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The formation of left–right asymmetry of the visceral organs is a conserved feature of the
human body, and the asymmetry specification of structure and function is precisely
orchestrated by multiple regulatory mechanisms. The abnormal results of organ
positioning situs arise from defective cilia structure or function during embryogenesis in
humans. In this study, we recruited two unrelated Han-Chinese families with left–right
asymmetry disorders. The combination of whole-exome sequencing and Sanger
sequencing identified two compound heterozygous variants: c.4109C>T and
c.9776C>T, and c.612C>G and c.8764C>T in the dynein axonemal heavy chain 17
gene (DNAH17) in two probands with left–right asymmetry disorders. We report for the first
time a possible association between DNAH17 gene variants and left–right asymmetry
disorders, which is known as a causal gene for asthenozoospermia. Altogether, the
findings of our study may enlarge the DNAH17 gene variant spectrum in human left–right
asymmetry disorders, pave a way to illustrate the potential pathogenesis of ciliary/flagellar
disorders, and provide supplementary explanation for genetic counseling.
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INTRODUCTION

The visceral organs of vertebrates have a strikingly conserved left–right (LR) asymmetry of the organ
situs that is manifested in the chest (heart and lungs) and abdomen (stomach, spleen, liver, intestine,
and colon) (McGrath et al., 2003; Blum et al., 2014). The normal organ asymmetry present across the
LR axis of the body is called situs solitus (SS) (Sung et al., 2016). It is well recognized that the leftward
flow of extracellular fluid at the node (i.e., nodal flow) plays a major role in normal LR axis
determination during embryogenesis (McGrath et al., 2003; Pennekamp et al., 2015). Human LR
asymmetry disorders have an estimated probability of more than 1 in 8000 live births and can be
divided into two broad classes: situs inversus totalis (SIT) and situs ambiguous (SA). SIT is a
malformation featuring a complete mirror image reversal of the organs and is usually not related to
major influence on the patient’s health (Levin, 2004; Sung et al., 2016). In contrast, SA, also termed
heterotaxy, is defined as any abnormal organ display that was not SS or SIT and is highly associated
with human congenital heart disease (CHD) (Zhu et al., 2006; Best et al., 2019; Chen et al., 2020).
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Abnormalities in the typical development of laterality usually
occur as a result of genetic lesions, which form a number of
human heritable disorders with significant clinical implications,
including primary ciliary dyskinesia (PCD), nephronophthisis,
Carpenter syndrome 2, and male infertility (Olbrich et al., 2002;
Otto et al., 2003; Levin, 2004; Twigg et al., 2012; Ding et al., 2020).
Variations in the genes related to the development and function
of nodal cilia often lead to human laterality defects. Up to now,
more than 82 genes have been reported to be related to LR
asymmetry disorders, including cilia- and flagella-associated
protein family members, coiled-coil domain-containing family
members, dynein axonemal assembly factors, dynein axonemal
light chains, dynein axonemal intermediate chains, and dynein
axonemal heavy chains (DNAHs) (Osório et al., 2019; Al Mutairi
et al., 2020; Bustamante-Marin et al., 2020a; Bustamante-Marin et
al., 2020b; Cannarella et al., 2020; Chen et al., 2020; Cho et al.,
2020; Ding et al., 2020; Heigwer et al., 2020; Sahabian et al., 2020;
Sha et al., 2020a; Thomas et al., 2020; Wang et al., 2020; Yang and
Qi, 2020; Abdelhamed et al., 2021; Derrick et al., 2021; Guo et al.,
2021; Wang et al., 2021). Genes belonging to the DNAH family,
such as DNAH1 (OMIM 603332), DNAH5 (OMIM 603335),
DNAH6 (OMIM 603336), DNAH9 (OMIM 603330), and
DNAH11 (OMIM 603339), are reported to be closely
associated with cilia and/or flagella beating (Fliegauf et al.,
2005; Hornef et al., 2006; Pifferi et al., 2010; Li et al., 2016).
Variations in the dynein axonemal heavy chain 17 gene
(DNAH17, OMIM 610063), encoding a component of outer
dynein arms (ODAs) in the ciliary axonemes, have been
reported to be associated with only flagella destabilization and
asthenozoospermia (Whitfield et al., 2019; Zhang et al., 2020).
There are, however, comparatively fewer studies that have
investigated DNAH17 and multiple morphological
abnormalities of the flagella and asthenozoospermia, perhaps
limited by the number of LR asymmetry phenotype-associated
patients; further research is needed.

