
The Effect of miRNA Gene Regulation
on HIV Disease
Romona Chinniah1,2†, Theolan Adimulam2†, Louansha Nandlal1, Thilona Arumugam2 and
Veron Ramsuran1,2*

1Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa,
2School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa

Over many years, research on HIV/AIDS has advanced with the introduction of HAART.
Despite these advancements, significant gaps remain with respect to aspects in HIV life
cycle, with specific attention to virus-host interactions. Investigating virus-host interactions
may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably,
host gene silencing can be facilitated by cellular small non-coding RNAs such as
microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have
elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can
either promote viral infection, while others can be detrimental to viral replication. This is
accomplished by targeting the HIV-proviral genome or by regulating host genes required
for viral replication and immune responses. In this review, we report on 1) the direct
association of microRNAs with HIV infection; 2) the indirect association of known human
genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other
diseases that can be explored experimentally to determine their effect on HIV-1 infection;
and 4) therapeutic interactions of microRNA against HIV infection.
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1 INTRODUCTION

The Human Immunodeficiency Virus (HIV) is a member of the lentivirus family of retroviruses that
infects humans and increases susceptibility to Acquired Immunodeficiency Syndrome (AIDS). At the
end of 2020, more than 38 million people were living with HIV globally (Global, 2020). While an
effective vaccine remains elusive, extensive research on the inhibition of various stages of the HIV life
cycle has paved the way for the development of many antiretroviral drugs (Cohen et al., 2016).
Despite the progress with lifesaving, highly active antiretroviral therapy (HAART), treatment may
lead to the development of drug toxicities and resistance (Pomerantz and Horn, 2003). HAART has
also been implicated in the onset of adverse metabolic effects such as dyslipidaemia, elevated blood
pressure, and insulin resistance (Palios et al., 2011). These compounding factors emphasise the
necessity for new less toxic, more effective and additional, complementary therapeutic approaches.

Advancements in discovering and determining the function of host factors in viral biogenesis and
transmission highlight the possibility of developing new therapeutic tools for preventative measures
and treatment of HIV/AIDS (Hoxie and June, 2012). As such, modulating gene expression post-
transcriptionally using small non-coding RNAs (sncRNAs) mediates cellular gene silencing through
RNA interference (RNAi). This mode of regulation has become increasingly utilized in the
development and delivery of the therapeutic anti-viral strategy (Balasubramaniam et al., 2018).
Eukaryotic cells possess endogenous RNAi mechanisms, of which microRNAs (miRNAs) are the
most significant family of sncRNAs (Ghildiyal and Zamore, 2009). MiRNAs are a class of small non-
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coding RNA molecules (21–25 nucleotides in length) that are
instrumental in regulating gene expression of multiple cellular
processes, including differentiation, development, apoptosis, and
stress response (Felekkis et al., 2010). These molecules exert their
regulatory mechanisms by mRNA degradation or translational
repression (prevention of translation of target mRNAs) (Cai et al.,
2009; Fabian et al., 2010; Inui et al., 2010; Subramanian and Steer,
2010). The biogenesis of miRNAs is detailed profoundly in
several manuscripts, which describe the two principal
pathways (canonical and non-canonical) (O’Brien et al., 2018;
Ha and Kim, 2014; Macfarlane and R. Murphy, 2010; Zhao et al.,
2019).

Briefly, the canonical pathway begins in the nucleus where a
primary RNA (pri-miRNA), usually ~80 nucleotides long, is
transcribed from its specific gene by RNA polymerase II. The
pri-miRNA is then cleaved to form a precursor miRNA (pre-
miRNA), generally ~60 nucleotides long, by the Microprocessor
complex (Zhao et al., 2019). TheMultiprocessor complex consists
of two multiprotein units. The first is a large multiprotein unit.
The second is a small multiprotein which constitutes of Drosha
(RNase III enzyme) and the RNA binding protein DiGeorge
Syndrome Critical Region 8 (DGCR8) (Gregory et al., 2004).
Once the pre-miRNA is generated, it is transported to the
cytoplasm by exportin-5 and Ran-GTP, where it undergoes
cleavage by Dicer (O’Brien et al., 2018). The Dicer enzyme
removes the terminal loop, thus resulting in a double-stranded
product that consists of the mature miRNA guide strand and a
passenger strand. The mature miRNA product will be transferred
onto Argonaute (AGO) protein (Macfarlane and R. Murphy,
2010). The remaining passenger strands are usually directed
toward degradation. However, the guide strand is further
integrated into the RNA-induced silencing complex (RISC)
(O’Brien et al., 2018; Macfarlane and R. Murphy, 2010).
Finally, the RISC-miRNA complex principally binds to the
3′UTR of the target mRNA. The complementarity of this
binding predicts the fate of the mRNA, such that, in the event
of perfect complementarity, the target mRNA is degraded.
However, when this binding is incomplete, the mRNA is
translationally repressed (Cai et al., 2009).

