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Myotonic dystrophy type 1 (DM1) is a dominantly inherited disorder due to a toxic gain of
function of RNA transcripts containing expanded CUG repeats (CUGexp). Patients with
DM1 present with multisystemic symptoms, such as muscle wasting, cognitive
impairment, cataract, frontal baldness, and endocrine defects, which resemble
accelerated aging. Although the involvement of cellular senescence, a critical
component of aging, was suggested in studies of DM1 patient-derived cells, the
detailed mechanism of cellular senescence caused by CUGexp RNA remains
unelucidated. Here, we developed a DM1 cell model that conditionally expressed
CUGexp RNA in human primary cells so that we could perform a detailed assessment
that eliminated the variability in primary cells from different origins. Our DM1 model cells
demonstrated that CUGexp RNA expression induced cellular senescence by a telomere-
independent mechanism. Furthermore, the toxic RNA expression caused mitochondrial
dysfunction, excessive reactive oxygen species production, and DNA damage and
response, resulting in the senescence-associated increase of cell cycle inhibitors p21
and p16 and secreted mediators insulin-like growth factor binding protein 3 (IGFBP3) and
plasminogen activator inhibitor-1 (PAI-1). This study provides unequivocal evidence of the
induction of premature senescence by CUGexp RNA in our DM1 model cells.
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INTRODUCTION

Myotonic dystrophy type 1 (DM1, OMIM #160900) is the most common form of muscular
dystrophy in adults (Johnson et al., 2021). The clinical manifestations of DM1 are characterized
by multisystemic symptoms, including muscle wasting, myotonia, cardiac conduction defects,
cataracts, frontal balding, cognitive impairment, and endocrine defects (Thornton, 2014; Meola
and Cardani, 2015). DM1 is caused by the expansion of CTG repeats in the 3′-untranslated region
(UTR) of DMPK (Brook et al., 1992; Fu et al., 1992; Mahadevan et al., 1992). The RNA expressed
from the mutant allele exerts a toxic gain of function due to the presence of an expanded CUG repeat
(CUGexp), which forms ribonuclear foci in the nucleus and disrupts the regulation of alternative
splicing by affecting several RNA-binding factors, including muscleblind-like splicing regulator one
and CUGBP Elav-like family member one proteins (Lee and Cooper, 2009). Aberrant splicing events
in CLCN1, SCN5A, and INSR have been associated with myotonia, arrhythmias, and insulin
resistance, respectively, in DM1 (Savkur et al., 2001; Charlet et al., 2002; Freyermuth et al.,
2016). However, although more than hundreds of mis-splicing events have been identified in
DM1 tissues (Nakamori et al., 2013; Freyermuth et al., 2016; Otero et al., 2021), the aberrant splicing
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events responsible for many multisystemic DM1 symptoms
remain unclear, suggesting the involvement of additional
factors in DM1 pathogenesis.

Some of the multisystemic symptoms in DM1, such as muscle
wasting, cataract, cognitive impairment, and frontal baldness,
resemble the appearance of accelerated aging (Meinke et al.,
2018). Cellular senescence is a crucial driver of the aging
process and is defined as a state of irreversible cell cycle arrest
induced by stress or specific physiological processes, such as
telomere erosion, oncogene overexpression, oxidative stress,
mitochondrial dysfunction, and inflammation (Hernandez-
Segura et al., 2018; Di Micco et al., 2021). It is characterized
by morphological and metabolic changes, chromatin
reorganization, and a senescence-associated secretory
phenotype (SASP) (McHugh and Gil, 2018). Several studies
have shown that DM1 patient-derived cells reduce proliferative
capacity and induce cellular senescence (Furling et al., 2001; Bigot
et al., 2009; Thornell et al., 2009; Renna et al., 2014). Other studies
have suggested the involvement of oxidative stress and
mitochondrial dysfunction in DM1 pathogenesis (Sahashi
et al., 1992; Usuki and Ishiura, 1998; Siciliano et al., 2001;
Toscano et al., 2005; Garcia-Puga et al., 2020). However, the
mechanism of cellular senescence in DM1 remains still unclear,
because of the limitations in assessing cellular senescence in
human primary cells. The characteristics of patient-derived
cells vary considerably in different genetic and environmental
backgrounds (Chang et al., 2002; Maier and Westendorp, 2009;
Dolivo et al., 2016). Furthermore, the proliferative lifespan of
human primary cells depends on the donor’s age (Kaji et al.,
2009). In this study, we developed a cell model of DM1
conditionally expressing abnormal RNA containing CUGexp to
overcome the issue of variability in primary cells of different
origins. Then, we investigated whether CUGexp RNA induced
cellular senescence and which senescence process was key in
DM1 pathogenesis.

MATERIALS AND METHODS

Cell Culture and Transfection
Plasmid pLC16 was used for conditional transcription of
expanded CTG repeats, as previously described (Nakamori
et al., 2011b). Briefly, pLC16 consists of a cytomegalovirus/
chicken β-actin enhancer/promoter, followed by a floxed
selection-stop cassette, a downstream complementary DNA
(cDNA) sequence for hygromycin resistance, and, finally, the
human DMPK 3′-UTR, modified with restriction sites for
insertion of expanded CTG repeats (Supplementary Figure
S1A). The selection-stop cassette contains cDNA encoding a
puromycin resistance protein (puro) followed by a triple-stop
transcription terminator. The expanded CTG repeat was
synthesized in the repeat donor plasmid pDWD using cell-free
cloning by amplification of dimerized expanded repeats. The
expanded CTG repeat was inserted into the DMPK 3′-UTR
sequence in the pLC16 plasmid construct.

