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Drug repositioning continues to be the most effective, practicable possibility to treat
COVID-19 patients. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus enters target cells by binding to the ACE2 receptor via its spike (S) glycoprotein. We
used molecular docking-based virtual screening approaches to categorize potential
antagonists, halting ACE2-spike interactions by utilizing 450 FDA-approved chemical
compounds. Three drug candidates (i.e., anidulafungin, lopinavir, and indinavir) were
selected, which show high binding affinity toward the ACE2 receptor. The conformational
stability of selected docked complexes was analyzed through molecular dynamics (MD)
simulations. The MD simulation trajectories were assessed and monitored for ACE2
deviation, residue fluctuation, the radius of gyration, solvent accessible surface area,
and free energy landscapes. The inhibitory activities of the selected compounds were
eventually tested in-vitro using Vero and HEK-ACE2 cells. Interestingly, besides inhibiting
SARS-CoV-2 S glycoprotein induced syncytia formation, anidulafungin and lopinavir also
blocked S-pseudotyped particle entry into target cells. Altogether, anidulafungin and
lopinavir are ranked themost effective among all the tested drugs against ACE2 receptor-S
glycoprotein interaction. Based on these findings, we propose that anidulafungin is a novel
potential drug targeting ACE2, which warrants further investigation for COVID-19
treatment.
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INTRODUCTION

COVID-19 consists of a spectrum of syndromes from a mild, flu-like illness to severe pneumonia
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus (Zhou et al.,
2020). Its severity is linked to lung epithelial destruction, thrombosis, and hyperimmune-mediated
damage (Bussani et al., 2020; Zhou et al., 2020; Zhu et al., 2020; Buchrieser et al., 2021).
Additionally, an abnormal dysmorphic cellular characteristic is the presence of large infected
multinucleated cells, predominately comprised of pneumocytes (Bussani et al., 2020; Braga et al.,
2021; Sanders et al., 2021). The disease has rapidly spread globally, prompting the WHO in March
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2020 to declare it a worldwide pandemic. As per WHO, till
February 19, 2022, SARS-CoV-2 is estimated to have infected
over 418,650,474 people and caused over 5,856,224 deaths
(WHO, 2022).

SARS-CoV-2 is an enveloped virus with a positive-sense
single-stranded RNA that belongs to the beta-coronavirus
genera of coronaviruses and exploits the human ACE2
receptor to enter the host cells (Hoffmann et al., 2020; Yan
et al., 2020), such as SARS-CoV (Wrapp et al., 2020). The spike
(S) protein present in the outer envelope of the virus binds the
ACE2 receptor expressed on target cells along with other
membrane proteins NRP1 (Cantuti-Castelvetri et al., 2020),
TMPRSS2 (Hoffmann et al., 2020) and Furin (Johnson et al.,
2020; Peacock et al., 2021) (which assist the binding or entry),
leading to the access of the virus to the target cells. After binding
with the ACE2 molecules, the conformational changes in the S
protein lead to the fusion of the viral envelope with the host cell
membrane and the subsequent transfer of the RNA viral genome
into the cells (Hoffmann et al., 2020). Apart from interacting
with ACE2, S protein is also predicted to interact with Glucose
Regulated Protein 78 (GRP78) or Bip, which plays a role in virus
internalization (Ibrahim et al., 2020; Elfiky and Ibrahim, 2022).
Another study reported that the GRP78 is vital for ACE2
trafficking and stability (Carlos et al., 2021). Several groups
have conducted computational studies as well as experiments
to study the interactions involving S protein and the ACE2
receptor. To target and disrupt the interactions by exploring
repurposed drugs or novel inhibitors, attempts have been made
to design ligands targeting S protein (Xiu et al., 2020; Wang et al.,
2021) as well as ACE2 receptors (Ahmad et al., 2021). Despite the
availability of several vaccines to treat COVID-19 and reduce the
viral spread and disease severity, COVID-19 still requires novel
therapeutics to fight the newly emerging SARS-CoV-2 variants
and overcome the significant limitations in vaccine production
and distribution, which hamper worldwide effective
immunization. Since its appearance, the inherited Wuhan
strain has been replaced by variants harboring various
mutations in the viral genome (Otto et al., 2021; Singh et al.,
2021). Several of these mutations occur in the highly antigenic S
protein, which endows several of the variants with the ability to
escape part of the neutralizing antibody response (Weisblum
et al., 2020; Liu et al., 2021; Planas et al., 2021; Rees-Spear et al.,
2021; Starr et al., 2021). Several available vaccines have
significantly reduced efficacy against these newly emerged
variants (Pouwels et al., 2021; Sanderson, 2021). Various
drugs have been proven effective against COVID-19 in
controlled clinical trials, including remdesivir (Beigel et al.,
2020), corticosteroids (Sterne et al., 2020), and a few
monoclonal antibodies (Marovich et al., 2020; Taylor et al.,
2021). However, none of these drugs are curative and, in
several instances, their clinical effect is quite modest. In
addition, some of the available treatments, particularly those
with monoclonal antibodies, show diminished activity with the
emerging variants. Given the importance of SARS-CoV-2, its
transmission and rapid worldwide spread, it is thus crucial to
rapidly generate new therapeutic approaches, especially to deal
with newly emerging SARS-CoV-2 mutants.