Several non-canonical pathways have been described (Annese
et al., 2020). In summary, non-canonical pathways are classified
into Drosha/DGCR8-independent and Dicer-independent
pathways. The class of Drosha/DGCR8-independent miRNAs
which originate from spliced introns are commonly known as
mirtrons. These miRNAs are instantly transported to the
cytoplasm via Dicer processing (Treiber et al., 2019). On the
contrary, Dicer-independent miRNAs are uncommon. Drosha
processes Dicer-independent miRNAs from endogenous short
hairpin RNA (shRNA) transcripts, directly recognised by Ago
proteins, thus making them Dicer-independent (Dai et al., 2019).

Multiple studies have linked aberrant miRNA profiles to
diseases such as cancer (Croce and Calin, 2005; Calin and
Croce, 2006), neurodegenerative disease (Kim et al., 2007;
Wang et al., 2008), autoimmune disease (Dai et al., 2007;
Stanczyk et al., 2008; Zhao et al., 2010), inflammatory diseases
(Sonkoly et al., 2007), muscular disorders (Eisenberg et al., 2007),
cardiovascular disorders (Carè et al., 2007; Ikeda et al., 2007), in

addition to developmental abnormalities and psychiatric
disorders (Lewis et al., 2003). Moreover, the five biggest
infectious killers globally, including HIV/AIDS, are responsible
for approximately 80% of the total contagious disease burden.
About 12 million people per year succumb to these diseases,
primarily in developing countries (Organization, 2020).
Comparable to non-infectious conditions, miRNAs affect host
and virus interactions in various ways. They are characterised as
direct alteration of viral replication by influencing viral
susceptibility or as indirect alteration of host genes that
influence viral replication (Scaria et al., 2007; Kumar and
Jeang, 2008).

MiRNAs have previously been implicated in HIV infection
(Sun et al., 2016; Balasubramaniam et al., 2018; Su et al., 2018). As
a field in its infancy, there is a substantial benefit in determining
the impact of miRNAs on HIV infection.

This review discusses the direct alterations of miRNAs in HIV
infection and the indirect alterations of known human genetic
factors in HIV infection. Thereafter, we describe miRNA
associations of known human genetic factors with other
diseases that can be exploited to determine their specific effect
on HIV infection, and the potential use of miRNAs as therapeutic
interactions against HIV infection.

2 EFFECT OF MIRNAS ON HIV INFECTION

MiRNAs can aid or obstruct HIV infection at various stages of the
viral life cycle, affecting viral replication, host immune response,
and ultimately disease management (Figure 1). HIV exploits and
uses cellular miRNAs to modulate its replication by directly
targeting its RNA or host mRNAs that would negatively
impact HIV replication. In addition, miRNAs are linked with
a possible susceptibility to HIV infection in monocytes and
macrophages (Wang et al., 2009; Qiuling et al., 2018).
Furthermore, the viral genome may produce viral encoded
miRNAs that modulate viral RNAs as well as cellular mRNAs
(Cullen, 2006; Skalsky and Cullen, 2010). This suggests that HIV
could potentially regulate its replication cycle and possibly
program its own latency (Omoto et al., 2004; Bennasser et al.,
2006; Ouellet et al., 2013; Zhang et al., 2014). Several cellular
miRNAs have demonstrated the ability to modulate HIV
infection, either directly or indirectly (Table 1).

