyoxylate and dicarboxylate
metabolism than that of the ones with the N0-N1 stage (p ＜ 0.05),
whereas there is no significant difference in the pathways in the
subgroups stratified by T and M stage (Supplementary Figures
S2–S4). In addition, the citrate cycle (TCA cycle), glyoxylate and
dicarboxylate, and pentose phosphate metabolism pathways have a
significantly elevated enrichment score in tumor stage III-IV LUAD
samples compared with tumor stage I-II LUAD samples (p ＜ 0.05)
(Supplementary Figure S5). The results demonstrated that the
specific glucose metabolism pathway was significantly associated
with the specific subgroup of LUAD patients.

Here, we first introduce a glucose metabolism-related
prognosis signature for the malignancy of LUAD and the
survival of LUAD patients. From 356 glucose metabolism-
related genes involved in 15 pathways, we finally included ten
genes, of which their expressions were significantly associated
with prognosis, to construct a risk signature. The prognostic risk
signature showed great predictive ability both in the training and
testing datasets and was an independent indicator for the
prognosis of LUAD patients.

Furthermore, we also evaluated the distribution trends of glucose
metabolism-related pathways between the two risk groups in the

FIGURE 7 | GSEA was performed using the HALLMARK collection.
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TCGA database (Supplementary Figure S6). It can be seen that
among the 15 pathways, the ascorbate and aldarate metabolism
pathway, citrate cycle (TCA cycle) pathway, fructose and mannose
metabolism pathway, galactose metabolism pathway, glyoxylate and
dicarboxylate metabolism pathway, pentose and glucuronate
interconversions pathway, pentose phosphate pathway, and starch
and sucrose metabolism pathway increased with an increase in the
risk score, suggesting that these pathways’ imbalances had a
significantly positive correlation with tumor development. The
results may provide some insight in the glucose metabolism
scape of tumor development.

The most included genes in the risk signature have been
reported to play important roles in tumorigenesis and
progression in various cancer types, which enhance the
predictive performance of the signature.

Among the ten genes, fructose-1,6-bisphosphatase 2 (FBP2) has
been demonstrated to inhibit glycolysis and growth in gastric cancer
cells (Li et al., 2013). Alcohol dehydrogenase (ADH) had shown
potential prognostic values in pancreatic adenocarcinoma and
hepatocellular carcinoma (Liao et al., 2017; Liu et al., 2020).
DHDH had been reported to be included in a metabolism-related
prognostic signature for hepatocellular carcinoma (Yang et al., 2021).
PRKCB has also been reported to be included in the prognostic
signature for adult T-cell leukemia/lymphoma and prostate cancer
(Kataoka et al., 2018; Daniunaite et al., 2021). INPP5J regulates
AKT1-dependent breast cancer growth and metastasis and predicts
recurrence in lung adenocarcinoma (Ooms et al., 2015; Zhang et al.,
2020). ABAT and HK2 have been reported to play crucial roles in
cancermetabolism, progression, and therapeutic resistance of cancers
(Jansen et al., 2015; Garcia et al., 2019; Shen et al., 2020). GNPNAT1
and PLCB3 had shown the independent prognostic potential in
NSCLC (Zhang et al., 2019; Zheng et al., 2020). ACAT2 could
promote cell proliferation and associated with malignant
progression in colorectal cancer (Weng et al., 2020). The evidence
mentioned earlier demonstrated that these included signature genes
might play vital roles in cancer, and their roles in LUAD should be
further explored.

Previous studies have demonstrated that immune cell infiltration
and immune checkpoints are correlated with the response rate of
immunotherapy in LUAD (Bodor et al., 2020). We assessed the
correlations between the risk signature and immune cell infiltration.
The proportions of 28 immune cell types in the tumor
microenvironment were significantly different between the two risk
groups, and the low-risk group tended to have significantly higher
infiltrating levels of the most immune cell types than the high-risk
group. Notably, the glucose metabolism-related signature was
significantly correlated to CD4+ and CD8+ T cells, and the
samples in the high-risk group tended to have a lower number of
CD8+ T cells and a higher number of CD4+ T cells. The result
indicated that patients of higher risk tend to have an unfavorable
tumor-infiltrating lymphocyte pattern. Moreover, the signature was
also significantly associated with innate immune cell types, including
macrophages, monocytes, and NK cells, which is consistent with the
results of previous research that showed tryptophan metabolic
adaptation in lung cancer was related to evasion of innate immune
by cancer cells (Cassetta and Pollard, 2018; Dejima et al., 2021). Since
immune checkpoint inhibitors have shown promising anti-tumor

effects by reversing the immunosuppressive effects of tumors, the
expression of immune checkpoints has attracted widespread attention
as a biomarker for identifying patients with LUAD to receive
immunotherapy. Immune checkpoints could be used to predict the
efficacy of immune checkpoint blockade and have been proven to be a
biomarker for identifying patients who can benefit from
immunotherapy in several cancer types. In this study, we analyzed
the association between the signature genes and immune checkpoints.
The expression of the ten signature genes was significantly associated
with the expression of the four checkpointmarkers, PD-1, PD-L1, PD-
L2, and CTLA-4 (Supplementary Figure S7). The findings showed
that the risk signature based on glucose metabolism-related genes was
involved in the altered immune microenvironment of LUAD.

Overall, we constructed a risk signature based on the glucose
metabolism-related genes for the prognosis, malignancy, and
immune phenotype of LUAD, which might provide a better
understanding of the glucose metabolic role in immune
phenotype and carcinogenesis. This study also suggested that
glucose metabolism could be a potential target and that the
glycolytic inhibitor combined with immunotherapy maybe a
novel strategy for LUAD treatment.
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Supplementary Figure 2 | Correlation between the enrichment score of each
pathway and the LUAD patients with N stage.

Supplementary Figure 3 | Correlation between the enrichment score of each
pathway and the LUAD patients with T stage.

Supplementary Figure 4 | Correlation between the enrichment score of each
pathway and the LUAD patients with M stage.

Supplementary Figure 5 | Correlation between the enrichment score of each
pathway and the LUAD patients with tumor stage.

Supplementary Figure 6 | Correlation between the enrichment score of each
pathway and the risk score.

Supplementary Figure 7 | Correlation between the expression of checkpoints and
each gene of the signature.
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