The ACE2 receptor plays an essential role in transmitting the
virus to the target host cells. Hence, here we aimed to identify a
potential antagonist against theACE2 receptor, which can inhibit the
entry of the virus into human cells. We screened 450 FDA-approved
compounds with antiviral properties toward the active pocket of
ACE2 receptor using molecular docking-based virtual screening,
followed by MD simulation, and subsequently, in vivo validation of
chosen drugs. Furthermore, MD simulations examined the stability
of ligand-protein complexes, and the free energy of binding was
calculated using the (MMGB/SA) ΔGmethods. Here, we found that
two drugs, anidulafungin and lopinavir, effectively block S-induced
cell–cell fusion events and S-viral particle entry. As both S-mediated
syncytia formation and entry of S-viral particles into the cells require
functional ACE2-S protein interactions, we conclude that
anidulafungin and lopinavir effectively block the formation of the
ACE2-S complex.

MATERIALS AND METHODS

Selection of FDA-Approved Antiviral and
ACE2 Structure
Drug candidates were selected among antiviral datasets from
published literature to identify the novel drugs which potentially
interfere with the SARS-CoV-2 replication by inhibiting spike-
ACE2 interactions (Ghahremanpour et al., 2020; Heiser et al.,
2020; Jeon et al., 2020; Jin et al., 2020; Ku et al., 2020; Nguyenla
et al., 2020; Riva et al., 2020; Touret et al., 2020; Weston et al.,
2020; Yuan et al., 2020; Ahamad et al., 2021b; Chen et al., 2021;
Dittmar et al., 2021; Ellinger et al., 2021; Ginex et al., 2021; Han
et al., 2021; Mirabelli et al., 2021). The structure of the ACE2
receptor (PDB ID: 6M17) was downloaded from the Protein Data
Bank (Goodsell et al., 2020).

Computational Resources
The MD simulations were carried out on High Performance
Computing (HPC) cluster of International Business Machines
(IBM) Power9 CPU nodes (total 160 CPUs) with NVIDIA
TESLA v100 32GB GPUs and Red Hat Enterprise Linux
operating system.

Molecular Docking
To predict the preferred binding pocket on the ACE2 surface,
molecular docking-based virtual screening was performed using
Flare 5.0 and binding affinities calculated. Flare incorporates
BioMolTech’s Lead Finder docking algorithm and combines its
docking engine with genetic algorithm search containing local
optimization procedures, enabling efficient sampling of ligand
poses for refinement. The volume of the grid box was 287,154 A3,
and the axis was set to be X: 116.403, Y: 97.474, and Z: 183.867 to
cover all the amino acids in the box. It includes three different
scoring functions (viz., LF dG, LF VSscore, and LF RankScore) for
accurately predicting 3D docked ligand poses. The LF RankScore
was selected for protein-ligand binding energy and rank ordering
of active and inactive compounds in virtual screening
experiments. The 2D plot was generated to study residue-
ligand interactions, using the Schrödinger Maestro version
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12.8.117, release 2021-2 suite (Schrödinger LLC,
Cambridge, MA).

