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The plateau zokor (Myospalax baileyi) is a native species of the Qinghai–Tibet Plateau that
spends its entire life underground in sealed burrows with hypoxic conditions. The present
study aimed to assess the sequence characteristics of apoptosis-related genes and the
response to different oxygen partial pressures (pO2) in plateau zokor and Sprague-Dawley
rats. The sequences of the p53-induced protein with a death domain (Pidd), p53-
upregulated modulator of apoptosis (Puma), insulin-like growth factor binding protein 3
(Igfbp3), and apoptosis protease-activating factor 1 (Apaf1) were evaluated concerning
homology and convergent evolution sites, and their mRNA levels were evaluated in
different tissues under 14.13 (3,300m) and 16.12 kPa (2,260 m) pO2 conditions. Our
results showed that, (1) the sequences of the apoptosis-related genes in plateau zokor
were highly similar to those of Nannospalax galili, followed by Rattus norvegicus; (2). Pidd,
Puma, Igfbp3, and Apaf1 of plateau zokor were found to have five, one, two, and five
convergent sites in functional domains with N. galili, respectively. Lastly (3), under low pO2,
the expression of Pidd and Pumawas downregulated in the lung of plateau zokors. In turn,
Igfbp3 and Apaf1were upregulated in the liver and lung, and Pumawas upregulated in the
skeletal muscle of plateau zokor under low pO2. In Sprague-Dawley rats, low pO2

downregulated Puma and Apaf1 expression in the liver and downregulated Igfbp3 and
Puma in the lung and skeletal muscle separately. In contrast, low pO2 upregulated Pidd
expression in the liver and skeletal muscle of Sprague-Dawley rats. Overall, the expression
patterns of Apaf1, Igfbp3, and Puma showed the opposite pattern in the liver, lung, and
skeletal muscle, respectively, of plateau zokor as compared with Sprague-Dawley rats. In
conclusion, for the long-time adaptation to hypoxic environments, Pidd,Puma, Igfbp3, and
Apaf1 of plateau zokor underwent convergent evolution, which we believe may have led to
upregulation of their levels under low oxygen partial pressures to induce apoptosis, so as
to suppress tumorigenesis under hypoxic environments in plateau zokor.
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INTRODUCTION

Under hypoxic conditions, cells commonly initiate the process of
programmed death via apoptosis, in which two pathways are
involved: the extrinsic pathway (death receptor pathway) and
intrinsic pathway (mitochondrial pathway) (Pan et al., 2014;
Lohberger et al., 2016). In the extrinsic pathway, the death-
inducing signaling complex (DISC) is stimulated, which will in
turn promote the hydrolysis of caspase that has a critical function,
to transmit the apoptotic signal into the nucleus land trigger
apoptosis. In the intrinsic pathway, hypoxia induces apoptosis via
the increased permeability of the mitochondrial membrane,
specifically by directly inhibiting the electron transport chain
of the mitochondrial inner membrane, thereby causing
cytochrome c released to the cytoplasm (Pan et al., 2014;
Sendoel and Hengartner, 2014; Lohberger et al., 2016).

Proapoptotic and antiapoptotic genes are also key regulators
of the apoptotic process, including the proapoptotic genes B-cell
lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-xl/Bcl-2-
associated death promoter, Bcl-2 homology 3 (BH3)-only
proapoptotic protein (Noxa), Bcl2/adenovirus EIB 19kD-
interacting protein 3 (Bnip3), p53-induced protein with a
death domain (Pidd), p53-upregulated modulator of
apoptosis (Puma), insulin-like growth factor binging protein
3 (Igfbp3), apoptotic protease-activating factor-1 (Apaf1), and
the antiapoptotic Bcl-2 and Bcl-2-like 14 protein (Hockenbery
et al., 1993; Gross et al., 1999; Mcclintock et al., 2002; Gogvadze
and Orrenius, 2006). Studies have shown that hypoxia treatment
promotes the upregulation of Bax and downregulation of Bcl-2
in myocardial and germ cells in rats (Nakamura et al., 2000; Liao
et al., 2007). In addition, hypoxia can upregulate the levels of
death receptor 5 (DR5), tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL), Fas, p53, and Bax; and
downregulate the levels of cellular FADD-like interleukin-1β-
converting enzyme-inhibitory protein (c-FLIP), decoy receptor
2 (DcR2), and Bcl-2 in murine spermatocytes (Yin et al., 2018).
Moreover, hypoxia post-conditioning was found to
downregulate the levels of Puma in neonatal rat
cardiomyocytes (Li et al., 2015). Noteworthy, hypoxia, which
is a signature of a solid tumor microenvironment, was found to
lowly downregulate Pidd in tumors, including in hepatocellular
carcinoma (HCC), testicular germ cell carcinoma, and lung
cancer, as compared with normal tissues and cell lines
(Kerley-Hamilton et al., 2005; Oliver et al., 2010; Shi et al.,
2016).