DM1 fibroblasts (GM05281) were purchased from Coriell
Institute. DM1 myoblasts were obtained from biopsy

specimens as described previously (Nakamori et al., 2017).
Human fetal lung fibroblasts (TIG-3 cells, passage 20) were
obtained from the Japanese Collection of Research
Bioresources Cell Bank. They were cultured in Dulbecco’s
modified Eagle medium with low glucose (Gibco)
supplemented with 10% fetal bovine serum. Then, the TIG-3
cells were cotransfected with pLC16 containing 800 CTG repeats
and phiC31 integrase using Nucleofector Technology with
program U-023 (Lonza). Stably transfected cells were selected
with puromycin (0.5 μg/ml). The expression of expanded CUG
RNA was induced by Cre recombinase-mediated excision of the
puro-transcription-terminator cassette. Cells with recombination
were selected using hygromycin B (50 μg/ml). The proliferative
capacity of the cells was assessed by calculating CPDL, as
previously described (Bigot et al., 2009).

Fluorescent in situ Hybridization (FISH)
FISH was performed as previously described (Nakamori et al.,
2011b). The resultant fluorescence images were obtained using a
BZ-X710 fluorescence microscope (Keyence).

SA-β-Gal and BrdU Activity and Proliferative
Capacity
SA-β-gal activity was determined using a Senescence Cells
Histochemical Staining Kit (Sigma-Aldrich), according to the
manufacturer’s protocol. Images were obtained with a BZ-X710
fluorescence microscope. Proliferating cells were detected using a
BrdU Immunohistochemistry Kit (Abcam), according to the
manufacturer’s protocol. Briefly, the cells were incubated with
10 μM BrdU for 24 h at 37°C. BrdU-positive cells were analyzed
using ImageJ software (National Institutes of Health).

Quantitative RT-PCR
Total RNA was extracted from the DM1 model cells using an
RNeasy Mini Kit (Qiagen). Then, the RNA was reverse
transcribed to cDNA using a Superscript III First-Strand
Synthesis System (Invitrogen), according to the manufacturer’s
protocol. qPCR was performed using TaqMan Gene Expression
assays on an ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Gene expression was determined using
TaqMan primers and probes for CDKN1A, TP53, CDKN2A,
IGFBP3, SERPINE1, NQO1, HMOX1, MMP1, and MMP3
(Applied Biosystems). Relative mRNA expression was
normalized to 18S rRNA. The level of endogenous DMPK plus
transgene-derived mRNA was determined as described
previously (Nakamori et al., 2011a). Alternative splicing of
MBNL1 exon 5 and MBNL2 exon 5 was analyzed as described
previously (Nakamori et al., 2016).

RNA-Seq Analysis
Whole transcriptome RNA-seq analysis was performed on
CUGexp− and CUGexp+ cells using a NovaSeq 6,000 System
(Illumina). The raw data were evaluated by NGQC software
(Novogene) and trimmed to remove adaptor contaminants
and low-quality reads. Clean reads were aligned to
the reference genome sequence using TopHat v2.0.12
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(Trapnell et al., 2009). The estimated transcript abundance was
calculated, and the count values were normalized to the upper
quartile of the fragments per kilobase of transcript per million
mapped reads using HTSeq v0.6.1 (Anders et al., 2015). GO
enrichment analyses were conducted using goseq v2.12.0 (Young
et al., 2010) and Metascape (http://www.metascape.org).
Sequencing data have been deposited in Gene Expression
Omnibus under accession number GSE196265.

Western Blot
Total cell proteins were prepared from the DM1 model cells, as
previously described (Nakamori et al., 2017). Then, the proteins
were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and immunoblotted with the following primary
antibodies: mouse anti-IGFBP3 (1:500; MAB305, R&D Systems),
rabbit anti-PAI-1 (1:2000; NBP1-19773, Novus), rabbit anti-AKT
(1:500; GTX121937, GeneTex), rabbit anti-phospho-Akt (Ser473)
(1:500; 4,058, Cell Signaling Technology), rabbit anti-p53 (1:100;
2,527, Cell Signaling Technology), rabbit anti-p21 (1:1,000; 2,947,
Cell Signaling Technology), rabbit anti-p16 (1:1,000; ab108349,
Abcam), and rabbit anti-GAPDH (1:1,000; G9545, Sigma-
Aldrich). After incubation, the immunoblots were washed,
incubated with horseradish peroxidase-conjugated anti-mouse
immunoglobulin (Ig) G or anti-rabbit IgG (GE Healthcare), and
detected by ECL Prime Western Blotting Detection Reagent (GE
Healthcare) using a ChemiDoc Touch Imaging System (Bio-Rad).

Enzyme-Linked Immunosorbent Assay for
Secreted IGFBP-3
The levels of secreted IGFBP-3 were measured using a Human
IGFBP-3 Quantikine ELISA Kit (R&D Systems), according to the
manufacturer’s instructions. Recombinant human IGFBP-3
protein (R&D Systems) was used as the standard control.

