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Long non-coding RNAs (lncRNAs) play significant roles in the disease process.
Understanding the pathological mechanisms of lncRNAs during the course of various
diseases will help clinicians prevent and treat diseases. With the emergence of high-
throughput techniques, many biological experiments have been developed to study
lncRNA-disease associations. Because experimental methods are costly, slow, and
laborious, a growing number of computational models have emerged. Here, we
present a new approach using network consistency projection and bi-random walk
(NCP-BiRW) to infer hidden lncRNA-disease associations. First, integrated similarity
networks for lncRNAs and diseases were constructed by merging similarity
information. Subsequently, network consistency projection was applied to calculate
space projection scores for lncRNAs and diseases, which were then introduced into a
bi-random walk method for association prediction. To test model performance, we
employed 5- and 10-fold cross-validation, with the area under the receiver operating
characteristic curve as the evaluation indicator. The computational results showed that our
method outperformed the other five advanced algorithms. In addition, the novel method
was applied to another dataset in the Mammalian ncRNA-Disease Repository (MNDR)
database and showed excellent performance. Finally, case studies were carried out on
atherosclerosis and leukemia to confirm the effectiveness of our method in practice. In
conclusion, we could infer lncRNA-disease associations using the NCP-BiRW model,
which may benefit biomedical studies in the future.
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INTRODUCTION

Long non-coding RNAs (lncRNAs) were primitively considered
noise in transcriptional regulation and thought to have no
biological functions (Guttman et al., 2013; Li et al., 2019). In
recent decades, however, lncRNAs have attracted growing
attention from researchers worldwide owing to the discovery
of their critical biological functions. Increasing numbers of
lncRNAs have been identified in eukaryotes (Guttman et al.,
2009) and abnormal lncRNA expression has been shown to cause
many human diseases, including nervous system diseases
(Qureshi and Mehler, 2013; Chen et al., 2021), cardiovascular
diseases (Bhatti et al., 2021; Xie et al., 2021), various cancers
(Amelio et al., 2021; Taniue and Akimitsu, 2021), autoimmune
diseases (Lodde et al., 2020; Zeni and Mraz, 2021), and blood
diseases (Wei et al., 2013; Kirtonia et al., 2021). Therefore,
searching for possible lncRNA-disease associations may
facilitate the elucidation of the molecular pathogenesis of
human diseases and could be relevant in disease diagnosis,
prognosis, prevention, and treatment in the clinical setting. At
present, researchers mainly study potential lncRNA-disease
associations through biological experiment verification and
computational model prediction. However, biological
experiments are often costly, time-consuming, and
inconclusive (Chen et al., 2017). Thus, few lncRNA-disease
associations have been verified experimentally, and the use of
more advanced algorithms is essential.

LncRNA-disease association predictive models can be roughly
classified into two types, the first of which is machine learning-
based. Chen and Yan (2013) proposed the calculative model
LRLSLDA, which integrates known lncRNA-disease interactions
and lncRNA expression profiles and applies the Laplacian
regularized least square method to predict disease-related
lncRNAs. Subsequently, Chen et al. (2015) developed
LRLSLDA-LNCSIM. Under the hypothesis that lncRNAs with
similar functions tend to be related to similar diseases, two new
functional similarity computational models, LNCSIM1 and
LNCSIM2, were developed. Then, the two models were
combined with the LRLSLDA model for the prediction of
lncRNA-disease associations. Yang et al. (2014) constructed a
binary network for genes and diseases, and applied a network
propagation algorithm to find hidden lncRNA-disease
interactions. On the basis of the naïve Bayesian classifier, Zhao
et al. (2015) developed a novel method to identify cancer-related
lncRNAs by integrating genome, transcriptome, and regulome
data and identified 707 lncRNAs. Furthermore, Lu et al. (2018)
proposed SIMCLDA, which first computed disease functional
similarity and lncRNA Gaussian interaction profile kernel
similarity and then used principal component analysis to
extract the principal eigenvector of disease and lncRNA
similarity. Finally, the inductive matrix completion technique
was used for association prediction. In recent years, there have
been many deep learning techniques developed in the field of
bioinformatics. Zeng et al. (2020) developed the SDLDAmodel to
predict lncRNA-disease interactions. SDLDA extracted the
features of lncRNAs and diseases, including the linear features
acquired by the singular value decomposition technique and the

non-linear features obtained by the deep learning method. Zeng
et al. (2021) proposed a deep matrix factorization model called
DMFLDA. Based on the lncRNA-disease associations matrix, the
non-linear hidden layers of DMFLDAwere employed to learn the
latent representation of lncRNAs and diseases, which could
capture more complex and nonlinear lncRNA-disease
associations. However, negative samples are required for these
machine learning methods and are difficult to obtain.