In the present study, whole-exome sequencing (WES)
combined with Sanger sequencing was used to identify the
potential causal gene and variants in two Han-Chinese
families with LR asymmetry disorders, and compound
heterozygous variants (c.4109C>T and c.9776C>T; c.612C>G
and c.8764C>T) in the DNAH17 gene were discovered.

MATERIALS AND METHODS

Participants and Clinical Data
A 31-year-old healthy male and two unrelated Han-Chinese
families were enrolled from the Third Xiangya Hospital.
Central South University, and the First Affiliated Hospital of
Hunan University of Chinese Medicine, Changsha, China.
Available medical histories and examinations of the two
probands were obtained. The entire study was approved by
the Institutional Review Board of the Third Xiangya Hospital,
Central South University, Changsha, China, and conducted
following the tenets of the Declaration of Helsinki. Written
informed consents were collected from all the participants or
legal guardians.

DNA Extraction and WES
The standard phenol–chloroform extraction method was used to
isolate genomic DNA (gDNA) from peripheral blood leucocytes
(Yuan et al., 2015). The Qubit dsDNA HS Assay kit (Invitrogen,
Thermo Fisher Scientific, Inc.) was used to quantify the gDNA
samples. WES for the probands of the two pedigrees was
performed by the BGI-Shenzhen, China, as previously
described (Zheng et al., 2016; Hu et al., 2017). The qualified
gDNA samples were randomly fragmented by using Covaris E220
(Covaris, Inc.), and 150-250 bp fragments were selected using the
Agencourt AMpure XP Kit (Beckman Coulter, Inc.). After the
process of end-repairing, A-tailing reactions, and adaptor
ligation, the DNA fragments were amplified via ligation-
mediated PCR. The obtained products were purified and
hybridized to the exome array for enrichment. The exome
capture is based on the Agilent SureSelect Human All Exon
V6 platform, which covers about 99% of the human exonic
regions. Captured fragments were then circularized, and DNA
nanoballs were produced by rolling circle amplification, which
were loaded on BGISEQ-500 sequencing platforms (BGI-
Shenzhen, China), according to the quality control standards
and operation procedures (Huang et al., 2017).