Telomere Length Measurement
Genomic DNA was extracted from the DM1 model cells using a
Gentra Puregene Cell Kit (Qiagen). Then, telomere length was
measured using a Relative Human Telomere Length
Quantification qPCR Assay Kit (ScienCell), according to the
manufacturer’s protocol. Briefly, the extracted genomic DNA
was added to a reaction containing a primer pair (telomere or
single copy reference) and Power SYBR Green PCR Master Mix
(Applied Biosystems). PCR was performed on an ABI PRISM
7900HT Sequence Detection System (Applied Biosystems).

Comet Assay
Comet assays were performed, as previously described (Olive and
Banath, 2006). Briefly, cell suspensions were mixed with a 1%
low-gelling-temperature agarose solution and spotted onto
agarose-precoated glass slides. The slides were gently
submerged in an alkaline lysis solution for 4 h at 4°C and then
transferred to an electrophoresis solution and electrophoresed at
20 V for 25 min. Next, the slides were submerged in rinse buffer
for 30 min at room temperature and then incubated with 2.5 μg/
ml SYBR Green Ⅰ Nucleic Acid Gel Stain (Invitrogen) for 20 min.

The results were analyzed using ImageJ software and scored as the
percentage of tail DNA and Olive tail moment.

Immunofluorescence
The DM1 model cells were plated on Lab-Tek II chamber slides
(Thermo Fisher Scientific) and incubated for 24 h. After washing
with PBS, the cells were fixed in 4% paraformaldehyde for 15 min
and permeabilized with 0.3% Triton for 5 min. Then, cells were
blocked with 5% BSA for 30 min and incubated with mouse anti-
phospho-Histone H2A.X (Ser139) antibody (1:500; 05-636,
Merck Millipore) overnight at 4°C. After washing with PBS,
cells were incubated with goat-anti-mouse Alexa 488
secondary antibody (1:500) for 1 h. Cells were washed with
PBS and mounted with Vectashield Hardset mounting
medium with DAPI (Vector Laboratories). The fluorescence
images were obtained using a BZ-X710 fluorescence
microscope (Keyence).

Abasic Site Measurement
The number of AP sites was assessed using a colorimetric DNA
Damage Quantification Kit-AP Site Counting (Dojindo),
according to the manufacturer’s instructions. The results were
measured on a Multiskan FC Microplate Photometer (Thermo
Fisher Scientific).

Flow Cytometry Analysis of ROS Production
and Mitochondrial Membrane Potential
ROS production was determined by flow cytometry using
MitoSOX Red Mitochondrial Superoxide Indicator
(Invitrogen), and the mitochondrial membrane potential was
measured by flow cytometry using Rhodamine 123
(Invitrogen). Briefly, the DM1 model cells were seeded at a
density of 80% confluency on 12-well plates. Then, H2O2

(200 µM) was added to induce ROS production, and the cells
were incubated at 37°C for 1 h. After detaching the cells from the
wells using trypsin, they were incubated with 5 µM MitoSOX or
10 μM Rhodamine 123 for 30 min at 37°C. Finally, the cells were
analyzed on a BD FACSCanto II flow cytometer (BD
Biosciences). The total cell population was defined according
to the forward versus side scatter dot plot, and data for the live
cells only were extracted for analysis. The median fluorescence
intensity (MFI) of at least 10,000 cells was analyzed using FlowJo
software (BD Biosciences). Unstained cells were used as a control.

ATP Measurement
The levels of cellular ATP were quantified using an Intracellular
ATP Assay Kit v2 (TOYO B-Net), according to the
manufacturer’s instructions. The emitted luciferin
luminescence was quantified using a Glomax 20/20
Luminometer (Promega). Results were corrected for protein
concentration using ATP-extracted samples.

Statistical Analysis
Data were presented as the mean ± standard deviation (SD) from
at least three independent biological replicates. Statistical
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significance was tested using the Student’s t-test. p values <0.05
were considered statistically significant.

RESULTS

Expanded CUG Repeat RNA Induces
Cellular Senescence in DM1 Model Cells
We developed a DM1 cell model to investigate the effect of
CUGexp RNA on cellular senescence. First, we transfected normal
human lung fibroblasts (TIG-3 cells) with plasmid pLC16
containing 800 CTG repeats (day 6). Then, we treated the cells
with Cre recombinase, and obtained DM1 model cells
conditionally expressing CUGexp RNA after 18 days of
selection using hygromycin B (day 47). This cell model
allowed us to control CUGexp RNA expression in primary cells
with the same genetic background so that we could assess the
mechanism of cellular senescence by CUGexp RNA expression
more accurately than in patient-derived cells.