2.1 Regulation of HIV Replication Through
Viral Genome
Host derived miRNAs can bind to HIV RNA, directly regulating
pathogenesis (Trobaugh and Klimstra, 2017). For instance, recent
data has shown thatmiR-139-5p plays a role in activating latent HIV
infected cells, by regulating FOX01, as well as FOS and JUN
transcription factors (Okoye et al., 2021). The expression of miR-
28, miR-125b, miR-150, miR-223, and miR-382 were significantly
lower in activated CD4+ T cells in comparison to its resting
counterpart. The same group of miRNAs may play a role in
establishing viral latency by interacting with a conserved 1.2 kb
fragment found in the 3′UTR of all HIV transcripts. These miRNAs
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can inhibit the translation of all viral proteins with the exception of
nef (Huang et al., 2007). Moreover, the study showed that infected
cells with established latency could be reactivated by treatment with
miRNA inhibitors, suggesting that cellular miRNAs may provide a
mechanistic effect towards HIV latency (Huang et al., 2007). Besides
their role in promoting HIV latency, these five miRNAs play a
crucial role in preventing HIV infection of monocytes and
monocyte-derived macrophages (MDM). MiR-28, miR-125b,
miR-150, miR-223, and miR-382 were observed at significantly
higher levels in monocytes compared to MDM. These miRNAs
were found to impede HIV reverse transcriptase activity in both cell
types. However, the activity of HIV reverse transcriptase was
dependant on the level of these miRNAs. This may explain why
monocyte differentiation into macrophages is required for effective
HIV infection (Wang et al., 2009).

Nef expression can also be influenced by cellular miRNAs
(Ahluwalia et al., 2008; Sun et al., 2012). Ahluwalia et al. found
that miR-29a and miR-29b may target HIV nef expression, which
resulted in repression of nef translation and subsequent decrease
in viral load (Figure 1) (Ahluwalia et al., 2008).

Moreover, in a series of refined experiments, Sun et al.
demonstrated a new regulatory circuit during HIV infection
(Sun et al., 2012). The downregulation of the miR-29 family
could be associated with nef up-regulation and apoptosis of CD4+
cells (Sun et al., 2012). In addition, previous studies showed that
miR-29 inhibited HIV replication by approximately 60%, while

miR-133b, miR-138, miR-326, miR-149, and miR-92a reduced
HIV viral replication by 40% (Houzet et al., 2012). In silico
screening showed that these miRNAs may possibly target the
5′LTR (miR-326), env (miR-133b, miR-138), gag (miR-149), and
pol (miR-92a) leading to the repression of viral replication.

Recent work by Chen et al. showed another form of miRNA
regulation of HIV viruses through the interaction of miR-146a
with the viral protein gag (Figure 1) (Chen et al., 2014). This
interaction resulted in a viral-RNA-mediated gag assembly
blockage, thereby interfering with viral budding and infectivity
(Chen et al., 2014). These findings illustrate that miRNAs can
alter viral gene expression via direct targeting of HIV mRNAs,
with variable mechanisms of action dictated by the cell types.

2.2 Host Factors That Regulate HIV
Replication
MiRNAs regulate HIV infection through indirect modulation of
host factor expression. One viral-dependent factor in cells is
Cyclin T1, characterised as an essential part of the PTEFb
complex, responsible for facilitating viral transcription (Hoque
et al., 2011). The direct modulation is facilitated through the
interaction with tat, which recruits the complex to HIV TAR,
thereby impacting viral latency (Hoque et al., 2011). Recent work
by Sung et al. described that miR-198targets and down-regulates
Cyclin T1 mRNA and protein expression, which subsequently

FIGURE 1 | A representation of selected miRNAs that control gene expression levels, leading to variability in HIV viral load. MiRNA can regulate both host (red
mRNA) and viral (green mRNA) mRNA. In the case of decreased viral load, the CD4+ T cell has increased expression of miR-146a (reduces CXCR4 and gag expression),
miR-29a/b (reduces nef expression), miR-155 (reduces LEDGF expression), Let-7c (reduces p21 expression), while decreased expression of miR-148a upregulates
HLA-C expression. In the case of increased viral load, the CD4+ T cell has decreased expression of miR-146a (increases CXCR4 and gag expression), miR-29a/b
(increases nef expression), miR-155 (increases LEDGF expression), Let-7c (increases p21 expression), while increased expression of miR-148a down-regulates HLA-C
expression (complied using BioRender).
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impairs the tat-mediated transcriptional activation of HIV in
infected monocytes and macrophages (Sung and Rice, 2009).
Over-expression of miR-198 inhibited HIV replication in
macrophages, suggesting that cell type-specific mechanisms
may be an effect executed by miRNAs (Sung and Rice, 2009).
Additional studies identified that Cyclin T1 inhibition is exerted
by cellular miRNAs (miR-27b, miR-29b, miR-150, and miR-223)
in resting CD4+ T cells (Chiang et al., 2012). However, CD4+
T cell activation followed the downregulation of the miRNAs.
This result was correlated with enhanced HIV susceptibility and
productive replication (Chiang et al., 2012).