Plateau zokor (Myospalax baileyi) is a wild subterranean
rodent that lives in sealed burrows at an altitude of
2,800–4,200 m on the Qinghai–Tibet Plateau (Wang et al.,
1979; Fan and Shi, 1982); thus, it spends its entire life
underground in hypoxic and hypercapnic conditions (Fan and
Shi, 1982; Nevo, 1999; Nevo et al., 2001; Shams et al., 2005), with
an oxygen content 20% lower than that in the atmosphere (Zeng
et al., 1984). Studies have shown that subterranean rodents have
strong adapting capability, which grants them phenotypic,
physiological, and molecular features to cope with the harsh
burrowing environments (Arieli and Ar, 1981; Arieli et al., 1986;
Widmer et al., 1997; Wang et al., 2008; Kim et al., 2011; Fang

et al., 2014; Shao et al., 2015). To the best of our knowledge,
subterranean rodents exhibit unique longevity and cancer
resistance; for example, Nannospalax galili and Heterocephalus
glaber are subterranean rodents that can live at least 21 years
(Edrey et al., 2012) and more than 30 years (Buffenstein and
Jarvis, 2002; Buffenstein, 2008; Kim et al., 2011), respectively.
Indeed, tumors have never been observed in multi-years of
observation of wild or captive subterranean rodents
(Buffenstein and Jarvis, 2002; Buffenstein, 2008; Gorbunova
et al., 2012; Delaney et al., 2013; Manov et al., 2013).

Previous studies have suggested that molecular pathways
associated with hypoxia tolerance share common
antiapoptotic functions with those related to tumor
adaptivity in Spalax (Ashur-Fabian et al., 2004; Avivi et al.,
2007; Band et al., 2010). Furthermore, transcriptome analysis
demonstrated the presence of numerous apoptosis-related
suppressors (Malik et al., 2011; Malik et al., 2012). p53 is a
tumor suppressor protein that activates several target genes
related to the cell cycle and apoptosis to inhibit the tumor’s
growth (Avivi et al., 2005). Our previous research demonstrated
that p53 is sensitive to the oxygen concentration in the tissues of
plateau zokor, and hypoxia upregulates the levels of p53,
whereas the Sprague–Dawley (SD) rat did not (An et al.,
2018). In addition, a substitution in position 174 of Spalax
spp. p53 sequence indicated that these rodents adapt to hypoxic
environments by escaping from apoptosis via loss of function of
apoptotic proteins, such as Apaf1, Puma, Noxa, and Bax
(Ashur-Fabian et al., 2004; Avivi et al., 2005; Avivi et al.,
2007). Indeed, a substitution at position 104 of p53 was
shown to activate genes related to apoptosis, including
Igfbp3, Apaf1, Bax, Puma, and Noxa in Gansu zokor
(Myospalax cansus), as well as transcription of Igfbp3, Apaf1,
and Bax in plateau zokor (Zhao et al., 2013). In addition, some
apoptosis-related genes were evaluated in subterranean rodents,
revealing that the expression of Bcl2 in the lungs was
significantly increased in chalk than in the basalt mole rat of
Spalax galili, whereas Apaf1, Bax, Igfbp3, and Puma levels were
similar in various tissues of the 2 mole rat populations (Zhao
et al., 2016). Compared with normoxic conditions, hypoxic
stress (6% O2 for 5 h) showed no effect on Bnip3 expression
in Spalax galilimuscle and heart, whereas it was a slight increase
under moderate oxygen levels (10% O2 for 22 or 44 h) was
reported (Band et al., 2009). However, in Rattus norvegicus, the
expression of Bnip3 is significantly increased in the muscle and
heart under such hypoxic conditions (Band et al., 2009). Despite
several studies having explore the impact of hypoxia in
apoptosis-related genes in hypoxia-tolerant subterranean
rodents, most studies were conducted on Spalax spp.,
whereas little information is available on plateau zokor. To
date, the response to different oxygen partial pressures in tissues
of plateau zokor and the sequence characteristics of the
apoptosis-related genes are not definitely established.
Therefore, the present study aimed to assess the expression
and sequence of apoptosis-related genes in plateau zokor and
Sprague–Dawley rat tissues under different oxygen partial
pressures to further understand the ability of plateau zokor
to cope with oxygen partial pressures.
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MATERIALS AND METHODS

Animals and Sample Collection
Plateau zokors were live-trapped in the Zongjiagou region in
Huangyuan country, Qinghai Province, China, at an altitude of
3,300 m with the oxygen partial pressure (pO2) of 14.13 kPa.
Sprague–Dawley rats were bought from Lanzhou, Gansu
Province, China. All animals were divided into two groups (1):
14.13 kPa (3,300 m) group, plateau zokors were captured in the
field (3,300 m, the field was the habitats of plateau zokor),
Sprague–Dawley rats were raised in the Zongjiagou region in
Huangyuan country for 8 days (2); 16.12 kPa (2,260 m) group,
plateau zokors were captured from Zongjiagou region in
Huangyuan country and raised for 8 days in Xining City,
Qinghai Province, China, at an altitude of 2,260 m with the
oxygen partial pressure of 16.12 kPa. Sprague–Dawley rats
were raised in Xining for 8 days. Experiments were performed
on adult animals. Animals were housed in individual cages with
sawdust and hay. The sample size was eight for each group. All
animals were anesthetized with sodium pentobarbital (5%) and
sacrificed using cervical dislocation immediately before
dissection. Liver, lung, and skeletal muscle tissues were
removed and immediately frozen in liquid nitrogen. All
procedures involved in the handling and care of animals were
in accordance with the China Practice for the Care and Use of
Laboratory Animals and were approved by the China Zoological
Society (permit number: GB/T35892-2018).