In the cells expressing CUGexp RNA following induction by
Cre recombinase, the total expression level of transgene and
endogenous DMPK was increased 3.8-fold compared with that
of endogenous DMPK and DM1 fibroblasts and to a similar level
in DM1 myoblasts (Supplementary Figure S1B). RNA-
fluorescence in situ hybridization (FISH) experiments showed
RNA foci formation, as observed in DM1 patient cells (Figure 1A;
Supplementary Figure S1C). Splicing misregulation in MBNL1
and MBNL2 was also induced by CUGexp RNA expression

(Supplementary Figure S1D). We calculated the cumulative
population doubling level (CPDL) by culturing the DM1
model cells to compare the proliferative capacity of cells
expressing CUGexp (CUGexp+ cells) with those not expressing
CUGexp (CUGexp− cells). The induction of abnormal RNA slowed
cell proliferation and prematurely terminated cell division
(Figure 1B; Supplementary Figure S2A). We also confirmed
that the induction of CUGexp RNA reduced the proliferative
capacity in two other independently established TIG-3 cell lines
conditionally expressing CUGexp RNA (Supplementary Figure
S2B). However, the integration sites of the transgene and the
expression level of CUGexp RNAs are different in each cell line.
Therefore, to avoid the effect of variation in genetic background,
we further investigated the mechanism of the premature arrest of
cell proliferation in a representative cell line with a sufficient
evaluation period after the induction of CUGexp RNA expression
in the same genetic background. Furthermore, we confirmed that
Cre induction and hygromycin B selection did not affect cell
proliferation in TIG-3 cells transfected with plasmid pLC16
containing no CTG repeat (Supplementary Figure S2C).

We examined the activity of senescence-associated β-
galactosidase (SA-β-gal), a biomarker of senescent cells, to
clarify whether the premature arrest was associated with
senescence. There were 9.4-fold and 4.3-fold increases in SA-
β-gal positivity in CUGexp+ cells compared with CUGexp− cells on
day 51 and day 63, respectively (p = 0.0008 and 0.00006,
respectively, Figure 1C). Furthermore, CUGexp+ cells showed
significantly lower levels of bromodeoxyuridine (BrdU) positivity

FIGURE 1 | Expanded CUG repeat RNA induces cellular senescence in DM1 model cells. (A) Representative images of RNA FISH analysis in cells not expressing
CUGexp (CUGexp−) and cells expressing CUGexp (CUGexp+) at day 53. Nuclear CUGexp foci were present in CUGexp+ cells. Scale bar: 10 μm. DAPI: 4′,6-diamidino-2-
phenylindole. (B) Cumulative population doubling levels (CPDL) of CUGexp− cells (blue) and CUGexp+ cells (red) during continuous passages. Cells were transfected with
plasmid pLC16 containing 800 CTG repeats at day 6. CUGexp RNA was induced by Cre recombinase at day 25 in CUGexp− cells. Data are presented as means ±
SD of three independent experiments. (C) Senescence-associated β-galactosidase (SA-β-gal) activity in CUGexp− and CUGexp+ cells at day 51 (left) and day 63 (right).
Representative images of SA-β-gal staining (top). Bar graph shows the percentage of SA-β-gal-positive cells (bottom). Data are presented as means ± SD of three
independent experiments. **p < 0.001. (D) Immunohistochemical quantification of the percentage of BrdU-positive cells at day 55. Data are presented as means ± SD of
three independent experiments. *p < 0.01.
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(indicating cells with proliferative activity) compared with
CUGexp− cells (p = 0.0083, Figure 1D). Thus, CUGexp

expression induced early arrest of cell division and senescence
in the DM1 model cells.

Expanded CUG Repeat RNA Alters Gene
Expression Profiles Related to Cellular
Senescence
We performed RNA sequencing (RNA-seq) analysis in CUGexp+

and CUGexp− cells at day 51 to identify the pathway that induced
cellular senescence when CUGexp RNA was expressed. Up-
regulated and down-regulated genes in CUGexp+ cells had
some overlap with those in DM1 myoblasts or myotubes
reported in a previous study, despite the cell type difference
(Todorow et al., 2021) (Supplementary Table S1). Gene ontology

(GO) enrichment analysis was performed to identify relevant
biological pathways. Genes for extracellular matrix (ECM)
organization, positive regulation of the apoptotic process, and
regulation of cell growth were highly enriched among the
upregulated genes in CUGexp+ cells (Figure 2A). The genes
involved in ECM organization included MMP1 and ADAMT
genes (Figure 2D). These genes encode ECM-degrading
enzymes, which are important molecules comprising the SASP
(Mavrogonatou et al., 2019). Among the ECM-degrading
enzymes, the matrix metalloproteinase (MMP) family is
predominantly linked with cellular senescence (Mavrogonatou
et al., 2019). For example, MMP1 and MMP3 expression was
reported as upregulated in senescent fibroblasts (Coppe et al.,
2010). We evaluated MMP1 and MMP3 expression in the DM1
model cells at days 51 and 63 by quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) and found

FIGURE 2 | RNA-seq analysis in CUGexp− and CUGexp+ cells. (A) Bar graphs displaying the GO categories showing significant enrichment among the upregulated
genes in cells expressing CUGexp (CUGexp+) at day 51. (B) Bar graphs displaying the GO categories showing significant enrichment among the downregulated genes in
CUGexp+ cells at day 51. (C) Bar graphs displaying the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showing significant enrichment for upregulated
genes in CUGexp+ cells. (D) Expression levels of representative upregulated or downregulated genes in CUGexp+ cells involved in ECM organization (orange), p53
signaling pathway (green), and response to oxidative stress (blue).
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FIGURE 3 | Expanded CUG repeat RNA alters gene and protein expression levels related to cellular senescence. (A) Gene expression levels of MMP family genes
(MMP1 andMMP3) (top left), Nrf2 target genes (NQO1 andHMOX1) (top right), secreted mediators of senescence genes (IGFBP3 and SERPINE1) (bottom left), and cell
cycle checkpoint genes (TP53, CDKN1A, and CDKN2A) (bottom right) determined by qRT-PCR in cells not expressing CUGexp (CUGexp−) and cells expressing CUGexp