Read Mapping and Variant Analysis
After the process of the raw data filtering, the clean reads were
mapped to the human reference genome (GRCh37/hg19) via the
Burrows–Wheeler Aligner (BWA, v0.7.15) program (Li and
Durbin, 2010). To make assurance of variant accuracy, local
realignment and base quality recalibration were performed by
using the genome analysis toolkit (GATK, v3.3.0, https://www.
broadinstitute.org/gatk/guide/best-practices), following the
removal of duplicate reads using Picard tools (v2.5.0, https://
broadinstitute.github.io/picard/) (Van der Auwera et al., 2013).
For the qualified data, strict quality control was guaranteed.
HaplotypeCaller of GATK was used to call insertions and
deletions (indels) and single nucleotide polymorphisms
(SNPs). Next, SnpEff software (https://pcingola.github.io/
SnpEff/) provided the variants with annotation. The
annotation data and final variants were prepared for the
downstream analysis (Pereira et al., 2020). All candidate
variants were filtered against several public databases: the
Single Nucleotide Polymorphism database (version 154,
dbSNP154), National Heart, Lung and Blood Institute’s Exome
Sequencing Project 6500 (NHLBI-ESP6500), 1000 Genomes
Project (1000G), Exome Aggregation Consortium (ExAC),
Genome Aggregation Database (gnomAD), and an in-house
exome database of BGI-Shenzhen (Lim et al., 2013; Xia et al.,
2017). Then, Sanger sequencing was applied to confirm the
identified potential causal variants using an ABI 3500
sequencer (Applied Biosystems, Thermo Fisher Scientific, Inc.)
(Guo et al., 2013; Xiao et al., 2018). Locus-specific polymerase
chain reaction (PCR) amplification and sequencing primers were
designed using the online Primer3 program (http://primer3.ut.ee/
) and National Center for Biotechnology Information Basic Local
Alignment Search Tool (NCBI BLAST, https://blast.ncbi.nlm.nih.
gov/Blast.cgi) (Untergasser et al., 2012), and the paired primers
are listed in Table 1.
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Bioinformatics Analyses
Several bioinformatic prediction software programs were used to
estimate whether a variant is related to protein structure or
function. For in silico analyses, Protein Variation Effect
Analyzer (PROVEAN, http://provean.jcvi.org/index.php),
Polymorphism Phenotyping version 2 (PolyPhen-2, http://
genetics.bwh.harvard.edu/pph2/), and MutationTaster (https://
www.mutationtaster.org/) were applied to get access to impacts
on the protein structure and function (Adzhubei et al., 2010;
Schwarz et al., 2014; Choi and Chan, 2015). NCBI BLAST was
used to assess sequence conservation of the amino acid at variant
positions among different species.

The protein structures of wild type and variant type were
predicted via the online SWISS-MODEL tool (https://
swissmodel.expasy.org/) and the visualized structures were
further constructed via PyMOL software (version 2.3,
Schrödinger, LLC, Portland, United States).

RESULTS

Clinical Findings
The normal individual presented normal organ placement
(Figure 1A). Two probands from unrelated Han-Chinese
families presented randomization of LR asymmetry. The
proband 1 from family 1 is a 50-year-old woman whose chest
X-ray and B-mode ultrasonographic diagnosis revealed the
mirror image reversal of normal organ placement and no
signs of other cilia-related disorders (Figure 1B). The proband
2 from family 2, a 5-year-old boy, was diagnosed with

dextrocardia and complex CHD, including pulmonary valve
stenosis, complete transposition of the great arteries, and
endocardial cushion defect, by chest X-ray (Figure 1C),
cardiac ultrasound, and CT scan. He was prone to having
colds and coughs since early childhood. In addition, the
available medical history showed that cardiac murmurs with
cyanosis were discovered in infancy. The two probands
declined further examinations such as transmission electron
microscopy (TEM) and high-speed video microscopy (HSVM).
Other members of the two families refused to participate in
relative inspection, as they insisted on not suffering any cilia-
related symptoms.

Genetic Findings
WES of the proband 1 and the proband 2 generated a total of
242.17 million and 255.35 million clean reads with an average
of 99.94% successfully mapped to the human reference
genome (GRCh37/hg19). On the target region, the mean
sequencing depth of 264.94-fold (proband 1) and 276.52-
fold (proband 2) guaranteed enough accuracy to call
variants in 99.63% and 99.71% of the targeted bases
covered by at least 10×, respectively. There were a total of
105,991 SNPs and 18,461 indels detected in proband 1, while a
total of 106,426 SNPs and 18,992 indels were detected in
proband 2. A variant filtering strategy referring to previous
studies was utilized to identify potential causal variants in
these patients (Zheng et al., 2016; Xiang et al., 2019). The
following were considered: (i) variants recorded in dbSNP154,
NHLBI-ESP6500, and 1000G with minor allele frequency
(MAF) ≥1% were ruled out. (ii) The remaining variants

TABLE 1 | Detecting primers for the dynein axonemal heavy chain 17 gene variants.