The second type of predictive model is network-based. Sun
et al. (2014) constructed the RWRlncD model, in which random
walk with restart was used to compute lncRNA functional
similarity, and the lncRNA functional similarity network was
then combined with the lncRNA-disease and disease similarity
networks to form a global network. Finally, the candidate
lncRNAs of specific diseases of interest were sorted. Chen
(2015) developed KATZLDA, which integrated lncRNA
functional similarity, lncRNA expression profiles, disease
semantic similarity, Gaussian interaction profile kernel
similarity, and the known lncRNA-disease pairs, and then
used the KATZ method to predict the potential lncRNA-
disease interactions. Wen et al. (2018) developed Lap-
BiRWRHLDA. First, Laplacian normalization was applied to
compute lncRNA similarity matrix and disease similarity
matrix. Then a heterogeneous network was constructed based
on lncRNA similarity network, disease similarity network, and
known lncRNA-disease associations. Finally, bi-random walk
algorithm was applied on this heterogeneous network to predict
lncRNA-disease associations. Hu et al. (2019) proposed the
BiWalkLDA model, which applied bi-random walk method
to predict hidden lncRNA-disease associations. It integrated
gene ontology and interaction profiles to calculate disease
similarity, and used interaction profiles data to calculate
lncRNA similarity in which the cold-start problem was
solved by using the local topological structure of a new
lncRNA. Xie et al. (2019) proposed NCPHLDA, which
calculated the comprehensive similarity for lncRNAs and
diseases and then applied a network consistency projection
method to infer the interactions between lncRNAs and
diseases. The most significant advantage of the network
consistency projection algorithm is that it has no parameters.
The network consistency projection algorithm and the bi-
random walk algorithm have the common characteristic that
they both have the calculation process on the similarity
networks of lncRNAs and diseases. Wang and Yan (2019)
constructed the IDLDA model, which used an improved
diffusion method to infer lncRNA-disease interactions based
on a combined dataset. Recently, some hybrid computational
models have emerged and showed good performance. Xie et al.
(2021) designed the RWSF-BLP model to forecast lncRNA-
disease interactions. The model first applied a random walk
algorithm to fuse various similarity networks and then adopted
bidirectional label propagation to make predictions. Yin et al.
(2020) created the NCPLP model based on network consistency
projection and label propagation to predict microbe-disease
interactions. These biological network-based methods provide
a fresh perspective and framework with which we can construct
new computational models.
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Here, we intend to construct a hybrid method consisting of
two different methods. According to previous studies, we
considered the following three factors in modeling: First, the
two methods could be combined properly and reasonably.
Second, it is better to have no more parameters, which is
directly related to computational efficiency. Third, the
combination of two methods should contribute more
biological information to the final result. Accordingly, in this
paper, we come up with a hybrid method consisting of network
consistency projection and bi-randomwalk (NCP-BiRW) to infer
lncRNA-disease interactions. We investigated comprehensive
similarity networks for lncRNAs and diseases based on known
lncRNA-disease relationships, disease semantic similarity,
lncRNA functional similarity, and Gaussian interaction profile
(GIP) kernel similarity for lncRNAs and diseases to apply more
similarity information. Second, we constructed a heterogeneous
network consisting of lncRNA similarity network, disease
similarity network, and lncRNA-disease association network.
The network consistency projection method was used to
compute lncRNA network projection scores and disease
network projection scores. Third, we added the results of the
network consistency projection algorithm to the bi-random walk
algorithm, and finally got the predicted scores of potential
lncRNA-disease interactions. Five- and ten-fold cross-
validation (CV) were adopted to verify the effectiveness of
NCP-BiRW. Our Results demonstrated that our method
outperformed the other five classical algorithms and we
showed that the model was robust when applied to another
dataset. Finally, case studies on atherosclerosis and leukemia
were used to further verify the validity of our model.