Groningen Machine for Chemical
Simulations
We used the general methodology to perform MD simulations of
native ACE2 and the best-docked complexes using GROMACS
(V5.18.3) (Abraham et al., 2015). For the MD simulation of the
docked complexes, suitable force field parameters are required for
the ligand/drug topology, which cannot be assigned using
GROMACS. Hence, the PRODRG server was used to generate
drug topologies and coordinate files (Schuttelkopf and van
Aalten, 2004). We used the GROMOS9643a1 force field for
native and drug-protein complexes, viz., ACE2-anidulafungin,
ACE2-lopinavir, ACE2-indinavir, and ACE2-MLN-4670 (Van
Der Spoel et al., 2005). Furthermore, systems were solvated using
a Simple Point Charge (SPC) water model in a cubic box (Price and
Brooks, 2004). 0.15M counter ions of sodium (Na+) and chlorine
(Cl−) were added to the simulation box for the system neutralization.
All the neutralized systemswere energyminimized using the steepest
descent followed by conjugate gradient methods (50,000 steps for
each). The system equilibration was achieved under the regulation of
volume (NVT) and pressure (NPT) ensembles. The NVT ensemble
was subjected to a constant temperature of 300 K and a constant
pressure of 1 bar. The hydrogen (H) atoms were confined to
equilibrium distances and periodic boundary conditions using the
SHAKE algorithm. Additionally, the long-range electrostatic forces
were defined using the Particle Mesh Ewald (PME) method (Lee
et al., 2016). The cut-offs for Van der Waals and Coulombic
interactions were set at 1.0 nm (Wang et al., 2016). The bonds
and angles were constrained using the LINCS algorithm. Moreover,
after a successful NPT ensemble run, the production run was
performed for 100 ns. The energy, velocity, and trajectory were
updated at a time interval of 10 ps. For the native ACE2 and the
complexes, the MD trajectories were analyzed using GROMACS to
calculate several parameters, namely, Cα-atom root mean square
deviations (RMSD), root mean square fluctuations (RMSF) to
investigate the relative fluctuations of each residue, radius of
gyrations (Rg) to assess the protein compactness, solvent
accessible surface area (SASA) to estimate the electrostatic
contributions of molecular solvation, and free energy landscapes
(FEL), as described in our previous publications (Ahamad et al.,
2021a; Ahamad et al., 2021b).

Cells
HEK293T cells (ATCC CRL-3216) were cultured in Dulbecco’s
modified Eagle medium (DMEM) with 1 g/L glucose (Life
Technologies) supplemented with 10% fetal bovine serum
(FBS) (Life Technologies) plus a final concentration of 100 IU/
ml penicillin and 100 (μg/ml) streptomycin or without antibiotics
were required for transfections.

Vero (WHO)Clone 118 cells (ECACC 88020401) were cultured
in Dulbecco’s modified Eagle medium (DMEM, Life Technologies)
with 1 g/L glucose (Life Technologies) supplemented with 10%
heat-inactivated fetal bovine serum (FBS, Life Technologies) plus a
final concentration of 100 IU/ml penicillin and 100 (μg/ml)

streptomycin or without antibiotics where required for
transfection. Cells were incubated at 37°C, 5% CO2.

Plasmids
Human ACE2 (Addgene #1786), pLVTHM/GFP (Addgene
#12247), psPAX2 (Addgene 12,260), pMD2.G (Addgene
#12259) were obtained from Addgene. pAAV-CMV-GFP was
obtained from L. Zentilin (Molecular Medicine Lab, ICGEB).
pAAV-spike-V5 and pAA-spike-d19-V5 SARS-CoV-2 spike
expression vectors were used previously (Braga et al., 2021).

Antibodies
Antibodies against the following proteins were used: ACE2
(Abcam, ab15348), SARS-CoV-2 spike (GeneTex GTX632604),
V5-488 (Thermo Fisher Scientific, 377500A488), α-beta-actin-
HRP (Sigma-Aldrich), mouse-HRP (Abcam, ab6789), and rabbit-
HRP (Abcam, ab205718).

Plasmids DNA Transfections
Plasmid expressing human ACE2 reverse transfection was
performed in a 96-well plate; 100 ng of plasmids were diluted
in 25µl of Opti-MEM (Life Technologies) and mixed with the
transfection reagent (FuGENE HD, Promega) using a ratio of
1 µg pDNA:3 µL FugeneHD. The transfection mixes were
incubated for 25 min at RT and added to the 96 well plates
(Cell Carrier Ultra 96, Perkin Elmer).

Vero cells (6.5 × 103) or HEK293-ACE2 (8 × 103) cells were
seeded in each well. After 24 h of transfections, 100 ng of the
pEC117-spike-V5 expression plasmid was transfected using a
standard forward transfection protocol. After 24 h, cells were
fixed in 4% PFA and processed for immunofluorescence.

Immunofluorescence
After fixation in 4% PFA for 10 min at RT, cells were washed two
times with 1xPBS and then permeabilized in same volumes of
0.1% Triton X100 (Sigma-Aldrich 1086431000) for 10 min at RT.
Cells were then washed two times 1xPBS and blocked with 2%
BSA for 1 h at RT. After blocking, the cells were stained according
to the type of staining.

After blocking, a diluted primary antibody (1:500 in 1% BSA
SARS-CoV-2 spike antibody or V5-488) was added to each well
and incubated overnight at 4°. Cells were then washed two times
with 1xPBS, and then a secondary antibody was added (45 µL/
well, diluted 1:500 in 1% BSA) to each well and incubated for 2 h
at RT. Cells were then washed two to three times in 1xPBS.
Nuclear staining was performed using Hoechst 33,342 (1:5,000).