RNA Extraction and Quantification of
Apoptosis-Related Gene mRNA Using
qRT-PCR
Total RNA was isolated from the liver, lung, and skeletal muscle
tissues using TRIzol reagent (Invitrogen Corp, 15596026,
United States). The concentration and purity were checked
using UV spectrophotometry (1.8 < A260/A280 < 2.0). RNA
integrity was assessed using electrophoresis. A reverse
transcription reaction was synthesized starting with 3.8 μg of
total RNA and the First Strand cDNA Synthesis kit (TIANGEN,
KR118-02, China).

The quantitative real-time RT-PCR was performed on a Bio-
Rad Connect real-time PCR detection system (Bio-Rad
Laboratories, Hercules, CA, United States) using the SYBR
Premix Ex Taq™ II (Takara Bio, RR820A, Japan) protocol to
quantify the expression level of apoptosis-related genes in plateau
zokors and Sprague–Dawley rats. The qRT-PCR was performed
at 95°C for 3 min, and then for 40 cycles at 95°C for 30 s and 60°C
for 30 s. The β-actin was used as an internal control. The relative
expression level of apoptosis-related genes mRNA was computed
based on the internal control gene using the 2−△△Ct method
(Livak and Schmittgen, 2001). The primers for apoptosis-related
genes and β-actin were designed as follows:M. baileyi Pidd-F: 5′-
CTA CCG TGA ACT ACA GCG TAT C -3′, M. baileyi Pidd-R:
5′- ACC TCT TCA GCC ACA TCC T -3’;M. baileyi Puma-F: 5′-
CAG GGT GGG TGG TAA -3′, M. baileyi Puma-R: 5′- CGG
GCGACT CTAGGTGTT -3’;M. baileyi Igfbp3-F: 5′- TGG TGT

GTG GAC AAG TAT G -3′, M. baileyi Igfbp3-R: 5′- AGT TCA
CTT CGT CCT TCC -3’;M. baileyi Apaf1-F: 5′- GGA GAC TGA
GGA GGT TGA AGA -3′, M. baileyi Apaf1-R: 5′- GCG TAT
GCG GCT GGT AAT -3’; Rat Pidd-F: 5′- CCG TGA GGT AGT
TGT GAG AA-3′, Rat Pidd-R: 5′- GGT AAT AGG CAG GTG
TTG GA -3’; Rat Puma-F: 5′- TGT GGA GGA GGA GGA GTG
-3′, Rat Puma-R: 5′- CGA TGT TGC TCT TCT TGT CTC -3’;
Rat Igfbp3-F: 5′- TGAGGAGGACCACAATGC -3′, Rat Igfbp3-
R: 5′- GCT TAG ACT CGG AGG AGA AG -3’; Rat Apaf1-F: 5′-
GTC ATC ACA GCA CCA TCC AGT A-3′, Rat Apaf1-R: 5′-
TCA AGA ACG AGG AGC CAT CAG -3’; β-actin-F: 5′-TCA
CCAACTGGGACGATA TG -3′, β-actin-R: 5′-GTT GGCCTT
AGG GTT CAG AG -3’.

Statistical analyses were performed using SAS 8.2 software.
The expression levels of apoptosis-related genes between different
oxygen partial pressures were compared using Student’s t-test. A
value of p < 0.05 was considered to be statistically significant.

Sequences of Apoptosis-Related Genes
The coding DNA sequences of apoptosis-related genes of plateau
zokor and plateau pika (Ochotona curzniae) were obtained from
the next generation sequencing databases and Isoform
Sequencing databases, we were sequenced on Illumina Hiseq
4,000 and PacBio RSII platform and performed by Novogene
Bioinformatics Technology Co., Ltd, Beijing, China. The
sequences of the other 20 mammalian species were obtained
from the NCBI (National Center for Biotechnology Information)
(https://www.ncbi.nlm.nih.gov/), N. galili, R. norvegicus, M.
musculus, H. glaber, M. ochrogaster, M. auratus, C. griseus, J.
jaculus, F. damarensis, C. porcellus, C. lanigera, O. degus, I.
tridecemlineatus, O. princeps, B. Taurus, O. aries, C. hircus, H.
sapiens, P. troglodytes.

Sequence Analysis
Nucleotide and amino acid sequences of apoptosis-related genes
were aligned by using ClustalW2 (http://www.ebi.ac.uk/Tools/
msa/clustalw2) and MEGA 7.0 software (Kumar et al., 2016) and
manually adjusted with DNAMAN 9.0.