MATERIALS AND METHODS

Long non-coding RNA-Disease
Associations Dataset
We downloaded known lncRNA-disease associations from the
2017-version LncRNADisease database (Chen et al., 2013)
(http://www.cuilab.cn/lncrnadisease). After conducting data
quality control and data cleaning, 701 known experimentally
validated interactions between 157 diseases and 82 lncRNAs were
acquired, as previously reported (Fan et al., 2020). nl and nd
indicate the numbers of lncRNAs and diseases, respectively. A �
{Aij}nl×nd denotes the association matrix, where Aij is defined as
follows:

Aij � { 1 ln cRNA li is associatedwith disease dj

0 otherwise
(1)

Gaussian Interaction Profile Kernel
Similarity for Long non-coding RNAs and
Diseases
Researchers have hypothesized that the more similar two
lncRNAs are, the more likely they are to have similar
interaction modes with similar diseases (van Laarhoven et al.,

2011). Thus, GIP kernel similarity was used to measure the
similarities of lncRNAs and diseases. Given lncRNA li and
lncRNA lj, the GIP kernel similarity between the two
lncRNAs can be calculated as follows:

KL(li , lj) � exp( − γl
�����IP(li) − IP(lj)�����2) (2)

γl �
γ′l

( 1
nl

∑nl
i�1 ‖IP(li)‖2)

(3)

where KL represents the GIP kernel similarity matrix of
lncRNAs, IP(li) indicates the i-th row of A, γl is the
normalized kernel bandwidth, and γ′l is a parameter that is
often set as 1 (van Laarhoven et al., 2011).

Similarly, the GIP kernel similarity of disease is calculated as
follows:

KD(di, dj) � exp( − γd
�����IP(di) − IP(dj)�����2) (4)

γd �
γ′d

( 1
nd

∑nd
i�1 ‖IP(di)‖2) (5)

whereKD represents the GIP kernel similarity matrix of diseases,
IP(di) denotes the i-th column of A, γd indicates the normalized
kernel bandwidth, and γ′d � 1.

Disease Semantic Similarity
Directed acyclic graphs (DAGs) have been widely used to
compute the semantic similarity between diseases when
predicting potential lncRNA-disease interactions (Chen et al.,
2017). Here, the disease semantic similarity was calculated as
previously reported (Fan et al., 2020). First, the Medical Subject
Headings (MeSH) descriptors of the diseases we needed were
downloaded from the National Library of Medicine (http://www.
nlm.nih.gov/) (Wang et al., 2010). We then constructed a DAG
for each disease d: DAG(d) � (d,N(d), E(d)), where N(d)
represents all the ancestor nodes of d (containing d ), and
E(d) denotes all the direct edges from parent nodes to child
nodes. For a disease s in DAG(d), its semantic contribution to
disease d is computed as follows:

Dd(s) � { 1 if s � d
max{(Δ + Ps) × Dd(s′)∣∣∣∣s′∈ children of s} if s ≠ d

(6)
where Δ denotes the semantic contribution factor and is set to 0.5
(Wang et al., 2010). Ps is defined as:

Ps �
max
k∈K

{dags(k)} − dags(s)
D

(7)

where K is the diseases set in MeSH, dags(s) is the number of
DAGs containing s, and D represents the number of all diseases
in MeSH.

By accumulating the semantic contributions of all the diseases
in DAG(d), the following formula is used to compute the final
semantic similarity of disease d:
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DV(d) � ∑ s∈N(d)Dd(s) (8)
In general, the similarity between the two diseases is higher if

the nodes sharing in their DAGs are higher. Therefore, we
compute the semantic similarity of diseases di and dj using
the following formula:

SV(di, dj) � ∑s∈N(di)∩N(dj)(Ddi(s) +Ddj(s))
DV(di) +DV(dj) (9)

Long non-coding RNA Functional
Similarity
We computed the functional similarities of lncRNAs according to
the LNCSIM model (Chen et al., 2015). Let D(li) and D(lj)
denoted the corresponding disease sets of lncRNA li and lncRNA
lj, and the similarity between disease d and the disease set of
lncRNA lj (D(lj)) is given by

S(d,D(lj)) � max
d’∈D(lj)(SV(d, d’)) (10)

In view of the hypothesis that functionally similar lncRNAs are
usually related with similar diseases, the functional similarity
between lncRNAs li and lj is computed as follows:

FL(li, lj) � ∑d∈D(li)S(d,D(lj)) + ∑d∈D(lj)S(d,D(li))
|D(li)| +

∣∣∣∣∣D(lj)∣∣∣∣∣ (11)

where |D(li)| denotes the number of elements in D(li).