Image Acquisition and Analysis
Image acquisition was performed using the Operetta CLS high
content screening microscope (Perkin Elmer) with a Zeiss 20×
(NA = 0.80) objective, a total of 25 fields were acquired per
wavelength, well and replicate (~10,000–15,000 cells per well and
replicate).

Images were subsequently analyzed using the Harmony
software (PerkinElmer). Images were first flat field corrected
and nuclei were segmented using the “Find Nuclei” analysis
module (Harmony). The thresholds for image segmentation
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were adjusted according to the signal-to-background ratio. The
splitting coefficient was set to avoid splitting of overlapping nuclei
(fused cells). The intensity of the green fluorescence (spike/GFP)
was calculated using the “Calculate Intensity Properties” module
(Harmony). All the cells that scored a nuclear area greater than
four times (formanual quantification of syncytia, if fused nuclei>3,
it counts as a syncytia) the average area of a single nucleus and were
simultaneously positive for green (spike) signal in the cytoplasm
area were considered as fused or syncytia. Data were expressed as a
percentage of fused cells by calculating the average number of fused
cells normalized to the total number of cells per well.

For pseudotyped particle entry assays: mean intensities of the
segmented nucleus in the 488 (green) channel and the Hoechst
channel for each nucleus across all fields were extracted. Each
assay plate included a negative control, DMSO. Briefly, nuclei
were segmented based on Hoechst staining, and cells were then
classified as positive or negative depending on the GFP signal.
Data were expressed as a percentage of GFP + cells by calculating
the average number of GFP + cells normalized on the total
number of cells.

Pseudotyped Particle Production and Entry
Assay
A HIV-1 based lentiviral system was used to produce SARS-CoV-2
spike pseudotyped particles in HEK293T cells by the co-transfection
of pMD2.G or pAAV-spike (d19), psPAX2 (packing vector), and
PLVTHM (GFP) as described previously (Ali et al., 2019). Viral
supernatants were collected after 48 h of transfection and centrifuged
at 3,000 rpm for 10min at 4°. The supernatant was then filtered with
a 0.45 µm pore size filter, aliquoted, and stored at −80°C. For
pseudotyped particle entry, 1 h before spike pseudotyped particle
transduction, HEK293-ACE2 cells were treated with selected drugs
and control cells were treated with DMSO. After 36 h, cells were
fixed; nuclei were labeled withHoechst and assessed for pseudotyped
particles transduction efficiency based on GFP positive cells.

Western Blotting
After 20–24 h of drug treatment, Vero cells were processed for
western blot analysis. Equal amounts of total cellular proteins
(15 μg), as measured with the BCA (Thermofisher, 23,227), were
resolved by electrophoresis in 4–20% gradient polyacrylamide

FIGURE 1 | (A) Mechanism of action to prevent SARS-CoV-2 entry into the target host cell. SARS-CoV-2 enters human cells after the interaction of the spike
protein with the ACE2 receptor. Blocking ACE2-spike interactions by targeting ACE2 receptors with antiviral compounds is an important approach for developing novel
therapeutics against SARS-CoV2. (B) Schematic overview of searching novel inhibitors at the proposed study.
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gels (Mini-PROTEAN, Biorad) and transferred to nitrocellulose/
PVDF membranes (GE Healthcare). Membranes were blocked at
RT for 60 min with PBST (PBS + 0.1% Tween-20) and 5% skim
milk powder (Cell signalling, 9.999). Blots were then incubated
(4°C, overnight) with primary antibodies against ACE2 (diluted 1:
1,000), and α-tubulin (diluted 1:10,000). Blots were washed three
times (10 min each) with PBST. For standard Western blotting
detection, blots were incubated with either anti-rabbit HRP-
conjugated antibody (1:5,000) or anti-mouse HRP-conjugated
antibody (1:10,000) for 1 h at RT. After washing three times at RT
with PBST (10 min each), blots were developed with ECL
(Amersham).