Selection Pressure Analysis
ClustalX 1.81 software was used to sequence alignments
(Jeanmougin et al., 1998), and MEGA 7.0 software was
performed for format conversion (Kumar et al., 2016). The
selection pressure analysis on apoptosis-related genes was
estimated by using the maximum-likelihood method in
codeml from the PAML 4.8 package based on the mammalian
species tree. The omega (ω) values (dN/dS = nonsynonymous/
synonymous) were calculated in specific lineages, the ω values
indicate changes in selective pressures, with ω < 1, ω > 1, and ω =
1 indicates negative, positive, and neutral selections, respectively
(Hurst, 2002; Xu and Yang, 2013). The branch-site models were
used to investigate positive selective pressures in specific lineages
(Zhang et al., 2005), including 22 mammalian species. The
significance of the likelihood ratio test (LRT) statistic was
determined using a χ2 distribution, and the positively selected
sites were identified using Bayes Empirical Bayes (BEB) analysis
(Zhang et al., 2005; Yang, 2007).
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Convergent Evolution Analysis
To infer convergent sites among branches of plateau zokor
and N. galili, ancestral amino acid sequences were
reconstructed using the Ancestors program in the MEGA
software (Tamura et al., 2011). Eleven mammalian species
were used to infer the convergent sites. Ancestral inferences
appeared reliable because the posterior probabilities for the
entire protein exceeded 99% for all nodes. We attempted to
identify convergent changes by comparing ancestral and
extant apoptosis-related gene protein sequences. Next, we
calculated the probability that the observed convergent sites
exceeded the expectation due to random chance using Jones-
Taylor-Thornton (JTT) along with the Poisson models
(Zhang and Kumar, 1997).

Protein Structure Homology Modeling
We investigated the relationships between the amino acid
substitution sites and the structural modeling of the apoptosis-
related genes. The protein structures were constructed using the
SWISS-MODEL server to assemble amino acids selected with a
homology modeling protocol (Schwede et al., 2003). Then we
downloaded the model with the high identity of the sequences
from the SWISS-MODEL server and converted the proteins files
in PDB format to PQR format with the PDB2PQR server (http://
nbcr-222.ucsd.edu/pdb2pqr_2.1.1/) (Dolinsky et al., 2004;
Dolinsky et al., 2007). The surface electrostatic potential of the
protein structures was calculated and presented using PyMOL,
VMD, and APBS (Humphrey et al., 1996; DeLano, 2002; Unni
et al., 2011).

FIGURE 1 | Quantification of apoptosis-related genes mRNA levels in tissues of plateau zokor and Sprague–Dawley rat under different oxygen partial pressures.
Panels indicate liver (A–D), lung (E–H), and skeletal muscle (I–L). pp, p < 0.01; p, p < 0.05; ns, not significant (p > 0.05). The sample size was eight for each group.
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RESULTS

Expression of Apoptosis-Related Genes in
Tissues of Plateau Zokor and Sprague-
Dawley Rats
Analysis of the levels of different apoptosis-related genes in
the liver of plateau zokors and Sprague-Dawley rats showed
that Apaf1 expression pattern followed the expected trend so
to cope with different pO2 conditions in plateau zokors:
Apaf1 was significantly higher under 14.13 kPa pO2 than at
16.12 kPa in plateau zokors, where it was significantly lower
at 14.13 kPa pO2 in Sprague-Dawley rats (Figure 1D).
Moreover, the relative expression of Pidd and Puma was
not significantly different between 14.13 and 16.12 kPa,
whereas that of Igfbp3 was significantly higher at 14.13 kPa
pO2 in plateau zokors (Figures 1A–C). In turn, in the liver of
Sprague-Dawley rats, the expression of Pidd was significantly
higher under 14.13 kPa pO2 than at 16.12 kPa (Figure 1A),
whereas that of Puma was significantly lower at 14.13 kPa
pO2 (Figure 1B).

In the lungs, the expression of Pidd and Puma was
significantly lower under 14.13 kPa pO2 than at 16.12 kPa in
plateau zokors, where that of Igfbp3 and Apaf1 was significantly
higher at 14.13 kPa pO2 (Figures 1E–H). In contrast, the
expression of Igfbp3 was significantly lower under 14.13 kPa
pO2 than 16.12 kPa in Sprague-Dawley rats (Figure 1G), whereas
that of Pidd, Puma, and Apaf1 remained unaltered regardless of
the pO2 condition (Figures 1E,F,H).

Lastly, the levels of genes related to apoptosis were
measured in samples of skeletal muscle. Overall, the
relative expression of Pidd and Apaf1 was found to be
similar under different pO2 conditions whereas that of
Puma and Igfbp3 was significantly higher under 14.13 kPa

pO2 than at 16.12 kPa in plateau zokors (Figure 1I, 1L, 1J,
1K). In Sprague-Dawley rats, the level of Pidd and Igfbp3 was
significantly higher at 14.13 kPa pO2 than at 16.12 kPa
(Figures 1I,K), whereas the expression of Puma was
significantly lower at 14.13 kPa pO2 and that of Apaf1
remained unaltered under different pO2 conditions
(Figure 1J, 1L).