Variant Forward sequence (59–39) Reverse sequence (59–39) Product size (bp)

c.612C>G GATCCCCTCTTCACTGGACA GATGCACTTGAGGTTCAGCA 184
c.4109C>T CTCGACAACACCGTGAAAAA CACATTGGCTTTACCAGCAT 228
c.8764C>T TTATGGAGGACGAGGTGGAG TCACATCCCATGAAGGATCA 239
c.9776C>T GAGTTCATCCGCTCCAAGTC GGCACTTACGGCAATCTTGT 186

FIGURE 1 | Chest X-ray images of the normal individual and patients with left-right asymmetry disorders. (A) Chest X-ray of the normal individual presented normal
organ placement. (B) Chest X-ray of the proband in family 1 revealed dextrocardia. (C) Chest X-ray of the proband in family 2 revealed dextrocardia.
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were further filtered again in the in-house BGI exome
database with 1,943 Han-Chinese controls without
randomization of LR asymmetry, and variants with MAF
≥1% were ruled out. (iii) Variants predicted to be
deleterious were reserved. (iv) Compound heterozygous or
homozygous variants in known genes responsible for LR
asymmetry disorders or other cilia-related disorders were
prosecuted as potential candidate variants. With these
criteria, only two compound heterozygous variants:
c.4109C>T and c.9776C>T, and c.612C>G and c.8764C>T
in the DNAH17 gene (NM_173628.4) were identified in two

probands from unrelated families, respectively. Disease-
causing variants in at least 82 of the known genes
responsible for LR asymmetry disorder phenotypes were
excluded in our patients, though gross deletion/duplication
and complex rearrangement in these genes cannot be
completely ruled out. These four variants are recorded in
the dbSNP154 and has a low frequency in the global
population of 1000G, ExAC, and gnomAD (Table 2),
suggesting these two compound heterozygous variants are
potential disorder-related variants. These four variants were
further confirmed by Sanger sequencing (Figures 2A,B).

TABLE 2 | In silico analysis of the dynein axonemal heavy chain 17 gene variants.

Nucleotide
change

Amino acid
change

dbSNP154 Variant
type

Bioinformatics analysis Allele frequencies

PROVEAN SIFT PolyPhen-2 MutationTaster 1000G ExAC gnomAD

c.612C>G p.Ile204Met rs577131115 Missense Neutral Tolerated Possibly
damaging

Polymorphism 2.00×10-4 1.17×10-4 5.91×10-5

c.4109C>T p.Thr1370Ile rs548985742 Missense Deleterious Tolerated Possibly
damaging

Disease causing 3.99×10-4 1.97×10-4 1.38×10-4

c.8764C>T p.Arg2922Cys rs367844100 Missense Deleterious Damaging Probably
damaging

Disease causing 2.00×10-4 - -

c.9776C>T p.Ala3259Val rs151161879 Missense Neutral Damaging Benign Polymorphism 4.59×10-3 1.38×10-3 6.44×10-4

dbSNP154, Single Nucleotide Polymorphism database (version 154); rs, Reference SNP; PROVEAN, Protein Variation Effect Analyzer; SIFT, Sorting Intolerant from Tolerant; PolyPhen-2,
Polymorphism Phenotyping version 2; 1000G, 1000 Genomes Project; ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database.

FIGURE 2 | Pedigrees and sequence analysis of the two unrelated Han-Chinese patients with left-right asymmetry disorders. (A) and (B) Pedigrees with left-right
asymmetry disorders and Sanger sequencing results. The proband, shown as a solid symbol, is indicated by an arrow, and the deceased family member is shown with a
slash in the pedigree tree. (C) Sequence alignment of the dynein axonemal heavy chain 17 among different species, with the affected amino acids indicated by the
arrows. DNAH17, the dynein axonemal heavy chain 17 gene.
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Variant Bioinformatics Analysis
The c.8764C>T (p.Arg2922Cys) variant was predicted to be
“deleterious,” “damaging,” “probably damaging,” and “disease
causing” by PROVEAN, Sorting Intolerant from Tolerant (SIFT),
PolyPhen-2, and MutationTaster, respectively. For the other
three variants, c.612C>G (p.Ile204Met), c.4109C>T
(p.Thr1370Ile), and c.9776C>T (p.Ala3259Val), at least one of
four prediction programs showed that the variants were
potentially deleterious (Table 2). Alignment of the protein
sequences across different species was shown by a
phylogenetic analysis (Figure 2C), indicating that the variant
sites were conserved in mammals and reptiles, further supporting
that these variants are disorder-related variants. Structural
modeling showed the conformational alteration in the context
of protein (Figure 3).