RESULTS

In Silico Screening of Inhibitors Targeting
ACE2-Spike Protein Interactions
Functional ACE2-S interaction is essential for SARS-CoV-2 entry
into host cells, as shown in (Figure 1A). Detailed structural

analysis proved that both SARS-CoV-2 and SARS-CoV S proteins
strongly bind to ACE2 receptors (Lan et al., 2020; Magro et al.,
2021). Therefore, to identify drugs that could inhibit the ACE2-S
interactions and potentially viral replication, we screened the 450
drugs (Supplementary Table S1) by exploiting the molecular
docking approach (Figures 1B, 2A–C). Here, we found that
several compounds show a strong affinity toward the ACE2
receptor, but we selected the top three compounds, namely,
anidulafungin, lopinavir, and indinavir, showing more binding
affinity than MLN-4670, which is a known enzymatic inhibitor of
ACE2 (Dales et al., 2002a) (Figures 2B, C, Supplementary
Figures S1A–C). Detailed molecular interactions and
properties of the four selected docked complexes are shown in
Table 1. In the ACE2-anidulafungin complex, anidulafungin
forms two hydrogen(H) bonds with Arg518 and Thr371
amino acid residues (Figures 2B, C) and hydrophobic bonds
with 32 amino acids (shown in Table 1) together with one Zn-ion
at the binding pocket of the ACE2 receptor. Similarly, in the
lopinavir-ACE2 complex, lopinavir forms 1-H bonds with
Glu398 and hydrophobic bonds with 38 amino acids (shown

FIGURE 2 |Docked all 450 compounds with ACE2 receptor (A). The binding interaction H-bonds (green) and the amino acid residues of ACE2 and anidulafungin at
the binding site (B). The 2D plot of the ACE2-anidulafungin binding pose (C).
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in Table 1). Indinavir interacts with Gly395 and Glu402 through
2H-bonds, hydrophobic bonds with 32 amino acid residues and
Zn ions (shown in Table 1). The docking and 2D plot are shown
in (Supplementary Figures S1D–F). However, MLN-4760
interacts with ACE2 by forming one H-bond with Glu402
(Supplementary Figures S1C–F) and hydrophobic bonds with
25 amino acid residues and a Zn metal ion (shown in Table 1).

Out of all the tested compounds, three drugs show high
binding affinities toward ACE2 compared to MLN-4760, a
known enzymatic inhibitor of ACE2. So, potentially, these
drugs might inhibit SARS-CoV-2 replication by interfering
with the formation of functional ACE2-S interactions.

Anidulafungin Forms the Most Stable
Complex With ACE2 Receptor in the
Molecular Dynamics Simulations
To investigate molecular interactions of the docked complexes
further, we performed MD simulations of ACE2-native, four
selected docked complexes (ACE2-anidulafungin, ACE2-
lopinavir, ACE2-indinavir) and ACE2-MLN-4670 for 100 ns.
The stability, interaction profile, and structural parameters
including RMSD, RMSF, Rg, SASA, and free energy
calculations were also evaluated throughout the simulation run
time to select the most stable receptor-drug complex.

In RMSD analysis, native ACE2 showed steady RMSD and
revealed a threshold of ~0.44 nm toward the binding with ACE2
under given simulation conditions (Figure 3A). The docking
complexes of ACE2 with lopinavir, indinavir, and MLN-4760
noticeably reached equilibrium with average RMSD values of 0.45,
0.41, and 0.41 nm, respectively. The compound lopinavir revealed a
high drift in the average RMSD values. However, the average RMSD
values of indinavir and MLN-4760 remained the same.

The RMS deviation of Cα-atoms remained stable throughout
the simulation with a slight difference in the values but proposed

one complex with anidulafungin, indicating strong binding due
to polar interaction with Arg518 and Thr371 residues as well as
various non-polar interactions. Anidulafungin displayed the
least RMSD fluctuations at the ACE2 binding pocket
compared to the other drug compounds. The overall results
suggested that the anidulafungin was reliably stable among all
the complexes.

Secondly, RMS-fluctuations play a crucial role in identifying
the flexible and rigid regions of drug-receptor complexes. Hence,
RMSF calculations were performed to measure the average
atomic flexibility of the ACE2 receptor Cα-atoms alone and in
complex with the tested compounds. The average RMSF values
were recorded as —Native-ACE2 (0.18 nm), anidulafungin
(0.14 nm), lopinavir (0.18 nm), indinavir (0.15 nm) and MLN-
4760 (0.18 nm) (Figure 3B). Interestingly, we observed that the
ACE2-anidulafungin complex showed a low degree of
fluctuations compared to other docked complexes and native-
ACE2. However, lopinavir and indinavir displayed the highest
degree of fluctuations and hence comparatively less stable. The
above-mentioned comparative analysis of Cα-RMSF confirms a
high level of flexibility caused by the presence of drug molecules
on the protein structure in comparison to the native.