(CUGexp+) cells at days 51 and 63. Values are presented as means ± SD of three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001. (B)
Representative images of western blots of IGFBP3, PAI-1, Akt, phospho-Akt (Ser437), p53, p21, and p16 proteins in CUGexp− and CUGexp+ cells at day 54 (left). GAPDH
was used as the loading control. Bar graph shows quantification of the immunoblot (right). Values are presented as means ± SD of three independent experiments. *p <
0.05, **p < 0.01, and ***p < 0.001. (C) IGFBP3 levels in the culture medium of CUGexp− and CUGexp+ cells at day 54. Values are presented as means ± SD of three
independent experiments. ***p < 0.001.
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that the expression of these genes was significantly increased in
CUGexp+ cells (p = 0.0087 and 0.023 at day 51, and p = 0.0002 and
0.0007 at day 63, respectively, Figure 3A), suggesting that
CUGexp RNA alters the expression of several ECM-degrading
enzymes related to cellular senescence. Genes for muscle
structure development and response to oxidative stress were
significantly enriched among the downregulated genes
(Figure 2B). The genes involved in the response to oxidative
stress and antioxidant expression, such as NQO1 and HMOX1,
were significantly decreased (p = 0.016 and 0.005 at day 51, and
p = 0.0026 and 0.0031 at day 63, respectively, Figures 2D, 3A).

Furthermore, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis showed that the p53 signaling
pathway was highly enriched among the upregulated genes in
CUGexp+ cells (Figure 2C). This pathway involves SERPINE1,
encoding plasminogen activator inhibitor-1 (PAI-1), and
IGFBP3, a downstream target of PAI-1-induced senescence,
which were both markedly upregulated (p = 0.0003 and 0.0014
at day 51, and p = 0.0095 and 0.00002 at day 63, respectively,
Figures 2D, 3A). These genes were reported not only as markers
of senescence but also as inducers of senescence in human and
mouse fibroblasts (Debacq-Chainiaux et al., 2008; Vaughan et al.,
2017). The protein levels of PAI-1 and insulin-like growth factor
binding protein 3 (IGFBP3) were also significantly increased in
CUGexp+ cells at day 54 (p = 0.0026 and 0.021, respectively,
Figure 3B). We then assessed the activity of Akt, a critical
downstream target downregulated by PAI-1 and IGFBP3
(Balsara et al., 2006; Elzi et al., 2012). Akt phosphorylation at
Ser473 was mildly decreased in CUGexp+ cells at day 54, although
this was not statistically significant (p = 0.065, Figure 3B).
IGFBP3 has also been reported as a secreted mediator of
cellular senescence with paracrine and autocrine activity
(Vassilieva et al., 2020). The IGFBP3 levels in the culture
medium of the DM1 model cells showed a 4-fold increase in
CUGexp+ cell cultures at day 54 (p = 0.00013, Figure 3C). These
results indicated that the PAI-1-IGFBP3 pathway was activated
by CUGexp RNA expression in the DM1 model cells.

Expanded CUG Repeat RNA Activates Cell
Cycle Checkpoint Inhibitors
PAI-1 and IGFBP3 were reported as induced by p53 activation
(Grimberg et al., 2005; Vaughan et al., 2017). p53 is activated in
response to DNA damage and various stressors that
characteristically promote cellular senescence to regulate the
cell cycle (Di Micco et al., 2021). Cell cycle checkpoint genes,
such as TP53 encoding p53, CDKN1A encoding p21, and
CDKN2A encoding p16, induce cellular senescence despite the
presence of metabolic activity (Hernandez-Segura et al., 2018;
McHugh and Gil, 2018). To investigate the influence of CUGexp

RNA on cell cycle arrest, we measured the expression levels of cell
cycle-related genes by qRT-PCR in CUGexp− and CUGexp+ cells at
days 51 and 63. TP53 and CDKN1A were significantly increased
in CUGexp+ cells (p = 0.021 and 0.011 at day 51, and p = 0.021 and
0.0009 at day 63, respectively, Figure 3A). CDKN2A was mildly
increased in CUGexp+ cells at day 51 (p = 0.076, Figure 3A) and
significantly increased at day 63 (p = 0.017, Figure 3A). The

protein levels of p21 and p16 were significantly increased in
CUGexp+ cells at day 54 (p = 0.018 and 0.00043, respectively,
Figure 3B). p53 was also mildly increased in CUGexp+ cells,
although the increase did not reach statistical significance (p =
0.33, Figure 3B). p21 and p16 are sufficient to establish cell cycle
arrest in an independent and interdependent manner (McHugh
and Gil, 2018; Di Micco et al., 2021). Our results indicated that
CUGexp RNA expression increased the expression of cell cycle
checkpoint inhibitors, resulting in cell cycle arrest in the DM1
model cells.