The viral protein tat is an essential transcriptional activator
that interacts with several cellular proteins. For efficient HIV
transcriptional activation, tat must be acetylated by p300-CREB
binding protein associated factor (PCAF) (D’Orso and Frankel,
2009). Remarkably, miR-17/92 family of host miRNAs impedes
HIV infection by downregulating PCAF (Triboulet et al., 2007).
Triboulet et al. also showed that miR-17 as well as miR-20a
inhibited PCAF expression at the mRNA and protein levels. In
addition, HIV can actively repress miR-17-5p and miR-20a to
enhance viral translation through p300/PCAF-dependant tat
activation (Triboulet et al., 2007).

TABLE 1 | Studies showing microRNAs affecting host cell genes in the context of HIV infection.

microRNA Target Action Experimental approach/observation References number

miR-148a HLA-C Impaired control of HIV viral load In vitro studies Genetic association with
HIV P = 2 × 10−14, R = 0.33,N = 2.527
(European cohort)

Kulkarni et al. (2011)

miR-146a CXCR4 Prevents HIV entry In vitro Quaranta et al. (2015)
miR-132 MeCP2 Enhances HIV infection In vitro Chiang et al. (2013)
miR-182 NAMPT Enhance HIV tat-mediated trans-activation In vitro Chen et al. (2013)
miR-34a miR-217 SIRT1 Enhances HIV tat mediated trans-

activation
In vitro In vitro Zhang et al. (2012a),

Zhang et al. (2012b)
miR-34a PNUTS Promotes HIV -1 transcription In vitro Kapoor et al. (2015)
miR- 155 TRIM32 Promotes reactivation of latent HIV via NF-

kB signalling
In vitro Ruelas et al. (2015)

miR-17-5p miR-20a PCAF Reduction of HIV infection In vitro Triboulet et al. (2007)
miR-198 miR-27b
miR-29b miR-150
miR-223

Cyclin T1 Impaired replication in monocytes
Impaired HIV replication in resting CD4+
T cells

In vitro In vitro Sung and Rice. (2009),
Chiang et al. (2012)

miR-15a miR-15b
miR-16 miR-20a miR-
93 miR-106b

Pur-Alpha Impaired HIV replication in monocytes In vitro Shen et al. (2012)

miR-155 ADAM 10 Reduction of HIV late RT products and viral
DNA integration in MDM

In vitro Swaminathan et al.
(2012c)

miR-155 NUP153 Reduction of HIV late RT products and viral
DNA integration in MDM

In vitro Swaminathan et al.
(2012c)

miR-155 LEDGF/p75 Reduction of HIV late RT products and viral
DNA integration in MDM

In vitro Swaminathan et al.
(2012c)

miR-155 miR-181 SAMHD1 Overexpression of miR-155/181a
enhanced HIV replication in astrocytes

In vitro Pilakka-Kanthikeel et al.
(2015)

miR1236 VprBP Impaired HIV replication in monocytes In vitro Ma et al. (2014)
let-7c p21 Increased HIV replication In vitro Farberov et al. (2015)
miR-124a miR34a-5p TASK1 Increased HIV replication In vitro Farberov et al. (2015)
miR-146a CCL5 Enhance HIV infection In vitro Qiuling et al. (2018)
miR-21 IP-10 miR-21 expression downregulates IP-10

controlling the loss of CD4+ T cells which is
closely related to disease progression

Genetic association in HIV disease p <
0.0001, R = 0.706, N = 32 (Chinese
cohort)

Wu et al. (2017)

miR-155 PU.1 (DC-SIGN) Reduces HIV entry into T lymphocytes In vitro Martinez-Nunez et al.
(2009)

miR-9 BLIMP-1 Reduced HIV infection Ex vivo and in vitro Seddiki et al. (2013)
let-7 IL-10 Reduced HIV infection Ex vivo and in vitro Swaminathan et al.

(2012c)
miR-221 miR-222 CD4 Inhibition of HIV entry in macrophages In vitro Lodge et al. (2017)
miR-34c-5p Several genes are involved

in TCR signaling and
activation of naïve CD4+

T cells

Increased HIV replication In vitro Amaral et al. (2017)

miR-29a miR-29b
miR-29c

IL-32 Proviral load and disease progression Genetic association in HIV disease p =
0.079, R = 0.232, N = 58 p = 0.102, R =
0.445, N = 58 p = 0.103, R = 0.216, N
= 58

Monteleone et al. (2015)