Taken together, the results demonstrate that apoptosis-related
genes are differently regulated depending on the tissue and that,
in some instances, have opposite expression patterns between
plateau zokors and Sprague-Dawley rats.

Homology Analysis of Apoptosis-Related
Genes of Plateau Zokor
The complete coding sequence (CDS) of Piddwas 2,757 bp, which
encoded a protein with 918 amino acid residues. Homology
analysis showed that the CDSs of plateau zokor Pidd shared:
91.50%, 80.05%, 85.05%, 85.78%, 74.90%, 75.41%, and 79.78%
nucleotide sequence homology (Table 1), and 94.56%, 79.85%,
85.87%, 86.60%, 74.40%, 74.84%, and 79.62% amino acid
sequence homology (Table 2) with those of N. galili, H.
glaber, R. norvegicus, M. musculus, O. curzniae, O. princeps,
and H. sapiens, respectively.

The CDS of Puma was found to have a length of 582 bp,
encoding a protein with 193 amino acid residues. These
sequences shared: 95.19%, 79.37%, 92.27%, 90.89%, 87.80%,
87.69%, and 90.89% nucleotide sequence homology (Table 1),
and 96.37%, 80.86%, 95.34%, 94.82%, 87.56%, 86.60%, and
92.75% amino acid sequence homology (Table 2) with those
of N. galili, H. glaber, R. norvegicus,M. musculus, O. curzniae, O.
princeps, and H. sapiens, respectively.

The CDS of Igfbp3 was 879 bp, encoding a protein
consisting of 292 amino acid residues. Homology analysis

TABLE 1 | Sequence homology of apoptosis-related genes between plateau zokor and other species.

Genes Length Nannospalax
galili
(%)

Heterocephalus
glaber
(%)

Rattus
norvegicus

(%)

Mus
musculus

(%)

Ochotona
curzoniae

(%)

Ochotona
princeps

(%)

Homo
sapiens

(%)

Pidd 2,757 91.50 80.05 85.05 85.78 74.90 75.41 79.78
Puma 582 95.19 79.37 92.27 90.89 87.80 87.69 90.89
Igfbp3 879 93.64 68.97 87.95 87.39 54.20 55.09 82.57
Apaf1 3,750 94.00 88.39 87.54 88.23 78.22 80.38 88.98

TABLE 2 | Amino acid sequence homology of apoptosis-related genes between plateau zokor and other species.

Genes Length Nannospalax
galili
(%)

Heterocephalus
glaber
(%)

Rattus
norvegicus

(%)

Mus
musculus

(%)

Ochotona
curzoniae

(%)

Ochotona
princeps

(%)

Homo
sapiens

(%)

Pidd 918 94.56 79.85 85.87 86.60 74.40 74.84 79.62
Puma 193 96.37 80.86 95.34 94.82 87.56 86.60 92.75
Igfbp3 292 96.23 69.28 84.59 85.96 55.97 55.63 80.94
Apaf1 1,249 94.00 88.39 90.71 91.51 77.10 79.02 88.15
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displayed that the CDS of plateau zokor Igfbp3 shared:
93.64%, 68.97%, 87.95%, 87.39%, 54.20%, 55.09%, and
82.57% nucleotide sequence homology (Table 1), and
96.23%, 69.28%, 84.59%, 85.96%, 55.97%, 55.63%, and
80.94% amino acid sequence homology (Table 2) with
those of N. galili, H. glaber, R. norvegicus, M. musculus, O.
curzniae, O. princeps, and H. sapiens, respectively.

Lastly, the CDS of Apaf1 was found to have a length of 3,750
bp, which encoded a protein of 1,249 amino acid. These
sequences shared: 94.00%, 88.39%, 87.54%, 88.23%, 78.22%,
80.38%, and 88.98% nucleotide sequence homology (Table 1),
and 94.00%, 88.39%, 90.71%, 91.51%, 77.10%, 79.02%, and
88.15% amino acid sequence homology (Table 2) with those

of N. galili, H. glaber, R. norvegicus,M. musculus, O. curzniae, O.
princeps, and H. sapiens, respectively.

Positive Selection Site Analysis
To detect the positively selected sites of apoptosis-related genes in
plateau zokor, we treated the plateau zokor branch as the
foreground branch and used the branch-site model. The
analysis of the apoptosis-related genes showed that two
positive selection sites existed in Pidd of plateau zokor, that
were Arg853 and Val898, respectively, and the LRT statistic
comparing model A with the null model was not of statistical
significance; one site in Puma of plateau zokor, there was Gln161,
and the LRT statistic of model A with null model was not of

TABLE 3 | Likelihood ratio test (LRT) of branch-site models for apoptosis-related genes in plateau zokor.