Network Consistency Projection and
Bi-Random Walk
We constructed a novel model NCP-BiRW involving network
consistent projection (Xie et al., 2019) and bi-random walk (Hu
et al., 2019) to forecast hidden lncRNA-disease interactions. We
divided the model implementation process into three steps.
Figure 1 shows the flowchart of the algorithm.

FIGURE 1 | Flow chart of NCP-BiRW.
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Step 1. construction of integrated similarity networks for
lncRNAs and diseases

The integrated technique was adopted to obtain more
similarity information. On the basis of the lncRNA GIP kernel
similarity matrix (KL) and the lncRNA functional similarity
matrix (FL), the integrated similarity between lncRNAs li and
lj is as follows:

LS(li, lj) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

KL(li, lj) + FL(li, lj)
2

if FL(li, lj) ≠ 0

KL(li, lj) otherwise

(12)

Similarly, based on the disease semantic similarity matrix (SV)
and the disease GIP kernel similarity matrix (KD), the integrated
similarity between diseases di and dj is as follows:

DS(di, dj) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

KD(di, dj) + SV(di, dj)
2

if SV(di, dj) ≠ 0

KD(di, dj) otherwise

(13)

Step 2. network consistency projection for lncRNA and disease
spaces

We constructed a heterogeneous network consisting of the
above integrated similarity networks and lncRNA-disease
association network. The network consistency projection
method was utilized to obtain more network topological
information (Yin et al., 2020). Network consistency projection
can be divided into lncRNA network consistency projection and
disease network consistency projection (Li et al., 2019; Xie et al.,
2019).

The lncRNA network consistency projection fractions can be
formulated as follows:

LSNCP(i, j) � LSi · Aj∣∣∣∣Aj

∣∣∣∣ (14)

where LSi is the i-th row of the lncRNA integrated similarity
matrix (LS). Aj is the j-th column of the association matrix A, Aj

represents the relevance between disease dj and all lncRNAs, |Aj|
is the norm of Aj, and LSNCP(i, j) is the projection fraction of
LSi onAj. In particular, if the angle between LSi andAj is smaller,
the score LSNCP(i, j) is higher (Bao et al., 2017).

Similarly, the formula of the disease network consistency
projection fractions is as follows:

DSNCP(i, j) � Ai ·DSj
|Ai| (15)

where DSj is the j-th column of the disease integrated similarity
matrix (DS), Ai is the i-th row of A (representing the relevance
between lncRNA li and all diseases), and DSNCP(i, j) is the
projection fraction of DSj on Ai.

Step 3. bi-random walk in the integrated similarity networks of
lncRNAs and diseases

First, the integrated similarity networks, LS and DS were
normalized such that all the similarity values were between 0
and 1 (Hu et al., 2019). The formula of the normalized similarity
of lncRNAs is as follows:

NLS(i, j) � LS(i, j)�����������������∑iLS(i, j)∑jLS(i, j)√ (16)

Similarly, the normalization of the disease similarity is as
follows:

NDS(i, j) � DS(i, j)�����������������∑iDS(i, j)∑jDS(i, j)√ (17)

The association matrix A should also be normalized, as
follows:

S(0) � A

sum(A) (18)

Then, we carried out the random walk method for both the
lncRNA similarity network and the disease similarity network,
called bi-random walk, a global process (Zhang et al., 2018). r1
and r2 are designated as the maximum number of iterations in the
lncRNA and disease similarity networks, respectively. If r1 > r2,
the lncRNA similarity is considered more important in the
predicted process (Hu et al., 2019). On the basis of the results
of the network consistency projection, the iteration processes are
as follows:

RL � β × NLSpS(t − 1) + (1 − β) × A + LSNCP

sum(A + LSNCP) (19)

RD � β × S(t − 1)pNDS + (1 − β) × A +DSNCP

sum(A +DSNCP) (20)

S(t) � RL + RD

2
(21)

where RL and RD denote the random walk scores in the lncRNA
similarity network and the disease similarity network,
respectively. β is the decay factor that controls the proportion
of primitive information, NLS and NDS denote the lncRNA and
disease normalized integrated similarity matrices, respectively.
S(0) is the initial probability matrix of A, and the iterative
function S(t) denotes the average value of RL and RD in step
t. When t � max {r1, r2}, the algorithm ends, and we obtain the
final S(t) (denoted as S), which contains all the predictive scores
of lncRNA-disease pairs.