Notes: P represents the p value for the specific result. R represents the value of the statistical Pearson R. N is representative of the number of samples. The italic values under the “Target”
column is indicative of gene names. While the italic values under the “Experimental approach/observation” is the Latin caption used to define how the experiment was performed.
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Another well characterised cellular factor that interacts with
HIV tat to up-regulate viral transcription is the purine-rich
element binding protein α (Pur-α) (Wortman et al., 2000). A
collection of six cellular miRNAs (miR-15a, miR-15b, miR-16,
miR-20a, miR-93, and miR-106b) enriched in monocytes were
linked with the repression of Pur-α (Shen et al., 2012).
Consequently, inhibition of these miRNAs in monocytes
increased the expression of Pur-α, resulting in an increase in
HIV infection (Shen et al., 2012).

MiR-155 has demonstrated significant effects on HIV infection
through a Toll-Like receptor (TLR)-dependant mechanism
(Swaminathan et al., 2012a). Swaminathan et al. showed that
miR-155 is significantly up-regulated in MDMs, stimulated by
TLR3 and TLR4 (Swaminathan et al., 2012a). Furthermore, up-
regulation of miR-155 through TLR stimulation leads to decreased
mRNA and protein expression of ADAM10, TNPO3, NUP153,
and LEDGF/p75, in MDMs (Swaminathan et al., 2012a). Gene
silencing of LEDGF had the most significant effect on HIV
infection (Figure 1) (Swaminathan et al., 2012a). However, co-
silencing of both LEDGF and ADAM10 had a more substantial
impact, impairing the transport of viral pre-integration complexes
(Swaminathan et al., 2012a).

The inhibition of TRIM32 by miR-155 results in post-
integration latency of HIV (Ruelas et al., 2015). TRIM32
directs NF-κB to the nucleus via a tat-independent
mechanism, as described by Ruelas et al. (2015). The study
characterises a novel mechanism by which TRIM32 activates
NF-κB. Collectively, the inhibitory effect of miR-155 on TRIM32
highlights a new tool for HIV remaining in infected reservoirs
(Ruelas et al., 2015). Despite this significant study, recent studies
have identified miR-155 as a potent biomarker of activated T cells
and immune dysfunction in HIV-infected individuals (Jin et al.,
2017a; Jin et al., 2017b; Zhang et al., 2021a).

MiRNAs can also restrict viral entry by targeting the receptors
and co-receptors exploited for HIV entry. Orecchini et al. report a
tat-dependant mechanism that controls CD4 receptor by up-
regulating miR-222 (Orecchini et al., 2014). In addition, Lodge
et al. demonstrated that miR-221 and miR-222 are up-regulated
in MDMs, targeting the 3′ UTR of CD4 (Orecchini et al., 2014).
The mRNA and subsequent protein expression are reduced,
ultimately impairing HIV entry into MDM (Lodge et al.,
2017). Labbaye et al. showed that promyelocytic leukaemia
zinc finger (PLZF) could regulate miR-146a, subsequently
controlling the expression of CXCR4 in vitro (Labbaye et al.,
2008). Activation of resting CD4+ T cells by phytohemagglutinin
results in the downregulation of miR-146a (Quaranta et al., 2015).
Downregulation of miR-146a results in the overexpression of
CXCR4 co-receptor promoting viral entry in CD4+ T cells
(Quaranta et al., 2015).

Vpr HIV-binding protein (vprBP) is a cellular cofactor that
forms part of a ubiquitin protein ligase complex. VprBP promotes
HIV infection (Ma et al., 2014). Ma et al. demonstrated that miR-
1236 inhibitors increased translation of vprBP in monocytes, thus
facilitating HIV infection. Contrary to monocytes, miR-1236
mimics in monocyte-derived dendritic cells had supressed
vprBP, which was complemented by decreased infection (Ma
et al., 2014).

High surface expression of human leukocyte antigen C (HLA-
C) greatly corresponded with slower disease progression via
superior control of HIV viremia. Several genetic variants have
been shown to disrupt miR-148a regulation of HLA-C (Kulkarni
et al., 2011; Blais et al., 2012; Kulkarni et al., 2013). Disruption of
miRNA binding site allows high expressing HLA-C alleles to
escape miR-148a regulation (Kulkarni et al., 2011). HLA-C alleles
that do not have a disrupted miR-148a binding site are tightly
regulated by miR-148a and are expressed at low levels. The
polymorphisms affecting HLA-C expression through disrupted
miR-148a binding are rs9264942, rs67384697, and rs735316, with
the variants of rs9264942 and rs67384697 being in linkage
disequilibrium (Kulkarni et al., 2011; Blais et al., 2012;
Kulkarni et al., 2013). All three variants are associated with
control and progression of HIV infection by miR-148a-
mediated post-transcriptional regulation of HLA-C.