DISCUSSION

The formation of LR asymmetry of the visceral organs is a
conserved feature of human body, which is precisely
orchestrated by multiple regulatory mechanisms (Blum et al.,
2014; Sung et al., 2016; Hobbs et al., 2018). The process initiating
in the node and occurring during embryogenesis can be divided
into four steps: i) symmetry breaking caused by the leftward nodal
flow, (ii) transmission of asymmetric signals to the left lateral
plate mesoderm (LPM), (iii) cascades of Nodal and Lefty2
expression in the left LPM, and (iv) situs-specific
morphogenesis (Ramsdell and Yost, 1998; Nonaka et al., 2005;
Okada et al., 2005; Yoshimoto et al., 2012).

Rotational movement of motile monocilia in nodal cells
creates the nodal flow and activates the asymmetric signaling,
while the sperm flagella with similar structure are responsible for
cell motility (McGrath et al., 2003; Shiraishi and Ichikawa, 2012;
Pennekamp et al., 2015). Most motile cilia and sperm flagella
share a highly conserved 9+2 axonemal structure (nine outer
microtubule doublets surrounding one central microtubule pair),
which are comprised of microtubules, motor dynein arms and the
associated structures, exhibiting motile and sensory functions
(Zhou et al., 2012; Ishikawa, 2017). Most immotile cilia have a
9+0 axoneme, lacking the central microtubule pair (Fliegauf et al.,
2007). The inner and outer dynein arms (IDAs and ODAs),
comprised of heavy, intermediate, and light dynein chains, are
vital to motility of motile cilia and sperm flagella with 9+2
axonemes (King, 2016; Viswanadha et al., 2017; Lee and
Ostrowski, 2021). Human LR asymmetry disorders are
thought to be attributed to defective cilia structure or function
during embryonic development (Blum et al., 2014; Shinohara and
Hamada, 2017). Thus, exploring gene variants targeted
establishment and function of nodal cilia during early
embryogenesis may help the diagnosis and gene therapy of LR
asymmetry disorder.

The DNAH17 gene, located at chromosome 17q25.3, is a large
gene composed of 81 exons and encodes an axonemal dynein
heavy chain of ODA. DNAHs, also named heavy chains (HCs),
include 13 members (DNAH1-3, 5-12, 14, and 17) in humans
(Pazour et al., 2006; Inaba, 2011). In the known axial filament
complex, the ODAs play a major role in the beating of cilia and
flagella through the ATPase activity of their HCs (Whitfield et al.,
2019). Dynein HCs are large proteins that turn the energy of ATP
into force supporting the sliding of outer microtubule doublets,
which generates the beating of cilia (Pazour et al., 2006). To date,
variants in most genes of DNAHs in humans have been reported
to be associated with diseases related to cilia or flagella. A
common autosomal recessive disorder caused by those variants
is PCD, which is characterized by recurrent respiratory tract
infections, laterality defects, and/or infertility, with highly genetic
and clinical heterogeneity (Fliegauf et al., 2005; Hornef et al.,
2006; Pifferi et al., 2010; Li et al., 2016). In the ultrastructure,
sperm flagella are similar to cilia, underpinning the common
relationship between male infertility with PCD and subfertility in
women with PCD due to deficient ciliary function in the oviducts
(Lucas et al., 2014). Of interest, variants in DNAH1 and DNAH9
genes, reported to be associated with PCD, have been depicted in
patients with only male infertility, resulted from
asthenozoospermia, without other ciliary disorders (Ben
Khelifa et al., 2014; Fassad et al., 2018).