RESULTS

Performance Evaluation
We used k-fold CV to evaluate the model performance. In k-fold
CV, known lncRNA-disease pairs are divided into k subparts,
with k-1 parts as the training set and the remaining part as the
testing set. Here, we chose k = 5 (5-fold CV) and k = 10 (10-fold
CV). All unknown associations were regarded as candidate
samples. The predicted score of each lncRNA-disease pair was
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obtained using NCP-BiRW. The predicted scores of the test and
candidate samples were sorted together. The receiver operating
characteristic (ROC) curve was drawn according to the false
positive rate (FPR) and the true positive rate (TPR) under
different thresholds. The area under the ROC curve (AUC)
was employed as a metric to assess the overall performance of
our method. For AUC ∈ [0, 1], when the value is closer to 1, the
model performs better.

Effects of Parameters
In this research, there were three parameters: β, r1 and r2. β
denotes the decay factor in bi-random walk, and its value
ranges from 0 to 1. To test the performance of the model, we
increased β from 0.1 to 0.9 in steps of 0.1. The maximum
number of iterations in the lncRNA and disease similarity
networks (r1 and r2, respectively) was from 1 to 5, evaluated
with a step size of 1. The grid search algorithm was used to
determine the proper values of these parameters. By
experimental comparison, the best parameter values were β
= 0.8 and r1 = r2 = 1 in the 5-fold CV framework, whereas in 10-
fold CV framework, the optimal values were β = 0.7 and r1 = r2
= 1. The experimental results of the grid search are listed in
Supplementary Table S1. In the 10-fold CV framework, when
β = 0.7 and r1 = r2 = 1, the AUC value was close to the best AUC
value. Finally, we set β = 0.8 and r1 = r2 = 1 in the proposed
model. Figure 2 shows the experimental effects of different r1
and r2 values when β = 0.8 in the 5-fold CV framework. The
optimal parameters corresponding to the best AUC were r1 =
r2 = 1.

Comparison With Other Methods
In order to prove the excellent model performance, we compared
NCP-BiRW with five other popular algorithms: KATZLDA
(Chen, 2015), Lap-BiRWRHLDA (Wen et al., 2018),
BiWalkLDA (Hu et al., 2019), NCPHLDA (Xie et al., 2019),
and IDLDA (Wang and Yan, 2019). We chose the parameter
values for each model in the original reference. First, we
conducted 5-fold CV, as shown in Figure 3, and the AUC of
NCP-BiRW was 0.8982, which was better than the AUC values of
the other five methods (KATZLDA: 0.8622, Lap-BiRWRHLDA:
0.8642, BiWalkLDA: 0.8702, NCPHLDA: 0.8338, and IDLDA:
0.8424). Then, we conducted 10-fold CV, and the AUC of NCP-
BiRW was 0.9050 (Figure 3), which had the best performance
(KATZLDA: 0.8646, Lap-BiRWRHLDA: 0.8666, BiWalkLDA:
0.8706, NCPHLDA: 0.8862, and IDLDA: 0.8413). In addition,
we considered the following twomodels: 1) NCP, i.e., NCP-BiRW
without bi-random walk; and 2) BiRW, i.e., NCP-BiRW without
network consistent projection. Then, we compared the two
models with NCP-BiRW, as shown in Figure 4. The results
showed that our hybrid method was better than every single
method. In summary, NCP-BiRW achieved the best performance
for predicting lncRNA-disease interactions using the dataset from
the LncRNADisease database.