IL-10 is a multifunctional anti-inflammatory cytokine
produced by various immune cells. With regards to miRNA
regulation of IL-10, the let-7 family can directly target IL10. In
vitro infection with HIV elevated IL10 levels through the
reduction of let-7. In addition, CD4+ T cells of chronically
infected HIV-positive individuals had significantly lower let-7
levels than uninfected individuals and long-term non-
progressors. (Swaminathan et al., 2012b). A single miRNA is
able to regulate multiple target genes. In addition to IL10, let-7c is
involved in the regulation of p21. let-7c overexpression in Jurkat
cells resulted in a 1.38-fold change in p21 expression (Figure 1)
(Farberov et al., 2015).

B lymphocyte-induced maturation protein-1 (Blimp-1) is a
transcriptional repressor of IL-2 (an important cytokine required
for T cell growth and survival). In HIV-infected individuals,
BLIMP-1 may contribute to T cell dysregulation through
alterations in IL-2 levels. MiR-9 inhibited BLIMP1 expression
in CD4+ T cells. Chronically infected HIV-positive patients had
lower miR-9 and higher BLIMP1 expression in comparison to
uninfected healthy individuals and long-term non-progressors
(Seddiki et al., 2013).

2.3 Predicted miRNA Targets for HIV
It is estimated that 1,254 human genes are involved in viral
replication. Genome-wide RNA interference has enabled
researchers to identify multiple host factors that are involved
in HIV life cycle. This large array of host gene targets may be
essential in the development of new therapeutic strategies against
HIV. By identifying and understanding the mechanisms behind
the associations of specific miRNAs and their targets, we can
exploit these factors for HIV viral control. Several HIV-associated
genes are shown to be under the regulation of miRNAs in other
diseases.

Blocking the access of HIV into host cells is the first step in
preventing the HIV proviral genome from integrating into the
host’s genome. The human chemokine receptor 5 (CCR5) plays
an important role in the internalization of HIV into the host cell
(Lederman et al., 2006). Individuals with the 32 base pair
deletion in their CCR5 gene are known to be resistant to
HIV as they have lower levels of CCR5 on the surface of
their CD4+ T cells. Thus, the regulation of CCR5 expression
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may be essential in inhibiting HIV replication. Che et al. found
that miR-107 binds to the 3′UTR of CCR5 (Che et al., 2016).
CCR5 proteins and gene expression were found to be
significantly lower in the presence of miR-107 (Che et al.,
2016). Since CCR5 is important in the HIV context, miR-107
may be of potential therapeutic value in preventing HIV
infection.

Intercellular adhesion molecule 1 (ICAM-1) also plays a
significant role in HIV entry. The binding of ICAM-1 with
LFA-1 on the cell surface facilitates viral infectivity. ICAM-1
increases viral infectivity by directly inserting into mature
HIV virions (Fortin et al., 1997; Bounou et al., 2002). Lui et al.
demonstrated that ICAM1 is negatively regulated by miR-
296-3p in the malignant highly metastatic M12 cell line (Liu
et al., 2013). Furthermore, in prostate cancer cells there is a
negative correlation between miR-296-3p and ICAM1 (Liu
et al., 2013). In the context of HIV, the downregulation of
ICAM1 by miR-296-3p would reduce the rate of infectivity
(Liu et al., 2013).

The tripartite motif (TRIM) proteins are a family of E3
ubiquitin ligases with diverse anti-viral functions (van Gent
et al., 2018). TRIM22, TRIM11, and KAP1 (TRIM28) were
previously shown to have anti-HIV activity (Barr et al., 2008;
Allouch et al., 2009; Yuan et al., 2016). TRIM22 inhibits the
processing of viral particles and viral budding through the
ubiquitylation in HIV. TRIM22 also has anti-Hepatitis C virus
(HCV) activity. Tian et al. confirmed that TRIM22 was regulated
by miR-215 (Tian and He, 2018). In Con1b cells, the
overexpression of miR-215 facilitated HCV replication by
downregulating TRIM22. Knockdown of miR-215 suppressed
HCV replication through the increased expression of TRIM22
in Huh7.5.1 cells (Tian and He, 2018). In colon cancer, TRIM11 is
negatively regulated by miR-24-3p, promoting cellular
proliferation and inhibiting apoptosis (Yin et al., 2016).
Likewise, Qi et al. demonstrated that miR-491 levels inversely
corresponded with TRIM28 expression in glioblastoma
multiforme (GBM) (Qi et al., 2016). Their data showed that
miR-491 was reduced in GBM and indicated that the low levels of
miR-491 are associated with poor prognosis (Qi et al., 2016).
miR-491 inhibited TRIM28 translation in GBM cells (Qi et al.,
2016).