Next, we analyzed the compactness of the native ACE2 and
docked complexes by using the radius of gyration (Rg)
calculations. The results showed that the Rg values of the
native-ACE2 receptor and the complexes of anidulafungin,
lopinavir, indinavir, and MLN-4760 compounds remained
highly stable with ranges of 2.78, 2.86, 2.82, 2.76, and 2.77 nm,
respectively, throughout the MD simulation period (Figure 3C;
Table 2). The low oscillations in Rg and SASA values portrayed
high stability for the anidulafungin-ACE2 complex compared to
other complexes and ACE2 alone. Interestingly, the Rg results
also revealed that the ACE2-anidulafungin complex is the most
stable of all the tested complexes. Comparative analysis of the Rg
values shows the folding behavior of ACE2 upon binding with

TABLE 1 | Physicochemical properties of anidulafungin, lopinavir, indinavir, and MLN-4760.

Compounds Anidulafungin Lopinavir Indinavir MLN-4670

MW 1140.3 628.8 613.8 428.3
Atoms 82 46 45 28
SlogP 2.1 4.7 3.6 3.4
TPSA 377.4 120 118 104.4
RB 38 16 14 12
dG −12.96 −8.77 −8.93 −11.11
LF VSscore −14.24 −11.05 −10.56 −11.46
LF RankScore −14.42 −12.97 −12.94 −9.78
H-bonds Arg518 and Thr371 Glu398 Gly395 and Glu402 Glu402
Residues forming
hydrophobic
interactions

Asp206, Arg273, Phe274, Thr276,
Asp367, Leu370, Thr371, His345,
Pro346, His374, Glu375, Asn394,
Gly395, Ala396, Asn397, Glu398,
Gly399, His401, Glu402, Gly405,
Glu406, Ile407, Ser409, Leu410,
Lys441, Gln442, Thr445, Ile446,
Gln522, Arg514, Tyr515, Lys562

and Zn

Phe40, Asp206, Tyr207, Arg273,
His345, Pro346, Thr347, Ala348,
Trp349, Asp350, Leu351, His374,
Glu375, His378, Ile379, Tyr381,
Asp382, Tyr385, Arg393, Asn394,
Gly395, Ala396, Asn397, Glu398,
Gly399, Phe400, His401, Glu402,
Ala403, Ile513, Arg514, Tyr515,
Tyr516, Thr517, Arg518, Thr519,

Tyr521, Lys562 and Zn

Phe40, Asp206, His345, Pro346,
Thr347, Ala348, Trp349, Asp350,

Leu351, Gly352, Phe356,
His374, Glu375, His378, Tyr381,

Asp382, Tyr385, Phe390,
Arg393, Asn394, Ala396,
Asn397, Glu398, Gly399,

Phe400, His401, Ala403, Arg514,
Tyr515, Thr517, Arg518, Thr519

and Zn

Arg273, His345, Pro346, Thr347,
Ala348, Met360, Asp367,
Asp368, Thr371, His374,
Glu375, His378, Asn397,
Glu398, Gly399, Phe400,

His401, Ala403, Gly405, Glu406,
His505, Arg514, Tyr515, Tyr516,

Arg518 and Zn

MMGBSA (ΔG) −162.28 −67.19 −92.1 −73.53
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anidulafungin, which indicates high compactness between the
complexes. We also performed a SASA analysis to better
understand the solvent behavior of native ACE2 and docked
complexes. Here, we found an average value of native ACE2,
anidulafungin, lopinavir, indinavir, and MLN-4760 complexes of
389.88, 392.60, 391.05, 389.90, and 392.10 nm2, respectively
(Figure 3D; Table 2). These results showed that the
compound anidulafungin possessed more stable hydrophobic
contacts than the other docked complexes, making most of the

ACE2 receptor surface accessible to the solvent and other
molecules.

Finally, the docked complexes were also subjected to the
overall motion of all protein and drug atoms by using Free
Energy Landscapes (FEL) analysis. The conformational
stabilities of the native ACE2 and the docked complexes were
examined by FEL analysis using PC1 (Principal Components)
and PC2 values. The values of FEL ranged from 0 to 14, 12.9, 13,
12.9, and 14.4 kJ/mol for the native ACE2, anidulafungin,

FIGURE 3 | The elucidation of MD simulation of native ACE2 and ACE2-docked complexes. (A) Representation of C-alpha conformation of RMSD. (B)
Comparative RMS fluctuation plot of native ACE2 and ACE2-docked complexes. (C) Rg analysis of native ACE2 and ACE2-docked complexes. (D) SASA plot of native
ACE2 and ACE2-docked complexes.

TABLE 2 | The average values of RMSD, Rg, and SASA of the native ACE2 and complex containing compounds anidulafungin, lopinavir, indinavir, and MLN-4760.