Robustness of Evaluation Using Another
Dataset
We then applied NCP-BiRW to another dataset to determine
whether our method could still achieve outstanding

FIGURE 2 | Results for r1 and r2 when β = 0.8 in 5-fold CV.
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performance. We chose the Mammalian ncRNA-Disease
Repository (MNDR) database (Cui et al., 2018), from which
the known lncRNA-disease interactions were downloaded.
After data cleaning, 1,680 known interactions between 190
diseases and 89 lncRNAs were selected (Fan et al., 2020). We
performed the same experiment as above, and Figure 5 shows
the final computational results. In 5-fold CV, the AUC of NCP-
BiRW was 0.9556, which was better than those of KATZLDA

(0.9450), Lap-BiRWRHLDA (0.9374), BiWalkLDA (0.9412),
NCPHLDA (0.9355), and IDLDA (0.9452). In 10-fold CV,
NCP-BiRW also performed the best. The AUCs of KATZLDA,
Lap-BiRWRHLDA, BiWalkLDA, NCPHLDA, IDLDA and
NCP-BiRW were 0.9466, 0.9380, 0.9420, 0.9539, 0.9466 and
0.9591, respectively. The excellent performance of NCP-BiRW
using the MNDR database demonstrated the robustness of
our model.

FIGURE 3 | ROCs and AUCs of the six methods using the LncRNADisease database.

FIGURE 4 | Comparisons of NCP, BiRW, and NCP-BiRW using the LncRNADisease database.

FIGURE 5 | ROCs and AUCs of the six methods using the MNDR database.
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Case Studies
Next, we chose atherosclerosis (AS) and leukemia as model
diseases, and conducted case studies using these two diseases
to further confirm the predictive effects of NCP-BiRW. The top
10 candidate lncRNAs predicted by our method for the two
diseases are listed in Tables 1, 2. Eventually, lncRNAs in the
tables were verified using the MNDR database (Ning et al., 2021)
and the Lnc2Cancer database (Gao et al., 2021) (http://bio-
bigdata.hrbmu.edu.cn/lnc2cancer).

AS is a chronic inflammatory disease characterized by lipid-
rich plaques in the artery wall (Vigario et al., 2020). AS is the
primary cause of most cardiovascular diseases, including acute
myocardial infarction and stroke (Li et al., 2020). Many lncRNAs
have been shown to function in AS, the central underlying
pathology of cardiovascular diseases (Josefs and Boon, 2020).
In this study, we next predicted the top 10 lncRNAs associated
with AS (Table 1). Seven of these top 10 lncRNAs were verified
using the MNDR database. For example, MALAT1 (ranked first)
inhibits AS through miR-155 and SOCS1. Specifically, MALAT1
inhibits the release of inflammatory cytokines and blocks
apoptosis by sponging miR-155 and enhancing SOCS1
expression to suppress the Janus kinase/signal transducer and
activator of the transcription pathway (Li et al., 2018).
Additionally, MEG3 (ranked second), an endothelial-enriched
lncRNA, acts as a competing endogenous RNA against miR-223,
which may explain the anti-AS functions of melatonin (Zhang
et al., 2018).HOTAIR (ranked third), is related to the progression
of various cancers; however, its functions in AS are still unclear.
Notably, HOTAIR has been shown to control AS progression by
sponging miR-330-5p in THP-1 cells (Liu et al., 2019).

Leukemia, a type of blood or bone marrow cancer, involves
excessive production of white cells (Luo et al., 2015). There are
four main types of leukemia: acute lymphocytic leukemia, acute
myeloid leukemia (AML), chronic lymphocytic leukemia, and
chronic myeloid leukemia (CML) (Siegel et al., 2021). In 2020,
over 31,000 people died of leukemia worldwide (Siegel et al.,
2021). Recent studies have demonstrated the relationships among
lncRNAs and the pathophysiology of leukemia (Gao et al., 2020).
The top 10 predicted leukemia-related lncRNAs are listed in
Table 2. All 10 were validated using the Lnc2Cancer database and
the MNDR database. MALAT1 (ranked third) promotes the
survival of CML cells, stimulates the cell cycle and imatinib
resistance by sponging miR-328, highlighting the vital roles of

MALAT1 as a microRNA sponge in CML and supporting the
application of lncRNA-targeted therapies in the treatment of
CML (Wen et al., 2018). Additionally, TUG1 (ranked eighth)
promotes the progression of AML through the miR-370-3p/
mitogen-activated protein kinase 1 (MAPK1)/extracellular signal-
regulated kinase (ERK) signaling pathway. The MAPK1/ERK
signaling pathway inhibits the epithelial-mesenchymal transition
and thus blocks the migration and invasion of AML cells (Li
et al., 2019). Studies have shown that MIAT (ranked ninth) is
highly expressed in various solid tumors in humans and
promotes AML progression by negatively regulating miR-495,
which may be a promising therapeutic target in patients with
AML (Wang et al., 2019).