Genes Model Estimate of
parameters

-lnLa Model comparison Positively selected
sites

2ΔlnL (p
value)

Pidd Null A p0 = 0.76, p1 = 0.24, (p2+ p3 = 0.00), ω0 = 0.07, ω1 = 1.00, ω2 = 1.00 -19516.5
Model A p0 = 0.76, p1 = 0.24, (p2+ p3 = 0.00), ω0 = 0.07, ω1 = 1.00, ω2 = 1.00 -19516.5 Model A vs. Null A 853 R, 898 V 0 (p = 1)

Puma Null A p0 = 0.93, p1 = 0.07, (p2+ p3 = 0.00), ω0 = 0.09, ω1 = 1.00, ω2 = 1.00 -2,809.95
Model A p0 = 0.93, p1 = 0.07, (p2+ p3 = 0.00), ω0 = 0.09, ω1 = 1.00, ω2 = 1.00 -2,809.95 Model A vs. Null A 161 Q 0 (p = 1)

Igfbp3 Null A p0 = 0.90, p1 = 0.10, (p2+ p3 = 0.00), ω0 = 0.09, ω1 = 1.00, ω2 = 1.00 -5,777.96
Model A p0 = 0.90, p1 = 0.10, (p2+ p3 = 0.00), ω0 = 0.09, ω1 = 1.00, ω2 = 1.00 -5,777.96 Model A vs. Null A 0 (p = 1)

Apaf1 Null A p0 = 0.86, p1 = 0.13, (p2+ p3 = 0.03), ω0 = 0.10, ω1 = 1.00, ω2 = 1.00 -21934.7
Model A p0 = 0.86, p1 = 0.13, (p2+ p3 = 0.03), ω0 = 0.10, ω1 = 1.00, ω2 = 1.00 -21934.7 Model A vs. Null A 0 (p = 1)

FIGURE 2 | Evolution of convergent sites in Pidd, Puma, Apaf1, and Ifbp3 sequences. Panels indicate Pidd (A), Puma (B), Apaf1 (C) and Igfbp3 (D). Amino acids
and codons of convergent sites are shown. Amino acids in Myospalax baileyi and Nannospalax galili are highlighted in red.
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statistical significance. Apaf1 and Igfbp3 had no positive selection
sites in plateau zokor (p > 0.05) (Table 3).

Convergent Evolution Analysis
To detect the convergent sites of apoptosis-related genes in
subterranean rodents (M. baileyi and N. galili), we compared
ancestral and extant amino acid sequences. Pidd was found to
have five sites that underwent convergent evolution in
subterranean rodents: the amino acids at positions 109, 110,
559, 566, and 771 were glutamine (Q), arginine (R), arginine
(R), alanine (A), and serine (S) in the ancestral branch,
respectively, which were replaced by histidine (H), isoleucine
(I), cysteine (C), aspartic acid (D), and proline (P) in the
subterranean rodent branch (Figure 2A). Puma had one site
(position 157) that showed convergent evolution, as it was
glutamine (Q) in the ancestral branch and it was replaced by
lysine (L) in the subterranean rodent branch (Figure 2B).
Moreover, Apaf1 had five sites that could experience
convergent evolution in subterranean rodents: the amino
acid positions 289, 320, 1,000, 1,039, and 1,069 were
glutamic acid (E), serine (S), isoleucine (I), phenylalanine
(F), and valine (V) in the ancestral branch, but were

replaced by aspartic acid (D), phenylalanine (F), methionine
(M), lysine (L), and isoleucine (I) in the subterranean rodent
branch, respectively (Figure 2C). Lastly, Igfbp3 was found to
have two sites of possible convergent evolution (positions 207
and 285) in which an arginine (R) and histidine (H) in the
ancestral branch were replaced by a glutamine (Q) and
asparagine (N) in the subterranean rodent branch,
respectively (Figure 2D).

According to a statistical test, these identified convergent sites
were confirmed to be likely convergent sites, rather than chance
substitutions (p < 0.01).

Protein Structure Homology Modeling
Next, we investigated the relationship between the amino acid
convergent sites and the structure changes with functional
properties in the apoptosis-related genes. Unfortunately, only
the high homology model of Apaf1 was available at the SWISS-
MODEL server; thus, we were unable to do this analysis for
Pidd, Puma, and Igfbp3. The convergent site at position 320 of
Apaf1 was a serine (S) in R. norvegicus, whereas was substituted
by phenylalanine (F) in plateau zokors, and was located in the
central CED-4 domain. Since the polar amino acid (S) was
substituted by a non-polar amino acid (F), the regional
electrostatic potential changed in enlarged electrostatic
potential maps (Figure 3).