Complexes Average RMSD (nm) Average RMSF (nm) Average SASA (nm2) Average Rg (nm)

Native-ACE2 0.44 0.18 389.88 2.78
ACE2-anidulafungin 0.39 0.14 392.60 2.86
ACE2-lopinavir 0.41 0.18 391.05 2.82
ACE2-indinavir 0.45 0.15 389.90 2.76
ACE2-MLN-4760 0.41 0.18 392.10 2.77
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FIGURE 4 | Free energy landscape analysis of (A) native ACE2 and complexes with Anidulafungin (B), lopinavir (C), indinavir (D), and MLN-4760 (E) compounds.

FIGURE 5 | Anidulafungin and lopinavir impaired the spike-mediated syncytia formation. (A) Schematic representation of the SARS-Cov2 spike-mediated cell–cell
fusion assay. (B) Vero cells were treated with either DMSO or top 3 selected drugs after 6 h of spike expressing plasmid transfection. After 20 h, cells were
immunostained with anti-spike (green) and nuclei (blue). (C) Quantifications. Data (mean ± SD; n = 6, Mann-Whitney U test) are plotted as the percentage of fused cells
(syncytia) normalized on the total number of cells.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8664748

Ahamad et al. Anidulafungin Inhibits ACE2-Spike Protein Interaction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


lopinavir, indinavir, and MLN-4760 docked complexes,
respectively (Figures 4A–E). This analysis indicated that the
complexes were stable and persistent energy minima,
suggesting the amino acids of the ACE2 binding pocket-
forming interactions with drugs are vital for the stability and
interaction. The global free energy minima results showed that
the docked complexes revealed stabilizing effect that lead to the
observed folding behavior of ACE2 with anidulafungin. The
analysis revealed that the anidulafungin (Figure 4B) has fewer
basins compared to the native receptor with three basins
(Figure 4A). Overall, the results for the anidulafungin
complex revealed the presence of two basins in the
conformational space, with distinct global free energy minima,
which consequently lead to a more stable behavior of the protein.

Anidulafungin and Lopinavir Inhibit
SARS-CoV-2 Spike-Induced Syncytia
Formation
The SARS-CoV-2 spike protein in the viral envelope is essential
for virus entry into the target cells. The SARS-CoV-2 S protein
induces cell–cell fusion and the formation of syncytia when it is
ectopically expressed on the membrane of host cells and binds
ACE2 receptors of adjacent cells (Bussani et al., 2020; Xia et al.,
2020; Braga et al., 2021; Buchrieser et al., 2021; Gutmann et al.,
2021). Therefore, we explored whether S-induced syncytia
formation would be impaired in the presence of the selected
drugs, such as anidulafungin, lopinavir, indinavir, and MLN-
4760, which show high affinity toward the ACE2 receptor in an
in-silico analysis (Figure 2; Supplementary Figure S1). First, we
tested the effect of drugs on S-mediated syncytia formation in

Vero cells, which our previous studies have shown to respond to S
expression by fusion (Braga et al., 2021). After 6 h of S-protein
expression, cells were treated with the indicated drugs at 10 μM
(Workflow shown in Figure 5A). Niclosamide (2.5 μM) was used
as a positive control because this drug is a potent inhibitor of
S-mediated syncytia formation by acting on the cellular
TMEM16F membrane protein (Braga et al., 2021).
Interestingly, we observed that both anidulafungin and
lopinavir treatment significantly reduced the S-mediated
cell–cell fusion compared with DMSO-treated control cells
(Figures 5B, C). As expected, niclosamide treatment
significantly reduced syncytia formation (Figures 5B,C). Both
indinavir (Vacca et al., 1994; Condra et al., 1996) and MLN-
4760 (Dales et al., 2002b; Joshi et al., 2016) were ineffective in
blocking S-mediated cell fusion (Figures 5B, C). None of the
tested drug treatments interfered with ACE2 expression in the
cells (Supplementary Figure S2). Additionally, we neither
observed significant toxicity of the tested drugs
(Supplementary Figure S3) nor any effect on S-transgene
expression (Supplementary Figure S4). Together, these
results are consistent with the conclusion that the observed
effects of both anidulafungin and lopinavir are due to
interference between ACE2-S interactions.