In this study, the proband from family 1 presented with SIT
without any other cilia-related symptoms, and compound
heterozygous variants c.4109C>T (p.Thr1370Ile) and
c.9776C>T (p.Ala3259Val) in the DNAH17 gene were
identified using a combination of WES and Sanger sequencing.
The second DNAH17 compound heterozygous variants,
c.612C>G (p.Ile204Met) and c.8764C>T (p.Arg2922Cys), were
found in the proband from family 2. The boy presented with
dextrocardia and CHD. Cardiac murmurs with cyanosis and
recurrent cough were discovered in infancy, suggesting that he

FIGURE 3 | Cartoon model of the dynein axonemal heavy chain 17
protein structure visualized by PyMOL based on the SWISS-MODEL. The
isoleucine (I) and mutated methionine (M) at position 204; threonine (T) and
mutated isoleucine (I) at position 1370; arginine (R) andmutated cysteine
(C) at position 2922; and alanine (A) andmutated valine (V) at position 3259 are
indicated with ball-and-stick models.
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may suffer with the cilia-related symptoms. Detailed clinical
characteristics of the available family members with DNAH17
variants are presented in Table 3. It seems that at least 10% (2/20)
DNAH17 compound heterozygous or homozygous carriers have
LR asymmetry disorders. There are only a few studies on
DNAH17, and none was found on studying the gene function
due to the large size of DNAH17 molecular mass (510 kDa). In
addition, the current knowledge on the crucial part of DNAH17
playing in flagella destabilization and asthenozoospermia may
depend on genetic or environmental factors such as the mutation
type, organism or context (Whitfield et al., 2019; Zhang et al.,
2020). Actually, different DNAHs members have been shown to
play an important role in cilia/flagella formation and cilia/flagella
regulation. DNAH1 and DNAH9, homologs of DNAH17, were
located to ciliary axonemes and sperm flagella, and responsible
for cilia/flagella-related phenotypes (Bartoloni et al., 2002;
Olbrich et al., 2002; Ben Khelifa et al., 2014; Fassad et al.,
2018). Due to a common highly conserved 9+2 axonemal
structure of cilia and sperm flagella, different DNAH17
mutations may independently cause flagella destabilization,
asthenozoospermia or LR asymmetry disorders in specific
organelle sharing a common axonemal machinery. Though

DNAH17 expression was detected in testis, brain, lung and
other tissues (https://www.ncbi.nlm.nih.gov/gene/8632), the
protein was only observed in the flagella by assays of
immunoblotting and immunofluorescence staining in
various human somatic cell lines, human respiratory
epithelial cells and sperm cells (Fagerberg et al., 2014;
Whitfield et al., 2019; Zhang et al., 2020). It implies that
DNAH17 expression may be influenced by cell type-specific
spatial localization and the switch point in the development of
the nodal flow during early embryogenesis. The lack of typical
symptoms, such as nasosinusitis and bronchiectasis, in the two
patients may be due to absent or low expression of DNAH17 in
specific tissues after the completion of the embryonic
development. Biallelic variant types of DNAH17, genetic
background, and epigenetic modification, as well as
environmental factors, may potentially affect the phenotypic
manifestation. The possible genotype-phenotype association
should be warranted with more DNAH17-mutated carriers
discovered. Our observation of the potential relationship
between DNAH17 and LR asymmetry disorders may extend
the field-of-view for new actor of DNAH17 in the development
of human diseases.

TABLE 3 | Clinical data of the DNAH17 variant carriers in different families.