Expanded CUG Repeat RNA Causes DNA
Damage in a Telomere-Independent
Manner
Next, we investigated the regulatory mechanism responsible for
the increased levels of cell cycle inhibitors p21 and p16 and
secreted mediators IGFBP3 and PAI-1 in the DM1 model cells.
Telomere shortening is an important molecular mechanism of
cell cycle arrest (Di Micco et al., 2021). Shortened telomeres are
recognized as DNA breaks, and they promote cell cycle arrest,
known as replicative senescence (Hernandez-Segura et al., 2018;
Di Micco et al., 2021). We used qPCR to measure the telomere
length in the DM1 model cells at days 43, 49, and 61 to confirm
whether the cellular senescence induced by CUGexp occurred in a
telomere-dependent manner. Although the telomere length in
CUGexp− and CUGexp+ cells was shortened in later passages, there
was no significant difference in the telomere length between both
cell types (Figure 4A). This suggested that telomere shortening
was not associated with accelerated cellular senescence caused by
the toxic CUGexp RNA.

Telomere-independent senescence (premature senescence)
occurs when DNA damage response (DDR) is triggered in
response to DNA damage, even in normal proliferating cells
(Di Micco et al., 2021). We performed a comet assay on the DM1
model cells to evaluate the DNA damage induced by CUGexp. The
parameters reflecting the extent of DNA damage, such as the
percentage tail DNA and Olive tail moment (OTM), were
significantly increased in CUGexp+ cells at day 53 (p = 0.00022
and 0.0056, respectively, Figure 4B). Furthermore, γ-H2AX foci,
indicative of DNA damage, were significantly increased in
CUGexp+ cells (p = 0.019, Figure 4C). Next, we evaluated
apurinic/apyrimidinic (AP) sites (markers of base excision
repair) to confirm DDR activation in response to DNA
damage in the DM1 model cells. The AP site lesions were
increased in later passages and were more significantly
increased in CUGexp+ cells at day 49 (p = 0.0015, Figure 4D),
suggesting that abnormal CUGexp RNA increased DNA damage
and DDR in the DM1 model cells.

Expanded CUG Repeat RNA Impairs
Mitochondrial Function and Increases
Reactive Oxygen Species
We then investigated the cause of DNA damage in CUGexp+ cells.
ROS are important in the induction of cellular senescence because
they damage DNA via a variety of mechanisms, including
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oxidized DNA bases, AP sites, and double-strand breaks (Davalli
et al., 2016). Considering the possibility that excessive ROS
production may cause the DNA damage by toxic repeat RNA,
wemeasured mitochondrial ROS by flow cytometry. H2O2, which
induces intracellular ROS generation, was added to evaluate the
response to oxidative stress (Weng et al., 2018). In our study,
mitochondrial ROS were significantly increased in CUGexp+ cells
at day 55 under normal conditions, and the difference was more
pronounced following H2O2 exposure (p = 0.018 and 0.036,
respectively, Figure 5A).

Mitochondria are the major sites of ROS production (Turrens,
2003) and mitochondrial dysfunction contributes to ROS
overproduction (Korolchuk et al., 2017). Therefore, we
evaluated mitochondrial dysfunction as a cause of ROS
production. Rhodamine 123, which accumulates in activated
mitochondria that have a high membrane potential, was

unaffected by CUGexp RNA expression (Figure 5B). However,
although the mitochondrial membrane potential remained
unchanged, intracellular ATP levels were significantly
decreased in CUGexp+ cells at day 55 (p = 0.0082, Figure 5C).
Decreased cellular ATP production results from mitochondrial
bioenergetic dysfunction, and insufficient mitochondrial energy
production leads to excessive ROS production (Korolchuk et al.,
2017). Thus, our results indicated that CUGexp RNA caused
mitochondrial dysfunction, contributing to premature
senescence via ROS production.

DISCUSSION

The presentation of multisystemic symptoms that resemble
features of aging in patients with DM1, such as muscle

FIGURE 4 | Expanded CUG repeat RNA causes DNA damage in a telomere-independent manner. (A)Measurement of relative telomere length by qPCR. Telomere
length was measured at three different stages (at days 43, 49, and 61) in cells not expressing CUGexp (CUGexp−) (blue) and cells expressing CUGexp (CUGexp+) (red). Data
are presented as means ± SD of three independent experiments. (B) Representative images of DNA damage in comet assays at day 53 (left). DNA damage was
evaluated according to the percentage tail DNA and Olive tail moment (right). Data are presented as means ± SD of three independent experiments. *p < 0.01, **p <
0.001. (C)Representative images of DNA damage in γ-H2AX assays at day 53 (left). Bar graph showing percentage of γ-H2AX positive cells (right). Data are presented as
means ± SD of three independent experiments. *p < 0.05. (D) Quantification of DNA damage response by AP site measurement. The AP site lesions per 100,000 base
pairs were measured in the cells before transfection (day 5) and at day 49 in cells not expressing CUGexp (CUGexp−) and cells expressing CUGexp (CUGexp+). Data are
presented as means ± SD of three independent experiments. *p < 0.01.
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wasting, cataract, cognitive impairment, and frontal baldness,
suggests DM1 as a progeroid disorder (Meinke et al., 2018).
Although several studies of DM1 patient-derived cells indicate

the involvement of cellular senescence (Furling et al., 2001; Bigot
et al., 2009; Thornell et al., 2009; Renna et al., 2014), the
senescence process remains unelucidated. In this study, we
established a primary cell model of DM1 with the conditional
expression of CUGexp RNA. We demonstrated that CUGexp

expression induced premature senescence in the DM1 model
cells. Additionally, our results suggest that premature senescence
in the DM1 model cells is associated with mitochondrial
dysfunction and ROS production, leading to the upregulation
of secreted mediators IGFBP3 and PAI-1 and cell cycle regulators
p16, p21, and possibly p53 (Figure 6).