DISCUSSION

The plateau zokor has a strong adapting capability to the
hypoxic environment of its burrows. In the present study,
we measured the levels of apoptosis-related genes in plateau
zokor and Sprague-Dawley rats at different oxygen partial
pressures. Overall, we found that the Pidd levels were
downregulated in the lung of plateau zokor when under low
pO2. In contrast, low pO2 upregulated Pidd expression in the
liver and skeletal muscle of Sprague-Dawley rats. Puma, Igfbp3,
and Apaf1 are proapoptotic genes involved in the
mitochondria-dependent apoptotic pathway. Noteworthy,
low pO2 downregulated the expression of Puma in the lung,
whereas was upregulated in the skeletal muscle of plateau
zokor. Moreover, low pO2 also upregulated the levels of
Igfbp3 and Apaf1 in the tissues of plateau zokor. In turn, in
Sprague-Dawley rats, low pO2 downregulated the levels of
Igfbp3 and Apaf1 in the lung and liver, respectively, and
upregulated the levels of Igfbp3 in the skeletal muscle. Taken
together, plateau zokors and Sprague-Dawley rats showed
opposite expression patterns of Apaf1, Igfbp3, and Puma in
the liver, lung, and skeletal muscle, respectively. A previous
study illustrated that the transactivation of Puma is
downregulated in human non-small cell lung carcinoma
cells transfected with wild-type p53 or N104S mutated p53
of plateau zokor (Zhao et al., 2013). In particular, p53N104S

harboring cells displayed upregulated Igfbp3 transactivation
under hypoxic stress (0.2% O2) (Zhao et al., 2013). In the
subterranean rodent Lasiopodomys mandarinus, Igfbp3 was
reported to be upregulated under hypoxic conditions (Li,

FIGURE 3 | The electrostatic potential map of Apaf1 in plateau zokor
(Myospalax baileyi) (A) and Sprague–Dawley rat (Rattus norvegicus) (B). The
range of surface electrostatic potential was shown from -7 kT/e to 7 kT/e in red
and blue, respectively. At the right panel, the surface electrostatic
potential around the substitution sites was enlarged at residue 320.
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2017). Another study in Spalax also showed that the mRNA
levels were decreased under hypoxic conditions upon impaired
transcription of Apaf1, whereas they were increased in the rat
(Band et al., 2010). In addition, p53 upregulates the
transactivation of plateau zokor Apaf1 under hypoxic
conditions in in vitro experiments (Zhao et al., 2013).
Therefore, low oxygen partial pressures induce apoptosis by
upregulating the apoptosis-related genes in tissues of plateau
zokor, so as to prevent tumorigenesis under hypoxic
environments. Moreover, the apoptosis-related genes
demonstrated tissue-specific, differential expression patterns
in plateau zokor, which reflects the differentiation of the tissues
and their physiological correlation with a hypoxic adaptation of
metabolic, respiratory, and energy regulation. Furthermore, we
observed different expression patterns of the apoptosis-related
genes between plateau zokor and Sprague-Dawley rats. Studies
have reported that subterranean rodents harbor amino acid
substitutions in hemoglobin, myoglobin, and cytoglobin, which
resulted in increased affinity toward oxygen and an enhanced
capacity to adapt to hypoxic environments (Gurnett et al.,
1984; Kleinschmidt et al., 1984). Thus, we hypothesize that the
different expression patterns noted in plateau zokor and
Sprague-Dawley rats are closely related to the sequence
homology and substitution sites.

Herein, homology analysis showed that the nucleotide and
amino acid sequences of the apoptosis-related genes in plateau
zokor were high similar to those of N. galili, followed by R.
norvegicus. This observation may be explained by the fact that N.
galili and plateau zokor belong to the family of subterranean
rodents; thus, they may have developed similar strategies to adapt
to the hypoxic-hypercapnic burrowing environments (Arieli and
Ar, 1981; Zeng et al., 1984; Arieli et al., 1986; Widmer et al., 1997;
Shao et al., 2015). Indeed, phylogenetic studies based on the
transcriptome and genome of plateau zokor showed that they
diverged from the rat approximately 52 million years ago (Shao
et al., 2015).

Pidd is a molecular switch between cell survival and apoptosis
(Wu et al., 2005), which comprises seven leucine-rich repeats (LRRs)
at the N-terminus, followed by two ZO-1 and Unc5-like (ZU-5)
domains and a C-terminal death domain (DD) (Tinel and Tschopp,
2004). The full-length Pidd protein is constitutively cleaved into
three fragments: Pidd-N (1–445aa, 48 kDa), which contains the
N-terminal LRRs and the proximal ZU-5; Pidd-C (446–910aa,
51 kDa), which contains the distal ZU-5 and DD; and Pidd-CC
(588–910aa, 37 kDa), which contains the DD (Tinel and Tschopp,
2004; Tinel et al., 2007). Evolution analysis displayed that the Pidd of
plateau zokor and N. galili had five convergent sits (H109, I110,
C559, D566, and P771). H109 and I110 were located in the LRRs at
the N-terminus, C559 and D566 were located in the DD, and P771
was in the Pidd-CC fragment. Previous studies have shown that
Pidd-N may be involved in a stress-related signal. Moreover, Pidd-
CC interacts with receptor-interacting protein (RIP)-associated
ICH-1/CED-3 homologous protein with a DD, as well as with
caspace-2 to form a protein complex, named PIDDosome, which
will, in turn, trigger the activation of mitochondria-dependent
apoptosis (Tinel and Tschopp, 2004; Berube et al., 2005; Ren
et al., 2005). However, Pidd-C mediates the activation of NF-κB