Studies have also demonstrated a link between RAD51
expression and HIV disease (Chipitsyna et al., 2004;
Cosnefroy et al., 2012; Kaminski et al., 2014; Thierry et al.,
2015). Elevated expression of RAD51 promotes HIV-1
transcription (Kaminski et al., 2014). Evidence demonstrates
that RAD51 may have stimulatory or inhibitory effects on
specific steps of retroviral replication cycles (Thierry et al.,
2015). These effects depend on RAD51 being able to recruit
both transcription machinery and proteins implicated in
chromatin remodelling and formulation of RAD51
stimulatory compound (Thierry et al., 2015). Findings from
Gasparini et al. indicate that DNA repair is indirectly regulated
by miR-155 through its interaction with RAD51 in breast cancer
(Gasparini et al., 2014).

The regulation of several other HIV-associated host factors
such as TRAF6, CCL4, CCL3, IRF7, RSAD2, ISG15, TLR3,

SETDB1, and Rab27a by miRNAs could potentially play a
role in HIV infection. Table 2 provides a list of HIV-
associated host genes which should be investigated in future
miRNA studies. The host’s genes and associated miRNAs
described in Table 2 may provide novel therapeutic targets
against HIV.

2.4 Therapeutic miRNA Targets for HIV
Extensive research has paved the way for developing multiple
antiretroviral drugs targeting specific phases of the viral life
cycle, leading to a combination of antiretroviral therapy
(cART). Currently, this treatment results in controlled viral
replication in many treated individuals (Cohen et al., 2016).
Despite the progress with lifesaving HAART, infection with
HIV remains pathogenic and incurable. In addition, these
drugs lead to the development of toxicities and adverse side
effects which may only be combated by changing the drug
regimen. Furthermore, the increasing emergence of HIV drug
resistance poses a threat to the success of the current regimens
(Bertagnolio et al., 2012; Le Douce et al., 2012; Stadeli and
Richman, 2013). These compounding factors highlight the
importance of identifying novel and complementary
treatment regimens.

RNA-based therapeutics appear ready to deliver on their
promise. Significant success has been observed in several
clinical trials using potential miRNA drugs in multiple
infectious and non-infectious diseases, including cancer
(Hatley et al., 2010; Li et al., 2010; Steele et al., 2011; Wong
et al., 2012; Yamanaka et al., 2012), hepatitis C (Jopling et al.,
2005; Sarasin-Filipowicz et al., 2009; Lanford et al., 2010), heart
abnormalities (Thum et al., 2008; Liu et al., 2010), kidney disease,
pathologic fibrosis, and even keloid formation. Interestingly,
studies have also shown that dysregulated miRNA profiles play
a role in HIV replication (Barr et al., 2008; Pincetic et al., 2010; Liu
et al., 2011; Sirois et al., 2011; Tyagi and Kashanchi, 2012; Raposo
et al., 2013; Doyle et al., 2015). The vaccine, iHIVARNA is a
combination of mRNA sequences that serve as an HIV
immunogen. In the first round of clinical trials, iHIVARNA is
tolerated in HIV-infected patients on chronic cART (De Jong
et al., 2019). Despite this progress, the application of miRNAs as
diagnostic and interventional medicine remains an
underexplored area of research. The clinical trial was merely a
proof-of-concept trial; the stability and delivery of the mRNA are
still being tested (De Jong et al., 2019).