DISCUSSION

According to a substantial body of evidence, lncRNAs are critical
for disease research. Identification of hidden lncRNA-disease
pairs may provide insights into the pathological mechanisms
of diseases, disease prevention, diagnosis, and treatment.
Experimental techniques have been used to identify unknown
lncRNA-disease interactions; however, these approaches are slow
and costly. Therefore, computing methods have been developed as
alternative approaches. Here, we constructed a new algorithm,
NCP-BiRW, based on network consistency projection and bi-
random walk. First, we integrated two similarity networks,
i.e., one for diseases combining disease GIP kernel similarity
and disease semantic similarity, and the other for lncRNAs
combining lncRNA functional similarity and lncRNA GIP
kernel similarity. Then, we used NCP-BiRW to forecast
lncRNA-disease interactions on the LncRNADisease database.
To validate its superiority, NCP-BiRW was compared with five
classical models: KATZLDA, Lap-BiRWRHLDA, BiWalkLDA,
NCPHLDA, and IDLDA based on 5- and 10-fold CV
frameworks. The AUCs of NCP-BiRW were 0.8982 and 0.9050
for the two frameworks, respectively. To further test the stability of
NCP-BiRW, we applied six methods on theMNDR database. After
the same experimental process, the performance of NCP-BiRW
was found to be optimal. Furthermore, case studies on AS and
leukemia were used to validate the predictive performance of our
algorithm in practice, and the prediction accuracy of the top 10
lncRNAs in AS and leukemia were 70% and 100%, respectively.

TABLE1 | Top ten lncRNAs for atherosclerosis.

Rank LncRNA Evidence

1 MALAT1 MNDR
2 MEG3 MNDR
3 HOTAIR MNDR
4 PVT1 Unknown
5 GAS5 MNDR
6 UCA1 MNDR
7 TUG1 MNDR
8 BCYRN1 Unknown
9 XIST MNDR
10 SPRY4-IT1 Unknown

TABLE 2 | Top ten lncRNAs for leukemia.

Rank LncRNA Evidence

1 H19 Lnc2Cancer
2 MEG3 Lnc2Cancer
3 MALAT1 Lnc2Cancer
4 HOTAIR MNDR, Lnc2Cancer
5 PVT1 MNDR, Lnc2Cancer
6 GAS5 MNDR, Lnc2Cancer
7 UCA1 Lnc2Cancer
8 TUG1 Lnc2Cancer
9 MIAT Lnc2Cancer
10 XIST MNDR, Lnc2Cancer
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The reasons for the outstanding performance of our model are
as follows. First, a considerable amount of biological information
about lncRNAs and diseases was applied. Indeed, we used disease
semantic similarity, GIP kernel similarity, and lncRNA functional
similarity to construct similarity networks. Second, we did not use
negative samples. Third, for making full use of network
topological information, network consistency projection was
applied. Moreover, no parameters were necessary for this step,
so the computational efficiency was improved. Finally, the model
added the results of network consistency projection into the bi-
randomwalk, so more network topological information was added
to the initial association matrix in the computing process of the bi-
random walk method. By conducting random walks on two
similarity networks, the similarity of lncRNAs and diseases are
used reasonably and fully. Based on the above, the performance of
the algorithm has been improved. In the future, our model can be
used for other association predictions, such as miRNA-disease,
gene-disease, drug-disease associations.

Despite these advantages, there are still some limitations of the
NCP-BiRW framework. First, the proportion of known lncRNA-
disease interactions in the LncRNADisease database is only 5.4%,
and the original association matrix is thus very sparse; this could
influence various calculations, including GIP kernel similarity,
network consistency projection, and bi-random walk. Second, in
this study, we only considered two factors: lncRNAs and diseases,
and more biological information on different factors (such as
genes, protein, and other types of RNAs) may provide more
evidence for the prediction of lncRNA-disease interactions.
Therefore, more valuable biological information is necessary for
the future. Finally, NCP-BiRW is a network-based method. With
the emergence of newmethods in different fields, developing more
algorithms for integration of various fields is essential. In our future
studies, we will plan to apply multiple types of data with more
biological information to association prediction models in order to
yield more accurate predictive effects.
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