via recruitment of RIP1-1 and NF-κB essential modulator (NEMO),
resulting in apoptosis inhibition (Janssens et al., 2005). Since a
positively charged histidine (H) substituted the cysteine (C) at
position 559, the threonine (T) substituted for negatively charged
aspartic acid (D) at the position 566, the regional electrostatic
potential was, thus, the substitution may have altered Pidd-C
affinity for RIP1 and NEMO, as well as and the activity of NF-
κB, resulting in decreased ability to inhibit apoptosis in plateau zokor
tissues. Puma is a proapoptotic BH3-only member of the Bcl-2
protein family that induces apoptosis via its BH3 domain but also by
the mitochondrial targeting sequences (MTS) located in its
C-terminus, the deletion of MTS could not be recognized the
mitochondrial so that apoptotic induction was lost (Nakano and
Vousden, 2001; Yu et al., 2001; Steckley et al., 2007). In the present
study, evolution analysis showed that plateau zokor Puma had one
convergent evolution site at position 157, with the substitution of a
polar amino acid (Q) by a non-polar amino acid (L) in its MTS
domain compared with the subterranean rodent of N. galili. We
hypothesized that the upregulated levels of Puma in the skeletal
muscle of plateau zokor, and the different expression pattern of
Puma in skeletal muscle was closely related to the convergent
evolution site.

Igfbp3 is a hypoxia-inducible gene, which transcription is
activated through the hypoxia-inducible factor-1α (Natsuizaka
et al., 2012). In this study, we observed that two convergent
evolution sites occurred in Igfbp3 of plateau zokor and N. galili
at the residues Q207 and N285 in the C-terminus. However,
compared with these two subterranean rodents, the amino acids
in the same sites in the sequence of Sprague-Dawley rat Igfbp3
were arginine (R) and histidine (H). Igfbp3 regulates apoptosis
in an insulin-like growth factor (IGF)-dependent manner,
through the IGF-binding sites at the N- and C-terminal
regions (Spencer and Chan, 1995; Ho and Baxter, 1997; Devi
et al., 2000; Imai et al., 2000; Buckway et al., 2001). Studies have
shown that the affinity of Igfbp3 for IGF-I/II was lost when its
residues I56, L80, and L81 were substituted by glycine (G),
which prevented apoptosis and also promoted the tumor
growth in vivo and in vitro (Buckway et al., 2001; Takaoka
et al., 2007; Natsuizaka et al., 2012). Low pO2 showed to
upregulate Igfbp3 levels in the tissues of plateau zokor,
whereas it downregulated Igfbp3 in the lung of Sprague-
Dawley rats, indicating that the substitution of the two
convergent sites may change the affinity of the IGF and
regulate Igfbp3 transcription under low oxygen
concentration. Apaf1, along with cytochrome c and dATP,
forms the apoptosome complex that then recruits caspase 9
(via its caspase recruitment domain) to induce apoptosis
(Bratton and Salvesen, 2010; Yuan and Akey, 2013). Our
results displayed that Apaf1 has five convergent evolution
sites (D289, F320, M1,000, L1,039, and I1,069) in plateau
zokor. The M1,000, L1,039, and I1,069 sites were in the
C-terminal regulatory Y-domain, which is composed of
12–13 WD40 repeats (WDRs), and D289 and F320 were
located in the central CED-4 domain. Previous studies have
demonstrated that mutations in the WDRs and CED-4 affect
the ability of Apaf1 to bind to cytochrome c and caspase9, and
induce apoptosis (Srinivasula et al., 1998). Mutagenesis studies
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also showed that the Apaf1 variant lacking the WDRs was still
able to activate procaspase-9 independently of cytochrome c
and dATP (Hu et al., 1999). Moreover, the M368L (in the CED-
4 domain) mutated variant is more potent inducing apoptosis
than the wild-type Apaf1 (Hu et al., 1998; Hu et al., 1999).
Herein, the S320F was found to lead to regional electrostatic
changes in the electrostatic potential map. In addition, Low pO2

upregulated Apaf1 expression in the liver and lung of plateau
zokor. Apaf1 expression pattern in liver differed between
plateau zokor and Sprague-Dawley rats. Taken together,
these findings suggest that Apaf1 expression is closely related
to the convergent evolution sites. Nevertheless, the function of
the convergent evolution sites of apoptosis-related genes
warrants further investigations by site-directed mutagenesis
technology.

CONCLUSION

For the long-time adaptation to the hypoxic environments,
apoptosis-related genes of plateau zokor underwent convergent
evolution, with convergent evolution sites potentially playing an
important role in controlling gene expression. Indeed, the
convergent evolution sites of the apoptosis-related genes may
be responsible for the upregulation of their levels under low
oxygen partial pressures to induce apoptosis in tissues of plateau
zokor and consequently suppress tumorigenesis under hypoxic
environments.
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