The Achilles heel of miRNA-based viral therapy is the lack of
targeted miRNA delivery systems, off-target effects, and
unidentified targets of miRNAs. In addition, miRNAs are
relatively unstable, which may result in insufficient circulation
and poor half-life of the miRNA-based therapy. Future research
should be directed towards constructing optimal miRNA delivery
systems and identifying methods to prevent off-target effects. As
the use of miRNAs as treatment strategies is a growing field, only
a few drugs have been FDA approved (Nature Biotechnology,
2020; Zhang et al., 2021b), which highlights the potential of RNAs
for therapeutic intervention. MiRNAs provide a unique,
reversible approach to treating human diseases and may be
our secret weapon in our fight against HIV.
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3 CONCLUSION

MiRNAs play a significant role in regulating gene expression.
While the role of miRNAs in diseases such as cancer has been
thoroughly investigated, the interplay between miRNAs and HIV
infection has only begun to emerge. MiRNAs have emerged as key
contributors to immune dysfunction observed in HIV disease. As
research develops in specific subsets and more targeted
populations, the understanding of this field matures as more
can be uncovered. Considering that key genes involved in the
HIV life cycle are affected by differentially expressed miRNAs,
there is a link between the host’s RNA interference machinery
and HIV pathogenicity. Future research should focus on
identifying differentially expressed miRNAs in HIV-infected

donors from different population groups., which may be
exploited for therapeutic benefit.

In addition, the application of specific miRNA mimics and
inhibitors (Andorfer et al., 2011; He et al., 2012; De Santa et al.,
2013) is an appealing avenue for future investigations. Noting
that one miRNA alone may be able to target several host genetic
factors, the combined effect of several miRNAs together offers the
potential for a multi-targeted effect. This treatment strategy can
complement current cART regimen. Furthermore, inhibition of
selected miRNAs is advantageous. For instance, selectively
blocking miRNAs that target anti-viral proteins or pathways
could potentially enhance anti-viral responses. This approach
is efficient during the onset of infection, as the anti-viral response
to HIV can be improved.

TABLE 2 | Genes associated with HIV infection shown to be regulated by miRNAs in other diseases.

HIV infection Other disease

Gene Effect References number microRNA Disease or
infection

References number

Viral receptors

CCR5 responsible for HIV infection and entry Blanpain et al. (2002);
Lederman et al. (2006)

miR-107 Cancer Che et al. (2016)

ICAM-1 assists with HIV entry increasing virus
infectivity

Fortin et al., (1997); Bounou
et al. (2002)

miR-296-3p Prostate cancer Liu et al. (2013)

Innate immune regulators

TRIM22 blocks HIV replication in cell by preventing
the assembly of the virus

Barr et al. (2008) miR-215 HCV Tian and He, (2018)

TRIM28
(KAP1)

inhibits HIV-1 through by targeting the
integration step

Allouch et al. (2009) miR-149 Cancer Qi et al. (2016)

TRIM11 restricts HIV-1 reverse transcription by
accelerating viral un-coating

Yuan et al. (2016) miR-24-3p Colon cancer Yin et al. (2016)

TRAF6 induced as part of the normal innate
immune response against HIV virus

Sirois et al. (2011) miR-146a miR-144 Dengue virus influenza virus,
EMCV, and VSV

Wu et al. (2013)
Rosenberger et al. (2017)

T cell exhaustion markers

CCL4 CCR5 ligand involved in blocking HIV entry Carrol et al. (1999) miR-125b Aging Cheng et al. (2015)
CCL3 CCR5 ligand involved in blocking HIV entry Modi et al., (2006); Levine

et al., (2009)
miR-223 Tuberculosis Dorhoi et al. (2013)

IRF7 contributes to enhanced HIV-1 replication Sirois et al. (2011) miR-541 Vascular smooth muscle
cells

Yang et al. (2016)

RSAD2
(viperin)

Inhibits viral production Raposo et al. (2013) miR-200a miR-
200b miR-429

Cell differentiation studies Li et al. (2016)

ISG15 Suppresses HIV replication at various
parts of the HIV life cycle

Pincetic et al. (2010); Doyle
et al., (2015)

miR-138 miR-370 Oral cancer Zhang et al. (2017)

Toll-like receptors

TLR3 Innate immune response. Reduces HIV
infection

Akira et al., (2006);
Swaminathan et al. (2012c)

miR-26a Arthritis Jiang et al. (2014)

Other

RAD51 stimulatory or inhibitory effects on specific
steps on retroviral replication cycles

(Kaminski et al., 2014;
Thierry et al., 2015)

miR-155 Cancer Gasparini et al. (2014)

SETDB1 Inhibits HIV-1 replication at a step prior to
integration

(Liu et al., 2011; Tyagi and
Kashanchi, 2012)

miR-381-3p Breast cancer Wu et al. (2018)

Rab27a Favours HIV assembly Gerber et al. (2015) miR-134-3p Ovarian cancer Chang et al. (2017)

Notes: HCV, abbreviates Hepatitis C. EMCV, abbreviates encephalomyocarditis virus; VSV, abbreviates vesicular stomatitis virus.
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