Anidulafungin and Lopinavir Inhibit
SARS-CoV-2 Spike-Viral Particle Entry
Entry of SARS-CoV-2 S-viral particles mimics the entry pathway of
SARS-CoV-2 virions (Lu et al., 2020;Mykytyn et al., 2021). Therefore,
we explored whether the entry of pseudotyped lentiviral vectors
expressing S on their envelope would be impaired in the presence of

FIGURE 6 | Anidulafungin impaired the spike-pseudotyped particle internalization. (A) Schematic representation of the SARS-Cov2 spike pseudotyped particle
sentry assay. (B,C) HEK293/ACE2 cells were pre-treated with indicated drugs 1–2 h before adding the spike pseudotyped particles carrying GFP as a reporter. After
36 h, cells were immunostainedwith anti-GFP (green) and nuclei (blue). Representative images are in panel (B) (spike pseudotyped particles), and quantifications in panel
(C) (spike pseudotyped particles). Data (mean ± SD; n = 6, Mann-Whitney U test) are plotted as the percentage of GFP + cells normalized on the total number
of cells.
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the top selected drugs. For this purpose, HEK cells expressing the
ACE2 receptor were treated with the indicated drugs 1 h before the
addition of S-pseudotyped viral particles to the cells (Workflow
shown in Figure 6A). Strikingly, we found that both
anidulafungin and lopinavir treatment significantly impaired
S-pseudotyped particle transduction (Figures 6B,C), while no
significant effect was observed in the presence of indinavir and
MLN-4760. In particular, anidulafungin, which showed the
strongest affinity toward the ACE2 receptor in our in-silico
analysis and formed the most stable complex with ACE2
throughout the MD simulation period, was also the most effective
in blocking S-mediated virion internalization.

Collectively, these results indicate that anidulafungin impedes
both S-mediated syncytia formation and S-viral particle entry
into the target cells.

DISCUSSION

In this work, we screened the FDA-approved antiviral dataset
using the molecular docking approach and selected the best three
compounds, namely, anidulafungin, lopinavir, and indinavir,
which show strong binding affinity toward the ACE2 receptor.

Both lopinavir and indinavir are antiretroviral drugs that
inhibit HIV-1 replication by targeting viral protease (Lv et al.,
2015). Growing pieces of evidence suggest that lopinavir has
antiviral activity against SARS-CoV-2 (Choy et al., 2020). It has
been proposed that it also inhibits the action of the SARS-CoV-2
protease 3CLpro, hence disrupting the viral replication process
(Anand et al., 2003; Zhang et al., 2020). However, coronavirus
proteases, including 3CLpro, do not contain a C2-symmetric
pocket, which is the target of HIV protease inhibitors (Li and De
Clercq, 2020; Sheahan et al., 2020). Moreover, darunavir, another
HIV protease inhibitor, is ineffective against SARS-CoV-2, as
revealed in a non-peer reviewed in vitro study (Johnson et al.,
2020). Therefore, the reported anti-SARS-CoV-2 effects of
lopinavir might be due to its affinity toward the ACE2
receptor, which leads to disruption of ACE2-spike interaction;
however, this requires further validation.

Anidulafungin is an anti-fungal lipo-peptide drug approved to
treat invasive candidiasis, candidemia, and esophageal candidiasis.
It targets the critical enzyme 1,3-β-D-glucan synthase, essential for
fungal cell wall synthesis (Debono et al., 1995). InMD simulations,
all the three drug complexes with ACE2 were more stable than
native-ACE2 and MLN-4670 inhibitors. Moreover, the
anidulafungin-ACE2 docked complex was most stable during
MD analysis and exhibited an excellent binding affinity and
energy of −14.42 kcal/mol and ΔG −162.28 kcal/mol,
respectively. The MD simulation analysis also confirmed that
the anidulafungin-ACE2 complex is stable, indicating that it can
effectively block the ACE2 receptor sites by interacting with critical
amino acid residues. Recently, an in-silico study has also shown
that anidulafungin has an affinity toward ACE2 receptors (Ahsan
and Sajib, 2021).

The SARS-CoV-2 S protein plays a significant role in host cell
viral attachment to receptor ACE2, and it also induces cell–cell

fusion once expressed on the plasma membrane of ACE2-
expressing cells. In our experiments, anidulafungin and
lopinavir effectively blocked S-induced syncytia formation and
S-pseudotyped particle entry into ACE2-expressing, target cells.
Of interest, MLN-4760, an enzymatic inhibitor of ACE2 (Dales
et al., 2002a), was ineffective in both blocking syncytia formation
and S-pseudotyped particle entry. This indicates the relevance of
ACE2 in S-mediated cell fusion and strengthens the conclusion
that our top-performing drugs are effective by directly acting on
this receptor.

Our work discloses two drugs that appear to deserve further
consideration as antiviral drugs for COVID-19 patients.
However, further studies are required to fully understand their
mechanism of action and potency against infectious SARS-
CoV-2.

Statistical Analysis
Mann-Whitney U significance test was used for the data analysis.
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