Cellular senescence is defined as the permanent cessation of
cell proliferation. It is induced by two distinct mechanisms:
replicative senescence (triggered by telomere loss) and
premature senescence (caused by a telomere-independent
mechanism) (Kuilman et al., 2010). Our results suggest that
the expression of CUGexp RNA induces cellular senescence
regardless of telomere length, which correlates with the
findings of another study reporting reduced proliferative
capacity in muscle satellite cells from patients with DM1, even
though the telomeres did not reach a critical size (Bigot et al.,
2009).

Telomere-independent premature senescence is triggered by
various cellular stressors, including oxidative stress, oncogene
activation, and DNA damage agents such as ionizing radiation or

FIGURE 5 | Expanded CUG repeat RNA impairs mitochondrial function
and increases ROS. (A) Left: Flow cytometry histograms of mitochondrial
ROS in cells not expressing CUGexp (CUGexp−) (green) and cells expressing
CUGexp (CUGexp+) (orange) at day 55 under normal conditions and
following H2O2 exposure (CUG

exp−, blue, and CUGexp+, red). Right: Bar graph
showing MFI values for mitochondrial ROS. Data are presented as means ±
SD of three independent experiments. *p < 0.05. (B) Left: Flow cytometry
histograms of Rhodamine 123 in CUGexp− (blue) and CUGexp+ cells at day 56
(red). Right: Bar graph showing MFI values for Rhodamine 123. Data are
presented as means ± SD of three independent experiments. (C)
Quantification of intracellular ATP production by firefly luciferase luminescence
at day 55. Data are presented as means ± SD of three independent
experiments. **p < 0.01. RLU: relative light units.

FIGURE 6 | Proposed mechanism of premature senescence by CUGexp

RNA expression. RNA toxicity by CUGexp causes mitochondrial dysfunction,
which contributes to ROS overproduction, triggering DNA damage and DDR.
Accumulated DNA damage activates cell cycle regulators, such as p53,
p21, and p16. ROS-induced DNA damage upregulates the secreted
mediators PAI-1 and IGFBP3 in a p53-dependent and -independent manner,
which drive premature senescence. These multiple steps in the process of
senescence interact with one another, inducing premature senescence.
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chemotherapeutic substances (Kuilman et al., 2010; Hernandez-
Segura et al., 2018). Exposure to these stressors induces persistent
DNA damage and DDR, resulting in premature senescence. Our
study focused on oxidative stress, a typical internal factor that
causes premature senescence, because the use of our DM1 cell
model allowed us to exclude the influence of external factors.
Oxidative stress is characterized by ROS overproduction (Davalli
et al., 2016). ROS directly damage DNA, causing the induction
and maintenance of cellular senescence (Passos et al., 2010;
Davalli et al., 2016). The majority of ROS are produced in
mitochondria, and mitochondrial ROS production increases
with mitochondrial metabolic dysfunction (Turrens, 2003;
Korolchuk et al., 2017). Mitochondrial ROS were slightly but
significantly increased in CUGexp+ cells solely by induction of
abnormal RNA expression even in physiological condition.
Previous studies demonstrated that even slight changes in
mitochondrial ROS production are associated with DNA
damage and mitochondrial dysfunction in fibroblasts
(Kobashigawa et al., 2015; Lofaro et al., 2020). Our findings of
increased mitochondrial ROS, decreased intracellular ATP, and
DDR activation in CUGexp+ cells indicate that CUGexp RNA
promotes ROS-mediated premature senescence by mitochondrial
dysfunction.

ROS homeostasis is maintained by antioxidants. Nuclear
factor-erythroid 2 related factor 2 (Nrf2) transcriptionally
regulates several antioxidant genes, such as HMOX1 and
NQO1, to decrease ROS levels (Kasai et al., 2020). On the
other hand, excess ROS activates p53, which suppresses the
Nrf2-regulated antioxidant genes (Drane et al., 2001; Faraonio
et al., 2006). Nrf2-dependent antioxidant factors were decreased
in our CUGexp+ DM1 model cells, suggesting that Nrf2, which is
normally activated to eliminate excessive ROS, is suppressed by
p53, exacerbating the vulnerability of our DM1 model cells to
oxidative stress. Moreover, oxidative stress has been clinically
associated with cataracts (Pendergrass et al., 2005), frontal hair
loss (Shin et al., 2013), and metabolic dysfunction (de Almeida
et al., 2017), which are commonly observed in patients with DM1.
Furthermore, antioxidant capacity has been reported as impaired
in DM1 patients’ serum (Toscano et al., 2005; Kumar et al., 2014).
These findings suggest that ROS-induced premature senescence
leads to the features of aging observed in DM1.