Ped Case Sex Age GT Nucleotide
change

Amino acid
change

Variant type Infertility Situs CHD References

P1 II:1 M 5 years CH c.612C>G, c.8764C>T p.I204M, p.R2922C Missense,
missense

NA Dextro Y This study

P2 II:1 M 36 years CH c.1293_1294del,
c.7994_8012del

p.Y431*,
p.G2665Efs*4

Nonsense,
frameshift

Y SS N Whitfield et al.
(2019)

P3 II:1 F 50 years CH c.4109C>T, c.9776C>T p.T1370I, p.A3259V Missense,
missense

N SIT N This study

P4 II:3 M 34 years CH c.4445C>T, c.6857C>T p.A1482V, p.S2286L Missense,
missense

Y NA N Sha et al. (2020b)

P5 II:1 M 32 years Hom c.4810C>T p.R1604C Missense Y SS N Zheng et al. (2021)
P6 IV:1 M 43 years Hom c.5408G>A p.C1803Y Missense Y NA N Zhang et al. (2020)

IV:2 M 41 years Hom c.5408G>A p.C1803Y Missense Y NA N
IV:3 M 29 years Hom c.5408G>A p.C1803Y Missense Y NA N
IV:5 F 42 years Hom c.5408G>A p.C1803Y Missense N NA N

P7 II:3 M 37 years Hom c.5486G>A p.C1829Y Missense Y SS N Whitfield et al.
(2019)II:4 M 35 years Hom c.5486G>A p.C1829Y Missense Y SS N

P8 IV:1 M 39 years Hom c.5707C>T p.R1903C Missense Y NA N Zhang et al. (2021)
Zhang et al. (2021)P9 III:2 F NA Hom c.6308C>T, c.11803C>T p.A2103V, p.Q3935* Missense,

nonsense
N NA N

IV:1 M 32 years Hom c.6308C>T, c.11803C>T p.A2103V, p.Q3935* Missense,
nonsense

Y NA N

IV:2 M 42 years Hom c.6308C>T, c.11803C>T p.A2103V, p.Q3935* Missense,
nonsense

Y NA N

IV:4 M 34 years Hom c.6308C>T, c.11803C>T p.A2103V, p.Q3935* Missense,
nonsense

Y NA N

P10 II:1 M 34 years CH c.8512–2A>G, c.13294C>T NA, p.R4432C Splicing,
missense

Y NA NA Song et al. (2020)

P11 II:4 M 27 years Hom c.10496C>T, c.10784T>C p.P3499L, p.L3595P Missense,
missense

Y SS N Whitfield et al.
(2019)

P12 II:1 M 30 years Heta c.10486_10497dup p.V3496_P3499dup Duplication Y SS N Whitfield et al.
(2019)

P13 II:1 M 32 years CH c.12915+1G>A,
c.13202C>T

NA, p.P4401L Splicing,
missense

Y NA NA Song et al. (2020)

aA variant in the second DNAH17 allele was hypothesized.
DNAH17, dynein axonemal heavy chain 17 gene; Ped, pedigree number; M, male; F, female; GT, genotype; CH, compound heterozygote; Hom, homozygote; Het, heterozygote; N, no; Y,
yes; NA, not available; Dextro, dextrocardia; SS, situs solitus; SIT, situs inversus totalis; CHD, congenital heart disease.
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Taken together, our research identified compound
heterozygous DNAH17 variants (c.4109C>T and c.9776C>T;
c.612C>G and c.8764C>T) in families with LR asymmetry
disorders, typical phenotypes of ciliary disorders, including SIT,
dextrocardia, and CHD, albeit infertility cannot be excluded. To
our knowledge, this is, the first report of relationships between
DNAH17 variants and ciliogenesis, which expands the phenotypic
spectrum and benefits genetic counseling. Combined with the
reported DNAH17-associated asthenozoospermia, we proposed
that DNAH17 compound heterozygous variants, or homozygous
variants, may potentially cause a specific disease, the DNAH17-
associated ciliary/flagellar disorder. The study may be limited by
the lack of nasal epithelial brush biopsy samples for ciliary beating
and ultrastructure analysis. Further constructingDNAH17 variant-
targeted animal models and performing experimental therapies
will facilitate an in-depth comprehension of cellular and molecular
mechanisms of ciliary and flagellar defects, and contribute to
rectification of the defects.
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