The mechanism of cell cycle arrest by CUGexp RNA is largely
unknown. The cell cycle is chiefly regulated by the p53-p21 and
p16-pRb pathways. Although these pathways have complex
interactions, p16 is mainly involved in maintaining cellular
senescence by mitogenic stress and sustained DDR (Mijit
et al., 2020; Di Micco et al., 2021). Muscle satellite cells
derived from patients with congenital DM1 have been
reported to induce p16-dependent premature senescence
(Bigot et al., 2009). In our study, p16 and p21 expression was
significantly increased in CUGexp+ cells at both the transcript and
protein levels. Moreover, p53 expression was significantly
increased in CUGexp+ cells at the transcript level and mildly
increased at the protein level. The p53-p21 pathway, which is
necessary for senescence induction, is upregulated following
DDR activation (Mijit et al., 2020; Di Micco et al., 2021).
Thus, our data indicate that abnormal CUGexp RNA can

induce senescence by activating the p53-p21 pathway and
cause irreversible senescence by p16 upregulation.

PAI-1 and IGFBP3 are major factors affecting cellular
senescence, mainly as downstream targets of p53 (Grimberg
et al., 2005; Vaughan et al., 2017; Vassilieva et al., 2020). In
our study, the transcript and protein levels of PAI-1 and IGFBP3
were significantly increased in CUGexp+ cells. PAI-1 and IGFBP3
are regulated in both p53-dependent and -independent manner
in response to ROS-induced DNA damage (Grimberg et al., 2005;
Eren et al., 2014). Hence, CUGexp RNA may increase the
expression of PAI-1 and IGFBP3 not only through p53 but
also through another signaling pathway activated by ROS-
induced DNA damage. Further, PAI-1 and IGFBP3 induce
cellular senescence with activation of cell cycle inhibitors. For
example, IGFBP3 overexpression upregulates p21 in some cancer
cells (Wu et al., 2013), and inhibition of PAI-1 activity reduces
p16 expression (Eren et al., 2014). Therefore, the excessive ROS,
DNA damage, and DDR observed in CUGexp+ cells may increase
PAI-1 and IGFBP3, leading to premature senescence via
activation of cell cycle inhibitors. Additionally, Akt is involved
in PAI-1- and IGFBP3-induced cell growth suppression and
cellular senescence (Balsara et al., 2006; Elzi et al., 2012). We
observed a slight reduction in Akt activity in CUGexp+ cells, which
is consistent with a previous study using fibroblasts from DM1
patients (Garcia-Puga et al., 2020). Our results suggest the
possibility that abnormal CUGexp RNA can inactivate Akt,
causing PAI-1- and IGFBP3-mediated senescence.
Furthermore, recent studies have shown the suppression of
Akt signaling in DM1 skeletal muscle, so reduced Akt activity
may be associated with skeletal muscle atrophy (Crawford Parks
et al., 2017; Sabater-Arcis et al., 2020; Ozimski et al., 2021).
Skeletal muscle atrophy is generally associated with
mitochondrial ROS (Powers, 2014), and PAI-1 inhibits the
regeneration of damaged skeletal muscle (Rahman and Krause,
2020). Thus, the mechanism of cell proliferation inhibition via
PAI-1 and IGFBP3 by ROS-induced DNA damage may also
contribute to muscle atrophy in DM1. However, it should be
noted that the mechanism of premature senescence observed in
our DM1 model fibroblast cells could be different in DM1
myoblast cells. Even in myoblasts, a different mechanism of
premature senescence was reported in DM1 and DM2 (Renna
et al., 2014).

Previous studies have suggested that cellular senescence in
DM1 is associated with mitochondrial dysfunction, oxidative
stress, DNA damage, and activation of cell cycle inhibitors
(Hasuike et al., 2022). Our study demonstrated the direct
effects of abnormal CUGexp RNAs on these factors by using
the DM1 model cells conditionally expressing CUGexp. However,
we were unable to evaluate either the characteristics of CUGexp+

cells at a pre-senescence stage or the therapeutic effect by
targeting CUGexp RNA or ROS, since CUGexp+ cells exhibited
delayed cell proliferation soon after the cell model establishment
(day 47). Hence, it is not clearly determined whether the
senescence inducers such as mitochondrial dysfunction and
ROS production observed in CUGexp+ cells are the cause or
result of premature senescence. Generally, senescence occurs
in a bidirectional manner and via various positive feedback
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mechanisms. For example, cell cycle regulators, such as p53, p21,
and p16, produce ROS as a downstream signal transduction
factor without oxidative DNA damage, while ROS itself
induces p53 (Davalli et al., 2016). Furthermore, the positive
feedback loops of mitochondrial damage, ROS production, and
DDR activation via the p53-p21 pathway are necessary and
sufficient to maintain cell cycle arrest (Passos et al., 2010).
Our data suggest that the activation of these positive feedback
loops maintains senescence in CUGexp+ cells. Several studies have
shown impaired mitochondrial function in DM1 (Gramegna
et al., 2018; Garcia-Puga et al., 2020). Thus, excessive ROS
production by mitochondrial metabolic dysfunction may
trigger the series of senescence pathways induced by
CUGexp RNA.

In conclusion, our findings indicate that abnormal expanded
CUG repeat RNA leads to mitochondrial dysfunction, ROS
production, and DDR activation, and induces premature
senescence. Various drug targets have been investigated to
eliminate the influence of senescent cells and SASP (Di Micco
et al., 2021). Interventions targeting the senescence-inducing
factors resulting from CUGexp RNA may be potential therapeutics
for symptoms that resemble accelerated aging in DM1.
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